Pöschl-Teller made relativistic

Simon Ruijsenaars
School of Mathematics
University of Leeds, UK

Durham Symposium GAAI, 25 July-4 August 2016

Outline

1. Nonrelativistic 1D potential scattering

1A. Scattering on the half-line
1B. Scattering on the line
2. The Pöschl-Teller potentials

2A. Repulsive Pöschl-Teller
2B. Attractive Pöschl-Teller
3. Nonrelativistic hyperbolic Calogero-Moser systems
4. Relativistic hyperbolic Calogero-Moser systems

4A. The repulsive reduced $N=2$ case
4B. The attractive reduced $N=2$ case
5. Some references

1. Nonrelativistic 1D potential scattering

- As an introductory reminder, we consider self-adjoint Schrödinger operators of the form $(\hbar \equiv 1)$

$$
H_{0}=-d^{2} / d x^{2}, \quad H=-d^{2} / d x^{2}+V(x)
$$

with $V(x)$ real-valued.

- Two 'position space' Hilbert spaces occur:

$$
\mathcal{H}_{s} \equiv L^{2}((0, \infty), d x), \quad \mathcal{H}_{d} \equiv L^{2}((-\infty, \infty), d x)
$$

- With suitable assumptions on $V(x)$, we recall the connection of the wave operators

$$
W_{ \pm}=\lim _{t \rightarrow \pm \infty} e^{i t H} e^{-i t H_{0}}
$$

from time-dependent scattering theory with time-independent scattering theory in terms of (improper) eigenfunctions

$$
H \Psi=p^{2} \Psi, \quad p>0
$$

with unitary asymptotics.

1A. Scattering on the half-line

- Assume $V(x)$ is smooth on $(0, \infty)$, vanishes quickly for $x \rightarrow \infty$, and satisfies

$$
V(x) \rightarrow \infty, \quad x \rightarrow 0, \quad V^{\prime}(x)<0, \quad x>0
$$

- With Dirichlet b. c. at $x=0$, the interacting and free evolutions $\exp (-i t H)$ and $\exp \left(-i t H_{0}\right)$ on \mathcal{H}_{s} can be compared via the wave operators $W_{ \pm}$. They are unitary, with the scattering encoded in the (position space) S-operator

$$
S \equiv W_{+}^{*} W_{-}
$$

- This can be made more explicit by using the so-called incoming wave functions

$$
H \Psi=p^{2} \Psi, p>0, \quad \Psi(x, p) \sim u(p) e^{i x p}-e^{-i x p}, \quad x \rightarrow \infty
$$

with $u(p)=: \hat{S}_{s}(p)$ the unitary S-matrix $\left(\left|\hat{S}_{s}(p)\right|=1\right)$.

- The sine transform

$$
\left(\mathcal{F}_{0} f\right)(x) \equiv \sqrt{\frac{1}{2 \pi}} \int_{0}^{\infty} d p\left(e^{i x p}-e^{-i x p}\right) f(p), \quad f \in C_{0}^{\infty}((0, \infty))
$$

diagonalizes H_{0} on $\hat{\mathcal{H}}_{s} \equiv L^{2}((0, \infty), d p)$ ('momentum space'):

$$
H_{0} \mathcal{F}_{0}=\mathcal{F}_{0} p^{2}
$$

- Letting

$$
(\mathcal{F} f)(x) \equiv \sqrt{\frac{1}{2 \pi}} \int_{0}^{\infty} d p \Psi(x, p) f(p), \quad f \in C_{0}^{\infty}((0, \infty))
$$

we get more generally a unitary operator from $\hat{\mathcal{H}}_{s}$ to \mathcal{H}_{s} such that

$$
H \mathcal{F}=\mathcal{F} p^{2}
$$

- We also have

$$
\mathcal{F}=W_{-} \mathcal{F}_{0}, \quad \mathcal{F} \hat{S}^{*}=W_{+} \mathcal{F}_{0}, \quad(\hat{S} f)(p) \equiv \hat{S}_{s}(p) f(p)
$$

with $\hat{S}=\mathcal{F}_{0}^{*} S \mathcal{F}_{0}$ the momentum space scattering operator.

1B. Scattering on the line

- Assume $V(x)$ is smooth, even, vanishes quickly for $|x| \rightarrow \infty$, and satisfies $V^{\prime}(x)>0$ for $x>0$. Such V have finitely many bound states, i. e.,

$$
H \Psi_{\ell}=E_{\ell} \Psi_{\ell}, \quad E_{\ell}<0, \quad \Psi_{\ell} \in \mathcal{H}_{d}=L^{2}(\mathbb{R}, d x), \quad \ell=0, \ldots, L-1
$$

- The wave operators $W_{ \pm}$exist and are isometric, with range equal to the orthogonal complement of the bound states. Thus, the position space S-operator $S=W_{+}^{*} W_{-}$is unitary.
- A corresponding unitary S-matrix

$$
\hat{S}_{d}(p) \equiv\left(\begin{array}{cc}
t(p) & r(p) \\
r(p) & t(p)
\end{array}\right), \quad p>0
$$

on the momentum space $\hat{\mathcal{H}}_{d} \equiv L^{2}((0, \infty), d p)^{2}$ arises as follows.

- Diagonalize H_{0} and H via eigenfunction transforms

$$
\left(\mathcal{F}_{(0)} f\right)(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} d p\binom{\Psi_{(0)}(x, p)}{-\Psi_{(0)}(-x, p)} \cdot\binom{f_{+}(p)}{f_{-}(p)}
$$

with

$$
H_{(0)} \Psi_{(0)}=p^{2} \Psi_{(0)}
$$

- For H_{0} choose $\Psi_{0}(x, p)=\exp ($ ixp $)$, so \mathcal{F}_{0} amounts to the Fourier transform, with $\hat{f} \in L^{2}(\mathbb{R}, d p)$ yielding $\left(f_{+}, f_{-}\right) \in \hat{\mathcal{H}}_{d}$ via

$$
f_{+}(p) \equiv \hat{f}(p), \quad f_{-}(p) \equiv-\hat{f}(-p), \quad p>0
$$

- For H choose the incoming wave function $\Psi(x, p)$:
$H \Psi=p^{2} \Psi, p>0, \quad \Psi(x, p) \sim \begin{cases}t(p) e^{i x p}, & x \rightarrow \infty, \\ e^{i x p}-r(p) e^{-i x p}, & x \rightarrow-\infty .\end{cases}$
(So $\Psi(x, p) / t(p)$ is a Jost function.)
- Once more, we get $H_{(0)} \mathcal{F}_{(0)}=\mathcal{F}_{(0)} p^{2}$ and

$$
\mathcal{F}=W_{-} \mathcal{F}_{0}, \mathcal{F} \hat{S}^{*}=W_{+} \mathcal{F}_{0},(\hat{S} f)(p) \equiv \hat{S}_{d}(p)\binom{f_{+}(p)}{f_{-}(p)}
$$

so that the scattering is encoded in the momentum space scattering operator

$$
\hat{S}=\mathcal{F}_{0}^{*} S \mathcal{F}_{0}
$$

- Hence H is diagonalized as multiplication by $\left(p^{2}, p^{2}\right) \oplus\left(E_{0}, \ldots, E_{L-1}\right)$ on $\hat{\mathcal{H}}_{d} \oplus \operatorname{Span}($ bound states).
- N. B. In both cases, the eigenfunction transforms yield a concrete realization of the spectral theorem. Scattering theory can be avoided by using the so-called Weyl/Titchmarsh/Kodaira approaches.

2. The Pöschl-Teller potentials

- We consider two explicit examples of the above potentials on the half-line and the line, namely,

$$
V_{s}(x) \equiv g(g-1) / \sinh ^{2}(x), \quad x \in(0, \infty), \quad g>1
$$

and

$$
V_{d}(x) \equiv-g(g-1) / \cosh ^{2}(x), \quad x \in \mathbb{R}, \quad g>1
$$

- Here, the suffix s stands for 'same', and d for 'different'. These potentials encode the interaction between two charged particles in their center-of-mass frame, with repulsion between same charges and attraction between different charges (as in electrodynamics).
- N. B. $V_{d}(x)$ arises from $V_{s}(x)$ by the analytic continuations $x \rightarrow x \pm i \pi / 2$.

2A. Repulsive Pöschl-Teller

- The above incoming wave function $\Psi(x, p)$ involves the so-called conical function:

$$
\begin{gathered}
P_{i p-1 / 2}^{1 / 2-g}(\cosh x) \equiv \frac{(\sinh x)^{g-1 / 2}}{2^{g-1 / 2} \Gamma(g+1 / 2)} \psi_{\mathrm{nr}}(g ; x, p) \\
\psi_{\mathrm{nr}}(g ; x, p) \equiv{ }_{2} F_{1}\left((g+i p) / 2,(g-i p) / 2, g+1 / 2 ;-\sinh ^{2}(x)\right)
\end{gathered}
$$

- These functions admit a variety of integral representations. Probably the simplest is

$$
\psi_{\mathrm{nr}}(g ; x, p)=\frac{2 \Gamma(2 g)}{2^{g} \Gamma(g+i p) \Gamma(g-i p)} \int_{0}^{\infty} d y \frac{\cos (y p)}{(\cosh y+\cosh x)^{g}}
$$

which entails in particular

$$
\psi_{\mathrm{nr}}(1 ; x, p)=\sin (x p) / p \sinh x
$$

- Setting

$$
\begin{aligned}
& \Psi(x, p) \equiv-\frac{(2 \sinh x)^{g} \Gamma(g) \Gamma(g-i p)}{\Gamma(2 g) \Gamma(-i p)} \psi_{\mathrm{nr}}(g ; x, p) \\
& =-\frac{2(\sinh x)^{g} \Gamma(g)}{\Gamma(-i p) \Gamma(g+i p)} \int_{0}^{\infty} d y \frac{\cos (y p)}{(\cosh y+\cosh x)^{g}}
\end{aligned}
$$

yields the announced incoming wave function:

$$
\Psi(x, p) \sim u(p) e^{i x p}-e^{-i x p}, \quad x \rightarrow \infty
$$

where

$$
u(p)=-\frac{\Gamma(i p) \Gamma(g-i p)}{\Gamma(-i p) \Gamma(g+i p)}
$$

- N.B. For $g=1$ this gives the free solution

$$
\Psi(x, p)=e^{i x p}-e^{-i x p}
$$

2B. Attractive Pöschl-Teller

- For $g \in(L, L+1]$ there are L bound states

$$
\begin{gathered}
\Psi_{\ell}(x)=(\cosh x)^{1-g} P_{\ell}(i \sinh x), \\
H \Psi_{\ell}=E_{\ell} \Psi_{\ell}, \quad E_{\ell}=-(g-\ell-1)^{2}, \quad \ell=0, \ldots, L-1,
\end{gathered}
$$

with $P_{\ell}(t)$ Gegenbauer polynomials of degree ℓ, satisfying

$$
P_{\ell}(-t)=(-)^{\ell} P_{\ell}(t) .
$$

- The solution space to $H \Psi=p^{2} \Psi, p>0$, is spanned by the two functions

$$
(\cosh x)^{g} \psi_{\mathrm{hr}}(g ; x \pm i \pi / 2, p) .
$$

Therefore the desired incoming wave function $\Psi(x, p)$ is characterized by two p-dependent coefficients.

- Specifically, it reads

$$
\begin{gathered}
\Psi(x, p)=\frac{(2 \cosh x)^{g} \Gamma(g) \Gamma(g-i p)}{2 \Gamma(2 g) \Gamma(-i p) \sinh (i \pi g-\pi p)} \\
\times \sum_{\delta=+,-} \delta \exp (\delta(i \pi g-\pi p) / 2) \psi_{\mathrm{nr}}(g ; x+\delta i \pi / 2, p) \\
\sim \begin{cases}t(p) e^{i \times p}, & x \rightarrow \infty, \\
e^{i \times p}-r(p) e^{-i \times p}, & x \rightarrow-\infty,\end{cases}
\end{gathered}
$$

with

$$
t(p)=\frac{\sinh (\pi p)}{\sinh (i \pi g-\pi p)} u(p), r(p)=\frac{\sinh (i \pi g)}{\sinh (i \pi g-\pi p)} u(p) .
$$

- N. B. For $g=1,2,3, \ldots$, we get $r(p)=0$. Moreover, $g=1$ yields the free solution

$$
\Psi(x, p)=e^{i x p} .
$$

3. Nonrelativistic hyperbolic Calogero-Moser systems

- The nonrelativistic N-particle Calogero-Moser Hamiltonian of hyperbolic type is given by
$H_{\mathrm{nr}}=-\frac{\hbar^{2}}{2 m} \sum_{j=1}^{N} \partial_{x_{j}}^{2}+\frac{\mu^{2} g(g-\hbar)}{4 m} \sum_{1 \leq j<k \leq N} \frac{1}{\sinh ^{2}\left(\mu\left(x_{j}-x_{k}\right) / 2\right)}$,
with $\hbar>0$ (Planck's constant), $m>0$ (particle mass), $g \in \mathbb{R}$ (coupling constant), $\mu>0$ (inverse length scale).
- Associated integrable system (N commuting PDOs):

$$
\begin{gathered}
H_{1}=-i \hbar \sum_{j=1}^{N} \partial_{x_{j}}=: P_{\mathrm{nr}}, \quad H_{2}=m H_{\mathrm{nr}}, \\
H_{k}=\frac{(-i \hbar)^{k}}{k} \sum_{j=1}^{N} \partial_{x_{j}}^{k}+1 . \text { o., } \quad k=3, \ldots, N,
\end{gathered}
$$

where I.o. = lower order in partials.

- For $g \geq 0$ they can be promoted to commuting self-adjoint operators on

$$
\mathcal{H}_{s} \equiv L^{2}\left(G_{N}, d x\right), \quad G_{N} \equiv\left\{z \in \mathbb{R}^{N} \mid z_{N}<\cdots<z_{1}\right\}
$$

Indeed, papers by Heckman and Opdam (specialized to A_{N-1}) yield a unitary joint eigenfunction transform that gives rise to diagonalization of the PDOs on
$\hat{\mathcal{H}}_{s}=L^{2}\left(G_{N}, d p\right)$ as multiplication by

$$
\hat{H}_{k}=\frac{1}{k} \sum_{j=1}^{N} p_{j}^{k}, \quad k=1, \ldots, N
$$

- Harish-Chandra type asymptotics of the joint eigenfunction transform kernel yields the factorized S-matrix

$$
\hat{S}_{s}(p)=\prod_{1 \leq j<k \leq N} u\left(p_{j}-p_{k}\right)
$$

with $u(p)$ specified in Subsection 2A.

- This is a system of N particles with the same charge, and the account in 2A encodes the reduced $N=2$ (center-of-mass) state of affairs.
- We can keep $x_{1}, \ldots, x_{N_{+}}$real and take

$$
x_{N_{+}+1}, \ldots, x_{N} \rightarrow x_{N_{+}+1}-i \pi / \mu, \ldots, x_{N}-i \pi / \mu
$$

to get a system with N_{+}positive charges and $N_{-}=N-N_{+}$negative charges; the account in 2B encodes the case $N_{+}=N_{-}=1$.

- Expectation: The unequal charge case still gives a factorized S-matrix, with consistent factorization expressed by the Yang-Baxter equations for the 3-particle case. They can be thought of as pertaining to the 3-particle subspace of the fermion Fock space over $L^{2}(\mathbb{R}, d p) \otimes \mathbb{C}^{2}$.
- Specifically, the equations can be written

$$
S_{12} S_{13} S_{23}=S_{23} S_{13} S_{12},
$$

where the indices refer to the tensor legs of $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$, together with

$$
S_{j k} \equiv\left(\begin{array}{cccc}
u & 0 & 0 & 0 \\
0 & t & r & 0 \\
0 & r & t & 0 \\
0 & 0 & 0 & u
\end{array}\right)\left(p_{j}-p_{k}\right), \quad p \in G_{3} .
$$

- This yields only two nontrivial relations, namely,

$$
\begin{aligned}
& r_{12} t_{13} u_{23}=t_{23} u_{13} r_{12}+r_{23} r_{13} t_{12} \\
& u_{12} r_{13} u_{23}=t_{23} r_{13} t_{12}+r_{23} u_{13} r_{12}
\end{aligned}
$$

Division by $u_{12} u_{13} u_{23}$ yields equations for t / u and r / u that are satisfied for the 'Pöschl-Teller' u, t, r in Section 2.

4. Relativistic hyperbolic Calogero-Moser systems

- The N commuting Hamiltonians (for equal charge) are the $\mathrm{A} \Delta \mathrm{Os}$ (analytic difference operators)

$$
H_{k}(x)=\sum_{|| |=k} \prod_{\substack{m \in I \\ n \notin I}} f_{-}\left(x_{m}-x_{n}\right) e^{-i \hbar \beta \sum_{m \in I} \partial_{x_{m}}} \prod_{\substack{m \in I \\ n \notin I}} f_{+}\left(x_{m}-x_{n}\right),
$$

where $k=1, \ldots, N, \beta>0$, and

$$
\left.f_{ \pm}(x)^{2}=\sinh (\mu(x \pm i \beta g) / 2)\right) / \sinh (\mu x / 2)
$$

- Physical picture: $\beta=1 / m c$ and $c=$ light speed;

$$
\begin{gathered}
H_{\mathrm{rel}}=m c^{2}\left[H_{1}(x)+H_{1}(-x)\right], \quad P_{\mathrm{rel}}=m c\left[H_{1}(x)-H_{1}(-x)\right] \\
B=-m \sum_{j=1}^{N} x_{j},
\end{gathered}
$$

are space-time translation and boost generators.

- They represent the Lie algebra of the Poincaré group in 2D:

$$
\left[H_{\mathrm{rel}}, P_{\mathrm{rel}}\right]=0, \quad\left[H_{\mathrm{rel}}, B\right]=i \hbar P_{\mathrm{rel}}, \quad\left[P_{\mathrm{rel}}, B\right]=i \hbar c^{-2} H_{\mathrm{rel}}
$$

- The nonrelativistic limit $c \rightarrow \infty$ yields

$$
H_{\mathrm{rel}}-N m c^{2} \rightarrow H_{\mathrm{nr}}, \quad P_{\mathrm{rel}} \rightarrow P_{\mathrm{nr}}
$$

and the Galilei Lie algebra

$$
\left[H_{\mathrm{nr}}, P_{\mathrm{nr}}\right]=0, \quad\left[H_{\mathrm{nr}}, B\right]=i \hbar P_{\mathrm{nr}}, \quad\left[P_{\mathrm{nr}}, B\right]=i N \hbar m \mathbf{1}
$$

- As before, we get a system with N_{+}positive charges and $N_{-}=N-N_{+}$negative charges by taking

$$
x_{n} \rightarrow x_{n}-i \pi / \mu, \quad n=N_{+}+1, \ldots, N
$$

entailing sinh \rightarrow cosh for different charges.

- Conjecture. For

$$
\mu \beta g \in(0, \pi+\mu \beta \hbar),
$$

the single-charge $\mathrm{A} \Delta \mathrm{Os} H_{k}(x)$ and their two-charge cousins can be promoted to commuting self-adjoint Hilbert space operators with a factorized S-matrix; for $\mu \beta g=\pi$ this yields the same 'physics' (scattering including bound states) as for the sine-Gordon quantum field theory

$$
\ddot{\phi}-\phi^{\prime \prime}=\sin \phi
$$

- N. B. In joint work with M. Hallnäs, joint eigenfunctions for the Hamiltonians $H_{1}(x), \ldots, H_{N}(x)$ have been recursively constructed with the aid of kernel functions; they do give rise to a factorized S-matrix $\prod_{j<k} u\left(y_{j}-y_{k}\right)$, with $u(y)$ specified below.

4 A . The repulsive reduced $N=2$ case

- To date no general Hilbert space theory for $\mathrm{A} \Delta$ Os exists. Worse yet, the solutions to a Schrödinger equation of the form

$$
f(x) \Psi(x+i s, p)+g(x) \Psi(x-i s, p)=2 \cosh (s p) \Psi(x, p)
$$

with shift parameter $s>0$ form an infinite-dimensional vector space whenever one nonzero solution $\Psi(x, p)$ exists.

- Example: The free case $f(x)=g(x)=1$. Just multiply the obvious solution $\exp (i x p)$ by any function $m(x, p)$ that has is-periodicity in x to get another solution.
- Certain special $A \Delta O s$, however, have been promoted to self-adjoint Hilbert space operators. This hinges on the existence of special solutions to the Schrödinger equation that give rise to a unitary eigenfunction transform.
- For the reduced $N=2$ case at hand, this transform involves the relativistic conical function. This conical function generalization has many distinct integral representations. The integrands are built from the hyperbolic gamma function $G\left(a_{+}, a_{-} ; z\right)$, which is a generalization of the (rational) gamma function $\Gamma(z)$.
- In the present setting, $a_{ \pm}$can be viewed as length scales:

$$
\begin{aligned}
& \left.a_{+} \equiv 2 \pi / \mu, \quad \text { (imaginary period/interaction length }\right) \\
& \left.a_{-} \equiv \hbar / m c, \quad \text { (shift step size/Compton wave length }\right)
\end{aligned}
$$

- From now on, we use the notation

$$
c_{\delta}(z) \equiv \cosh \left(\pi z / a_{\delta}\right), s_{\delta}(z) \equiv \sinh \left(\pi z / a_{\delta}\right), e_{\delta}(z) \equiv e^{\pi z / a_{\delta}}
$$

where $\delta=+,-$; also, we define the average

$$
a \equiv\left(a_{+}+a_{-}\right) / 2
$$

- The hyperbolic gamma function $G(z)$ can be defined as the meromorphic solution to one of the first order $\mathrm{A} \Delta \mathrm{Es}$

$$
\frac{G\left(z+i a_{\delta} / 2\right)}{G\left(z-i a_{\delta} / 2\right)}=2 c_{-\delta}(z), \quad \delta=+,-, \quad a_{+}, a_{-}>0
$$

which is uniquely determined by requiring $G(0)=1$ and 'minimality'; the second $A \Delta E$ is then satisfied as well.

- In the strip $|\operatorname{Im} z|<a$ it has the integral representation

$$
G(z)=\exp \left(i \int_{0}^{\infty} \frac{d y}{y}\left(\frac{\sin 2 y z}{2 \sinh \left(a_{+} y\right) \sinh \left(a_{-} y\right)}-\frac{z}{a_{+} a_{-} y}\right)\right) .
$$

This entails absence of zeros and poles in this strip and the properties

$$
\begin{gathered}
G\left(a_{-}, a_{+} ; z\right)=G\left(a_{+}, a_{-} ; z\right), \quad(\text { modular invariance }), \\
G(-z)=1 / G(z), \quad \text { (reflection equation), } \\
\overline{G(z)}=G(-\bar{z}) .
\end{gathered}
$$

- The simplest and most revealing representation of the relativistic conical function is given by

$$
\begin{aligned}
& \mathcal{R}\left(a_{+}, a_{-}, b ; x, y\right)=\sqrt{\frac{1}{a_{+} a_{-}}} \frac{G(2 i b-i a)}{G(i b-i a)^{2}} \\
& \times \int_{\mathbb{R}} d z \prod_{\delta=+,-} \frac{G(z+\delta(x-y) / 2-i b / 2)}{G(z+\delta(x+y) / 2+i b / 2)} .
\end{aligned}
$$

Here, b and y are the coupling constant and spectral parameter, related to the previous parameters by

$$
b=\beta g(=g / m c), \quad y=\beta p / \mu .
$$

- From this one reads off evenness in x and y and the properties

$$
\begin{gathered}
\mathcal{R}\left(a_{-}, a_{+}, b ; x, y\right)=\mathcal{R}\left(a_{+}, a_{-}, b ; x, y\right), \quad(\text { modular invariance }), \\
\mathcal{R}\left(a_{+}, a_{-}, b ; y, x\right)=\mathcal{R}\left(a_{+}, a_{-}, b ; x, y\right), \quad(\text { self }- \text { duality }) .
\end{gathered}
$$

- The \mathcal{R}-function is meromorphic for $b, x, y \in \mathbb{C}$ and $\operatorname{Re} a_{+}, \operatorname{Re} a_{-}>0$. It satisfies the four $A \Delta E s$

$$
\begin{gathered}
A_{\delta}(x) \mathcal{R}(x, y)=2 c_{\delta}(y) \mathcal{R}(x, y), \quad A_{\delta}(y) \mathcal{R}(x, y)=2 c_{\delta}(x) \mathcal{R}(x, y) \\
A_{\delta}(z) \equiv \frac{s_{\delta}(z+i b)}{s_{\delta}(z)} \exp \left(i a_{-\delta} d / d z\right)+(z \rightarrow-z)
\end{gathered}
$$

where $\delta=+,-$.

- The $\mathrm{A} \Delta \mathrm{O} A_{+}(x)$ is related to the above (reduced) $N=2$ Hamiltonian $H_{\text {rel }}$ by a similarity transformation involving the generalized Harish-Chandra c-function

$$
c(z) \equiv G(z+i a-i b) / G(z+i a)
$$

- Introducing the weight and scattering functions

$$
w(z) \equiv 1 / c(z) c(-z), \quad u(z) \equiv-c(z) / c(-z)
$$

(with $w(z)$ having a double zero for $z=0$), this relation is given by

$$
H_{\mathrm{rel}}=C^{s t} H_{+}(x), \quad H_{ \pm}(z) \equiv w(z)^{1 / 2} A_{ \pm}(z) w(z)^{-1 / 2}
$$

- The function

$$
\Psi(x, y) \equiv-\frac{G(i b-i a)}{G(2 i b-i a)} \frac{w(x)^{1 / 2}}{c(-y)} \mathcal{R}(x, y)
$$

satisfies $H_{ \pm}(x) \Psi(x, y)=2 c_{ \pm}(y) \Psi(x, y)$ and
$\psi(x, y) \sim u(y) \exp \left(i \pi x y / a_{+} a_{-}\right)-\exp \left(-i \pi x y / a_{+} a_{-}\right), x \rightarrow \infty$.

- Setting

$$
\begin{gathered}
H_{0, \pm}(x) \equiv \exp \left(i a_{\mp} d / d x\right)+\exp \left(-i a_{\mp} d / d x\right) \\
\Psi_{0}(x, y) \equiv \exp \left(i \pi x y / a_{+} a_{-}\right)-\exp \left(-i \pi x y / a_{+} a_{-}\right)
\end{gathered}
$$

one clearly gets $H_{0, \pm}(x) \Psi_{0}(x, y)=2 c_{ \pm}(y) \Psi_{0}(x, y)$.

- The sine transform \mathcal{F}_{0} with kernel $\left(2 a_{+} a_{-}\right)^{-1 / 2} \Psi_{0}(x, y)$ can now be used to reinterpret the $\mathrm{A} \Delta \mathrm{Os} H_{0, \pm}(x)$ as self-adjoint operators on $\mathcal{H}_{s}=L^{2}((0, \infty), d x)$, namely as pullbacks of the self-adjoint operators of multiplication by $2 c_{ \pm}(y)$ on $\hat{\mathcal{H}}_{s}=L^{2}((0, \infty), d y)$ under the unitary \mathcal{F}_{0}.
- Provided $b \in[0,2 a]$, the transform \mathcal{F} with kernel $\left(2 a_{+} a_{-}\right)^{-1 / 2} \Psi(x, y)$ yields a unitary operator $\hat{\mathcal{H}}_{s} \rightarrow \mathcal{H}_{s}$. (It equals \mathcal{F}_{0} for $b=a_{ \pm}$.) The $\mathrm{A} \Delta$ Os $H_{ \pm}(x)$ can then be viewed as commuting self-adjoint operators on \mathcal{H}_{s}, defined by $\mathcal{F} 2 c_{ \pm}(\cdot) \mathcal{F}^{*}$.
- These transforms are related to the wave operators

$$
W_{ \pm}=\lim _{t \rightarrow \pm \infty} \exp \left(i t H_{\delta}\right) \exp \left(-i t H_{0, \delta}\right), \quad \delta=+,-
$$

in the same way as in the nonrelativistic setting.

- In particular, the scattering operator on $\hat{\mathcal{H}}_{s}$ is given by

$$
(\hat{S} f)(y)=\hat{S}_{s}(y) f(y), \quad \hat{S}_{s}(y) \equiv u(y)
$$

with

$$
u(y)=-\frac{G(y+i a-i b) G(y-i a+i b)}{G(y+i a) G(y-i a)}
$$

4B. The attractive reduced $N=2$ case

- Reminder:
$s_{+}(x)=\sinh \left(\pi x / a_{+}\right), a_{+}=2 \pi / \mu, a_{-}=\hbar / m c, \quad y=p / m c \mu$.
- The repulsive (same charge) and attractive (different charge) $\mathrm{A} \Delta \mathrm{Os}$ are given by

$$
\begin{gathered}
A_{s}(x) \equiv A_{+}(x)=\frac{s_{+}(x+i b)}{s_{+}(x)} \exp \left(i a_{-} d / d x\right)+(x \rightarrow-x), \\
A_{d}(x) \equiv A_{+}\left(x-i a_{+} / 2\right)=\frac{c_{+}(x+i b)}{c_{+}(x)} \exp \left(i a_{-} d / d x\right)+(x \rightarrow-x)
\end{gathered}
$$

- Setting

$$
\tilde{c}(x) \equiv c\left(x-i a_{+} / 2\right), \quad \tilde{w}(x) \equiv 1 / \tilde{c}(x) \tilde{c}(-x)>0, \quad \forall x \in \mathbb{R}
$$

the corresponding Hamiltonian is

$$
H_{d}(x) \equiv \tilde{w}(x)^{1 / 2} A_{d}(x) \tilde{w}(x)^{-1 / 2}
$$

For $b=a_{-}$it equals $e^{i a_{-} d / d x}+e^{-i a_{-} d / d x}$.

- N. B. The x-shift $\mathcal{R}\left(x-i a_{+} / 2, y\right)$ entails that modular invariance and self-duality break down. As a result, $A_{d}(x)$ has no natural 'modular partner', and we might as well trade the spectral variable y (a position) for p (a momentum). For brevity, we stick to y.
- In fact, we get two distinct eigenfunctions

$$
A_{d}(x) \mathcal{R}\left(x \pm i a_{+} / 2, y\right)=2 c_{+}(y) \mathcal{R}\left(x \pm i a_{+} / 2, y\right)
$$

entailing
$H_{d}(x) \tilde{w}(x)^{1 / 2} \mathcal{R}\left(x \pm i a_{+} / 2, y\right)=2 c_{+}(y) \tilde{w}(x)^{1 / 2} \mathcal{R}\left(x \pm i a_{+} / 2, y\right)$.

- Snag. These $H_{d}(x)$-eigenfunctions remain eigenfunctions when multiplied by any function $m(x, y)$ that is ia_-periodic in x. There are no general results ensuring that a particular choice yields a function $\Psi(x, y)$ that can serve as the kernel of a unitary eigenfunction transform.
- The linear combination

$$
\begin{aligned}
& \Psi(x, y) \equiv \frac{G(i b-i a)}{G(2 i b-i a)} \frac{\tilde{w}(x)^{1 / 2}}{2 s_{-}(i b-y) c(-y)} \\
& \times \prod_{\delta=+,-} \delta e_{-}(\delta(i b-y) / 2) \mathcal{R}\left(x+\delta i a_{+} / 2, y\right)
\end{aligned}
$$

has coefficients ensuring unitary asymptotics:

$$
\Psi(x, y) \sim \begin{cases}t(y) e^{i \pi x y / a_{+} a_{-}}, & \operatorname{Re} x \rightarrow \infty \\ e^{i \pi x y / a_{+} a_{-}}-r(y) e^{-i \pi x y / a_{+} a_{-}}, & \operatorname{Re} x \rightarrow-\infty\end{cases}
$$

with

$$
t(y) \equiv \frac{s_{-}(y)}{s_{-}(i b-y)} u(y), \quad r(y) \equiv \frac{s_{-}(i b)}{s_{-}(i b-y)} u(y)
$$

- N. B. The triple u, t, r satisfies the Yang-Baxter equations; note also $r=0$ for $b=(L+1) a_{-}, L=0,1,2, \ldots$.
- In joint work with S. Haworth we have shown that the transform

$$
(\mathcal{F} f)(x)=\frac{1}{\sqrt{2 a_{+} a_{-}}} \int_{0}^{\infty} d y\binom{\Psi(x, y)}{-\Psi(-x, y)} \cdot\binom{f_{+}(y)}{f_{-}(y)}
$$

yields a unitary operator

$$
\mathcal{F}: \hat{\mathcal{H}}_{d} \equiv L^{2}((0, \infty), d y)^{2} \rightarrow \mathcal{H}_{d} \equiv L^{2}(\mathbb{R}, d x)
$$

provided $b \in\left[0, a_{-}\right]$. Also, $\Psi(x, y)$ equals $e^{i \pi x y / a_{+} a_{-}}$for $b=a_{-}$, so then \mathcal{F} amounts to the Fourier transform \mathcal{F}_{0}.

- For $b \in\left(a_{-}, a_{-}+a_{+} / 2\right)$ the transform is isometric. Its range is the orthogonal complement of $L \geq 1$ bound states

$$
\Psi_{\ell}(x)=\frac{c_{+}(x)}{\tilde{w}(x)^{1 / 2}} Q_{\ell}\left(i s_{+}(x)\right), \quad \ell=0, \ldots, L-1
$$

with $Q_{\ell}(t)$ q-Gegenbauer polynomials of degree ℓ and parity $(-)^{\ell}$.

- The transforms $\mathcal{F}_{(0)}$ are related to the wave operators $W_{ \pm}$ as before, and serve to associate a self-adjoint operator on \mathcal{H}_{d} to the $\mathrm{A} \Delta \mathrm{O} H_{d}(x)$, namely the pullback of multiplication by $\left(2 c_{+}(y), 2 c_{+}(y)\right)$ on $\hat{\mathcal{H}}_{d}$.
- For a fixed $b \in\left[0, a_{-}+a_{+} / 2\right)$, the bound state number L is the smallest integer such that $b \leq(L+1) a_{-}$. For $b>a_{-}$ we have $H_{d} \Psi_{\ell}=E_{\ell} \Psi_{\ell}$, with

$$
E_{\ell}=2 c_{+}\left(i\left(b-(\ell+1) a_{-}\right)\right) \in(0,2), \quad \ell=0, \ldots, L-1 .
$$

- Setting

$$
\xi \equiv b / a_{+}, \quad \zeta \equiv a_{-} / a_{+},
$$

the following plot can be viewed as a phase diagram. The red line denotes the transition to the 'unphysical' regime (breakdown of isometry and self-adjointness). On the lines $\xi=(L+1) \zeta, L=0,1, \ldots$, the reflection vanishes. Also, sG stands for the sine-Gordon line $\xi=1 / 2$. The nonrelativistic limit arises by setting $\xi=\lambda \zeta, \lambda=g / \hbar$ fixed, and letting $\zeta \rightarrow 0$.

5. Some references

- S. R. (1994): Systems of Calogero-Moser type, in: Proceedings of the 1994 Banff summer school "Particles and fields" (G. Semenoff and L. Vinet, Eds.), CRM series in mathematical physics, Springer, New York, 1999, pp. 251-352.
- S. R. (2011): A relativistic conical function and its Whittaker limits, SIGMA 7, 101.
- M. Hallnäs, S. R. (2014): Joint eigenfunctions for the relativistic Calogero-Moser Hamiltonians of hyperbolic type. I. First steps, Int. Math. Res. Not., no. 16, 4400-4456.
- M. Hallnäs, S. R. (2016): Joint eigenfunctions for the relativistic Calogero-Moser Hamiltonians of hyperbolic type. II. The two- and three-variable cases, preprint.
- S. Haworth, S. R. (2016): Hilbert space theory for relativistic dynamics with reflection. Special cases, to appear in Journal of Integrable Systems.

