V-systems

Misha Feigin

joint work with Alexander Veselov
ArXiv:1409.2424

School of Mathematics and Statistics, University of Glasgow

LMS Durham Symposium on Geometric and Algebraic Aspects of Integrability, July-August 2016

Plan of the talk

(1) V-systems; equivalent formulations
(2) Operations with V-systems
(3) Examples
(9) Harmonic V-systems

Equivalent definitions Properties Examples
Harmonic V-systems

Let $V \cong \mathbb{C}^{n}$. Let $\mathcal{A} \subset V^{*}$ be a finite set of non-collinear covectors. Define B a bilinear form on V by

$$
B(u, v)=\sum_{\alpha \in \mathcal{A}} \alpha(u) \alpha(v)
$$

We assume B is non-degenerate.
Then $V \cong V^{*}: \alpha \in V^{*}$ corresponds to $\alpha^{\vee} \in V$ s.t. $B\left(\alpha^{\vee}, u\right)=\alpha(u)$ for any $u \in V$.

Definition (Veselov'99)

\mathcal{A} is a \vee-system if for any $\alpha \in \mathcal{A}, \pi \subset V^{*}, \operatorname{dim} \pi=2$

$$
\sum_{\beta \in \mathcal{A} \cap \pi} \beta\left(\alpha^{\vee}\right) \beta=\nu \alpha
$$

for some $\nu=\nu(\alpha, \pi) \in \mathbb{C}$.

Equivalent definitions Properties Examples
Harmonic V-systems

$$
\sum_{\beta \in \mathcal{A} \cap \pi} \beta\left(\alpha^{\vee}\right) \beta=\nu \alpha
$$

Equivalently,

- if $\pi \cap \mathcal{A}=\{\alpha, \beta\}$ then $B\left(\alpha^{\vee}, \beta^{\vee}\right)=0$
- if $|\pi \cap \mathcal{A}|>2$ then $\left.B_{\pi}\right|_{\pi^{\vee} \times V}=\left.\nu B\right|_{\pi^{\vee} \times V}$, where

$$
B_{\pi}(u, v)=\sum_{\beta \in \mathcal{A} \cap \pi} \beta(u) \beta(v), \nu=\nu(\pi) .
$$

Equivalent definitions Properties Examples
Harmonic V-systems

$$
\sum_{\beta \in \mathcal{A} \cap \pi} \beta\left(\alpha^{\vee}\right) \beta^{\vee}=\nu \alpha^{\vee}
$$

Equivalently,

- if $\pi \cap \mathcal{A}=\{\alpha, \beta\}$ then $B\left(\alpha^{\vee}, \beta^{\vee}\right)=0$
- if $|\pi \cap \mathcal{A}|>2$ then $\left.B_{\pi}\right|_{\pi^{\vee} \times V}=\left.\nu B\right|_{\pi^{\vee} \times V}$, where

$$
B_{\pi}(u, v)=\sum_{\beta \in \mathcal{A} \cap \pi} \beta(u) \beta(v), \nu=\nu(\pi) .
$$

Equivalent definitions Properties Examples
Harmonic V-systems

Witten-Dijkgraaf-Verlinde-Verlinde equations

Theorem (Veselov'99,01; FV'08)
\mathcal{A} is a \vee-system if and only if

$$
\mathcal{F}(x)=\sum_{\alpha \in \mathcal{A}} \alpha(x)^{2} \log \alpha(x), \quad x \in V
$$

satisfies WDVV equations

$$
\mathcal{F}_{i} G^{-1} \mathcal{F}_{j}=\mathcal{F}_{j} G^{-1} \mathcal{F}_{i}
$$

for any $i, j=1, \ldots, n$, where \mathcal{F}_{i} is $n \times n$ matrix, $\left(\mathcal{F}_{i}\right)_{k l}=\frac{\partial^{3} \mathcal{F}}{\partial x_{i} \partial x_{k} \partial x_{l}}$, $G=\sum_{i=1}^{n} x_{i} \mathcal{F}_{i}$.

Equivalent definitions Properties Examples
Harmonic V-systems

Associative multipliciation

Let $\Sigma=\cup_{\alpha \in \mathcal{A}}\{x: \alpha(x)=0\}$.
Let $x \in V_{\Sigma}:=V \backslash \Sigma$. Let $u, v \in T_{x} V_{\Sigma} \cong V$. Define

$$
u \star v=\sum_{\alpha \in \mathcal{A}} \frac{\alpha(u) \alpha(v)}{\alpha(x)} \alpha^{\vee}
$$

Theorem (FV'08)

\mathcal{A} is a \vee-system if and only if \star is associative.

Equivalent definitions

Harmonic V-systems

Flat connection

Define connection ∇ on $T V_{\Sigma}$ by

$$
\nabla_{\xi}=\partial_{\xi}-\kappa \sum_{\alpha \in \mathcal{A}} \frac{\alpha(\xi)}{\alpha(x)} \alpha \otimes \alpha^{\vee}
$$

where $\xi \in V, \kappa \in \mathbb{C}^{*}$.
Theorem (Veselov'01; Arsie, Lorenzoni'14, FV'14)
∇ is flat if and only if \mathcal{A} is a \vee-system.

Example (Veselov'99)

Let R be a Coxeter root system in \mathbb{R}^{n}. That is

- $s_{\alpha} R=R$ for any $\alpha \in R$, where s_{α} is orthogonal reflection about the hyperplane $(\alpha, x)=0$.
- If $\alpha, \beta \in R$ are proportional then $\alpha= \pm \beta$.

Then $\mathcal{A}=R_{+}$is a \vee-system.

Origin and relations

- Generalized Calogero-Moser systems, generalised root systems and their deformations [Chalykh, F, Sergeev, Veselov'98-07]
- Seiberg-Witten theory [Marshakov, Mironov, Morozov '97], [Martini, Gragert'09]
- Dubrovin's almost duality [Dubrovin'03]. For $\mathcal{A}=R$ - a Coxeter root system \mathcal{F} is almost dual prepotential, \star is almost dual product.

Subsystems

Let \mathcal{A} be a \vee-system, let $W \subset V^{*}$ be a linear subspace. Define

$$
\mathcal{A}_{W}=\mathcal{A} \cap W
$$

Assume that $\left\langle\mathcal{A}_{W}\right\rangle=W$. Define bilinear form

$$
B_{W}(u, v)=\sum_{\beta \in \mathcal{A}_{w}} \beta(u) \beta(v)
$$

Theorem (F, Veselov'08)

\mathcal{A}_{W} is a \vee-system if B_{W} is non-degenerate on $W^{\vee} \times W^{\vee}$.

Restrictions

Let \mathcal{A} be a \vee-system, $\mathcal{A}_{W}=\mathcal{A} \cap W, W \subset V^{*},\left\langle\mathcal{A}_{W}\right\rangle=W$. Define

$$
\widehat{W}=\left\{x \in V: \alpha(x)=0 \forall \alpha \in \mathcal{A}_{W}\right\} .
$$

Theorem (F, Veselov'07,08)
$\mathcal{A} \backslash \mathcal{A}_{W} \subset \widehat{W}^{*}$ is a \vee-system if B is non-degenerate on $\widehat{W} \times \widehat{W}$.

Classical families [Chalykh, Veselov'01]:

$$
\mathcal{A}_{n}(c)=\left\{c_{i} c_{j}\left(e_{i}-e_{j}\right): 1 \leq i<j \leq n+1\right\}
$$

where $c_{1}, \ldots, c_{n+1} \in \mathbb{C}$;

$$
\begin{gathered}
\mathcal{B}_{n}(c)=\left\{\left(c_{i} c_{j}\right)^{1 / 2}\left(e_{i} \pm e_{j}\right): 1 \leq i<j \leq n\right\} \cup \\
\left\{\left(2 c_{i}\left(c_{i}+c_{0}\right)\right)^{1 / 2} e_{i}: 1 \leq i \leq n\right\}
\end{gathered}
$$

where $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{C}$.
Exceptional families and single systems, e.g.

$$
\begin{gathered}
F_{3}(t)=\left\{e_{i} \pm e_{j}: 1 \leq i<j \leq 3\right\} \cup\left\{\left(4 t^{2}+2\right)^{1 / 2} e_{i}: i=1,2,3\right\} \cup \\
\left\{t \sqrt{2}\left(e_{1} \pm e_{2} \pm e_{3}\right)\right\}
\end{gathered}
$$

Equivalent definitions

Known V-systems in dimension 3

Theorem (Lechtenfeld, Schwerdtfeger, Thueringen'11)

There are no other 3-dimensional \vee-systems with not more than 10 vectors.

Theorem (Schreiber, Veselov'14)
There are no deformations of known isolated 3-dimensional \vee-systems preserving the underlying matroid.

Let $\psi(x)$ be a flat section of ∇ : for some $\kappa \in \mathbb{C} \nabla_{\xi} \psi=0$ for any $\xi \in V$.

Theorem (F, Veselov'14)

Suppose that $\psi(x)$ is polynomial. Then
(1) ψ is gradient, that is $\psi=(d F)^{\vee}$ for some polynomial $F(x)$.
(2) ψ is homogeneous of degree κ.
(3) ψ is a logarithmic vector field that is $\alpha(\psi)=0$ if $\alpha(x)=0$ for any $\alpha \in \mathcal{A}$.

Definition (F, Veselov'14)

A \vee-system \mathcal{A} is called harmonic if there exist $n=\operatorname{dim} V$ independent (over polynomials) polynomial flat vector fields of degrees $\kappa_{1}, \ldots, \kappa_{n}$ such that $\sum_{i=1}^{n} \kappa_{i}=|\mathcal{A}|$.

Remark

For any n independent polynomial flat fields $\sum \kappa_{i} \geq|\mathcal{A}|$.

Remark

Potentials F_{i} satisfy a system of 2nd order PDEs of
Euler-Poisson-Darboux type $\partial_{\xi} \partial_{\eta} F_{i}=\kappa_{i} \sum_{\alpha \in \mathcal{A}} \frac{\alpha(\xi) \alpha(\eta)}{\alpha(x)} \partial_{\alpha^{\vee}} F_{i}, \forall \xi, \eta \in V$.

Theorem (F, Veselov'14)

$\mathcal{A}=R_{+}$is harmonic for any Coxeter root system R. If all the roots have the same length then potentials F_{1}, \ldots, F_{n} are Saito flat coordinates.
B^{-1} is invariant with respect to Coxeter group $G=\left\langle s_{\alpha}: \alpha \in \mathcal{A}\right\rangle$, $\left(S V^{*}\right)^{G} \cong \mathbb{C}\left[y_{1}, \ldots, y_{n}\right]$, deg $y_{1} \leq \ldots \leq \operatorname{deg} y_{n}$. Then $\partial_{y_{n}} B^{-1}$ is flat Saito metric, constant if $y_{i}=F_{i}$.

If Coxeter roots have two different lengths then we get explicit one-parameter deformations of Saito polynomials.

Free arrangements of hyperplanes

Let $\Sigma=\cup_{\alpha \in \mathcal{A}}\{\alpha(x)=0\} \subset V$. Let $\operatorname{Der}(\log \Sigma)$ be the space of polynomial logarithmic vector fields v that is $\alpha(v)=0$ if $\alpha(x)=0$ for any $\alpha \in \mathcal{A}$. Then $\operatorname{Der}(\log \Sigma)$ is a module over $S V^{*}$.

Definition (K. Saito'80)
Arrangement Σ is free if $\operatorname{Der}(\log \Sigma)$ is a free module over $S V^{*}$.

Example (Orlik, Terao'93)

Coxeter arrangements and their restrictions are free.

Theorem (Saito criterion)

Arrangement Σ is free if and only if there exist independent over SV* * fields $X_{1}, \ldots, X_{n} \in \operatorname{Der}(\log \Sigma)$ homogeneous of degrees b_{1}, \ldots, b_{n} such that $\sum b_{i}=|\Sigma|$.

Conjecture (Terao)

Freeness is a combinatorial property that is it is a property of the lattice of Σ.

Theorem (Terao'81)

Suppose Σ is free. Then Poincare polynomial $P_{V \backslash \Sigma}(t)=\sum_{i=0}^{n} \operatorname{dim} H^{i}(V \backslash \Sigma, \mathbb{C}) t^{i}$ has the form $P_{V \backslash \Sigma}(t)=\prod_{i=1}^{n}\left(1+b_{i} t\right)$ for some $b_{i} \in \mathbb{N}$.

Theorem (F,Veselov'14)

If \bigvee-system \mathcal{A} is harmonic then arrangement Σ is free. The corresponding flat vector fields ψ_{i} give a free basis in $\operatorname{Der}(\log \Sigma)$.

Remark

All the known \vee-systems have corresponding arrangements linearly equivalent to Coxeter restrictions.

Potentials for classical families

Theorem (F, Veselov'14)
$A_{n}(c)$ is harmonic with $F_{k}\left(x_{1}, \ldots, x_{n+1}\right)=\oint \prod_{i=1}^{n+1}\left(x-x_{i}\right)^{\frac{\kappa c_{i}}{\sigma}} d x$, $\sigma=\sum c_{i}, \kappa=1,2, \ldots, n$.

$$
F_{\kappa} \sim \operatorname{det}\left(\begin{array}{ccccc}
p_{1}^{\lambda} & 1 & 0 & 0 \ldots & 0 \\
p_{2}^{\lambda} & p_{1}^{\lambda} & 2 & 0 \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
p_{\kappa}^{\lambda} & p_{\kappa-1}^{\lambda} & p_{\kappa-2}^{\lambda} & \cdots & \kappa \\
p_{\kappa+1}^{\lambda} & p_{\kappa}^{\lambda} & p_{\kappa-1}^{\lambda} & \cdots & p_{1}^{\lambda}
\end{array}\right),
$$

$p_{s}^{\lambda}=\sum \lambda_{i} \lambda_{i}^{s}, \lambda_{i}=\frac{\kappa c_{i}}{\sigma}$.

Theorem (F, Veselov'14)

$B_{n}(c)$ is harmonic if $c_{i}+c_{0} \neq 0$ for all i with

$$
F_{k}\left(x_{1}, \ldots, x_{n}\right)=\oint \prod_{i=1}^{n+1}\left(x^{2}-x_{i}^{2}\right)^{\frac{(2 k-1) c_{i}}{2 \sigma}} x^{2 k-1} \sigma c_{0} d x,
$$

$$
\sigma=\sum c_{i}, \kappa=2 k-1, k=1,2, \ldots, n .
$$

$$
F_{k} \sim \operatorname{det}\left(\begin{array}{ccccc}
q_{1}^{\lambda} & 1 & 0 & 0 \ldots & 0 \\
q_{2}^{\lambda} & q_{1}^{\lambda} & 2 & 0 \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
q_{\kappa}^{\lambda} & q_{\kappa-1}^{\lambda} & q_{\kappa-2}^{\lambda} & \ldots & k-1 \\
q_{\kappa+1}^{\lambda} & q_{\kappa}^{\lambda} & q_{\kappa-1}^{\lambda} & \cdots & q_{1}^{\lambda}
\end{array}\right)
$$

$q_{s}^{\lambda}=\sum \lambda_{i} x_{i}^{2 s}, \lambda_{i}=\frac{(2 k-1) c_{i}}{2 \sigma}$.

Remark

Assumption $c_{i}+c_{0} \neq 0$ is essential as e.g. $B_{3}(-1,1,1,3)$ is not harmonic.

Furher questions

- Classification of V-systems.
- 'More Frobenius manifolds structures' associated with harmonic \checkmark-systems ?
- Relation of generalised Saito polynomials (potentials of harmonic \vee-systems) to special representations of rational Cherednik algebras (cf. [F, Silantyev'12]) ?
- Trigonometric [F'08] and Elliptic [Strachan'08] V-systems.

