Bi-Hamiltonian structures of KdV type

R Vitolo (joint work with P Lorenzoni, A Savoldi) http://arxiv.org/abs/1607.07020

LMS-EPSRC Durham Symposium 2016

Bi-Hamiltonian structures of KdV-type

It was observed (Olver and Rosenau, 1996) that many PDEs admit a bi-Hamiltonian structure which is indeed defined by a trio of mutually compatible Hamiltonian operators.
Examples: the scalar case

$$
P_{1}=\partial_{x}, \quad Q_{1}=2 u \partial_{x}+u_{x}, \quad R_{3}=\partial_{x}^{3}
$$

Poisson pencil of KdV hierarchy (Magri (1978)):

$$
\Pi_{\lambda}=Q_{1}+\epsilon^{2} R_{3}-\lambda P_{1}=2 u \partial_{x}+u_{x}-\lambda \partial_{x}+\epsilon^{2} \partial_{x}^{3}
$$

Poisson pencil of Camassa-Holm hierarchy:

$$
\tilde{\Pi}_{\lambda}=Q_{1}-\lambda\left(P_{1}+\epsilon^{2} R_{3}\right)=2 u \partial_{x}+u_{x}-\lambda\left(\partial_{x}+\epsilon^{2} \partial_{x}^{3}\right)
$$

Examples: the 2-component case

$$
\begin{aligned}
P_{1}=\left(\begin{array}{cc}
0 & \partial_{x} \\
\partial_{x} & 0
\end{array}\right), \quad Q_{1}=\left(\begin{array}{cc}
2 u \partial_{x}+u_{x} & v \partial_{x} \\
\partial_{x} v & -2 \partial_{x}
\end{array}\right) \\
R_{2}=\left(\begin{array}{cc}
0 & -\partial_{x}^{2} \\
\partial_{x}^{2} & 0
\end{array}\right)
\end{aligned}
$$

- $\Pi_{\lambda}=Q_{1}+\epsilon^{2} R_{3}-\lambda P_{1}$ AKNS (or two-boson) hierarchy;
- $\tilde{\Pi}_{\lambda}=Q_{1}-\lambda\left(P_{1}+\epsilon^{2} R_{3}\right)$ two-component Camassa-Holm hierarchy.

We say the pencils of the type of Π_{λ} (or $\tilde{\Pi}_{\lambda}$) to be bi-Hamiltonian structures of KdV-type.

Classification of bi-Hamiltonian structures of KdV type

The problem: classify compatible trios of Hamiltonian operators P_{1}, Q_{1}, R_{n} where P_{1} and Q_{1} are homogeneous first-order Hamiltonian operators (Dubrovin and Novikov, 1983)

$$
P_{1}=g^{i j} \partial_{x}+\Gamma_{k}^{i j} u_{x}^{k}, \quad Q_{1}=h^{i j} \partial_{x}+\Xi_{k}^{i j} u_{x}^{k}
$$

and R_{n} is a homogeneous Hamiltonian operator

$$
R_{n}=\sum_{l=0}^{n} A_{n, l}^{i j}\left(u, u_{x}, \ldots, u_{(l)}\right) \partial_{x}^{(n-l)}
$$

of degree $n>1$ (Dubrovin and Novikov 1984), where $A_{n, l}^{i j}$ are homogeneous polynomials of degree l in $u_{x}, \ldots, u_{(l)}$, x-derivative has degree 1 .
Homogeneous operators are form-invariant with respect to point transformations $\tilde{u}^{i}=\tilde{u}^{i}\left(u^{j}\right)$.

A strategy for the classification

The above pencils can be thought as a deformation of a Poisson pencil of hydrodynamic type.

Due to the general theory of deformations the only interesting cases are $n=2$ and $n=3$. In the remaining case the deformations can always be eliminated by Miura type transformations (Liu and Zhang, 2005).

Our strategy: knowing the normal forms of R_{2} and R_{3} we find all possible compatible first-order Poisson pencils of hydrodynamic type $P_{1}-\lambda Q_{1}$. This yields bi-Hamiltonian structures of KdV type with $n=2$ (or $n=3$).

Homogeneous Hamiltonian operators, degree 2

Second-order operators R_{2} have been completely described in the non degenerate case $\operatorname{det}\left(\ell^{i j}\right) \neq 0$ (Potemin 1987, 1991, 1997; Doyle 1993):

$$
R_{2}=\partial_{x} \ell^{i j} \partial_{x}
$$

where $\ell_{i j}=T_{i j k} u^{k}+T_{i j}^{0}$, and $T_{i j k}, T_{i j}^{0}$ are constant and completely skew-symmetric, without further conditions.

When $m=2$ there is only one homogeneous second-order Hamiltonian operator (up to point transformations):

$$
R_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \partial_{x}^{2}
$$

Homogeneous Hamiltonian operators, degree 3

Third-order operators R_{3} have been classified $\left(\operatorname{det}\left(\ell^{i j}\right) \neq 0\right)$ in the m-component case with $m=1$ (in this case the operator can be reduced to ∂_{x}^{3} by a point transformation (Potemin 1987, 1991, 1997; Doyle 1993) and $m=2,3,4$ (Ferapontov, Pavlov, V. 2014, 2016).

$$
R_{3}=\partial_{x}\left(\ell^{i j} \partial_{x}+c_{k}^{i j} u_{x}^{k}\right) \partial_{x}
$$

where, introducing $c_{i j k}=\ell_{i q} \ell_{j p} c_{k}^{p q}$, the following conditions must be fulfilled:

$$
\begin{gathered}
c_{n k m}=\frac{1}{3}\left(\ell_{n m, k}-\ell_{n k, m}\right) \\
\ell_{m n, k}+\ell_{n k, m}+\ell_{k m, n}=0 \\
c_{m n k, l}=-\ell^{p q} c_{p m l} c_{q n k}
\end{gathered}
$$

The geometry of third-order operators

Projective-geometric interpretation: $g_{i j}$ is the Monge form of a quadratic line complex, $c_{i j k}$ is the corresponding tangential line complex. A quadratic line complex is a subvariety of the Plücker's variety of all lines of $\mathbb{P}^{m}(\mathbb{C})$.
Differential-geometric interpretation: $c_{j k}^{i}=g^{i s} c_{s j k}$ is a flat metric connection with torsion of the first Cartan type.

Example of Monge metric in the case $m=3$

$$
\begin{gathered}
g_{11}=-\left[R_{12}\left(u^{2}\right)^{2}+R_{13}\left(u^{3}\right)^{2}+2 B_{12} u^{2} u^{3}+2 H_{12} u^{2}+2 H_{13} u^{3}+D_{1}\right], \\
g_{22}=-\left[R_{12}\left(u^{1}\right)^{2}+R_{23}\left(u^{3}\right)^{2}+2 B_{22} u^{1} u^{3}+2 H_{21} u^{1}+2 H_{23} u^{3}+D_{2}\right], \\
g_{33}=-\left[R_{23}\left(u^{2}\right)^{2}+R_{13}\left(u^{1}\right)^{2}+2 B_{32} u^{1} u^{2}+2 H_{31} u^{1}+2 H_{32} u^{2}+D_{3}\right], \\
g_{12}=R_{12} u^{1} u^{2}+B_{12} u^{1} u^{3}+B_{22} u^{2} u^{3}-B_{32}\left(u^{3}\right)^{2}+H_{12} u^{1}+H_{21} u^{2}+\left(E_{2}-E_{1}\right) u^{3}+F_{12}, \\
g_{13}=R_{13} u^{1} u^{3}+B_{12} u^{1} u^{2}-B_{22}\left(u^{2}\right)^{2}+B_{32} u^{2} u^{3}+H_{13} u^{1}+H_{31} u^{3}+\left(E_{1}-E_{3}\right) u^{2}+F_{13}, \\
g_{23}=R_{23} u^{2} u^{3}-B_{12}\left(u^{1}\right)^{2}+B_{22} u^{1} u^{2}+B_{32} u^{1} u^{3}+H_{23} u^{2}+H_{32} u^{3}+\left(E_{3}-E_{2}\right) u^{1}+F_{23},
\end{gathered}
$$

Classification results for operators of degree 3

$\mathbf{m}=\mathbf{2}$: three normal forms of homogeneous third-order Hamiltonian operators up to point transformations (Ferapontov, Pavlov, V, JGP 2014)

$$
\begin{gathered}
R_{3}^{(1)}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \partial_{x}^{3}, \quad R_{3}^{(2)}=\partial_{x}\left(\begin{array}{cc}
0 & \partial_{x} \frac{1}{u^{1}} \\
\frac{1}{u^{1}} \partial_{x} & \frac{u^{2}}{\left(u^{1}\right)^{2}} \partial_{x}+\partial_{x} \frac{u^{2}}{\left(u^{1}\right)^{2}}
\end{array}\right) \partial_{x} \\
R_{3}^{(3)}=\partial_{x}\left(\begin{array}{cc}
\partial_{x} & \partial_{x} \frac{u^{2}}{u^{1}} \\
\frac{u^{2}}{u^{1}} \partial_{x} & \frac{\left(u^{2}\right)^{2}+1}{2\left(u^{1}\right)^{2}} \partial_{x}+\partial_{x} \frac{\left(u^{2}\right)^{2}+1}{2\left(u^{1}\right)^{2}}
\end{array}\right) \partial_{x}
\end{gathered}
$$

Classification results for operators of degree 3

$\mathbf{m}=\mathbf{3}$: six normal forms of homogeneous third-order
Hamiltonian operators up to reciprocal transformations of projective type (Ferapontov, Pavlov, V, JGP 2014)

$$
\begin{gathered}
g^{(1)}=\left(\begin{array}{ccc}
\left(u^{2}\right)^{2}+c & -u^{1} u^{2}-u^{3} & 2 u^{2} \\
-u^{1} u^{2}-u^{3} & \left(u^{1}\right)^{2}+c\left(u^{3}\right)^{2} & -c u^{2} u^{3}-u^{1} \\
2 u^{2} & -c u^{2} u^{3}-u^{1} & c\left(u^{2}\right)^{2}+1
\end{array}\right), \\
g^{(2)}=\left(\begin{array}{ccc}
\left(u^{2}\right)^{2}+1 & -u^{1} u^{2}-u^{3} & 2 u^{2} \\
-u^{1} u^{2}-u^{3} & \left(u^{1}\right)^{2} & -u^{1} \\
2 u^{2} & -u^{1} & 1
\end{array}\right), \\
g^{(3)}=\left(\begin{array}{ccc}
\left(u^{2}\right)^{2}+1 & -u^{1} u^{2} & 0 \\
-u^{1} u^{2} & \left(u^{1}\right)^{2} & 0 \\
0 & 0 & 1
\end{array}\right), \\
g^{(4)}=\left(\begin{array}{ccc}
-2 u^{2} & u^{1} & 0 \\
u^{1} & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad g^{(5)}=\left(\begin{array}{ccc}
-2 u^{2} & u^{1} & 1 \\
u^{1} & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad g^{(6)}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{gathered}
$$

$\mathbf{m}=4: 38$ normal forms, Ferapontov, Pavlov, V. 2016 (IMRN).

Results: trios P_{1}, Q_{1}, R_{2}

$\mathbf{m}=1$: nothing new, $K d V$ and Camassa-Holm hierarchies.
We focus on the $\mathbf{m}=\mathbf{2}$-component case.
In what follows c_{i} are constants, Levi-Civita conditions:

$$
\begin{gathered}
g^{i s} \Gamma_{s}^{j k}=g^{j s} \Gamma_{s}^{i k} \\
\Gamma_{k}^{i j}+\Gamma_{k}^{j i}=\partial_{k} g^{i j}
\end{gathered}
$$

Theorem: P_{1} is compatible with R_{2} if and only if

$$
\begin{align*}
g^{11} & =c_{1} u^{1}+c_{2} \tag{1a}\\
g^{12} & =\frac{1}{2} c_{3} u^{1}+\frac{1}{2} c_{1} u^{2}+c_{5} \tag{1b}\\
g^{22} & =c_{3} u^{2}+c_{4} . \tag{1c}
\end{align*}
$$

The above metric is flat for every value of the parameters. Any Q_{1} with a metric $h^{i j}$ of the above form makes a trio P_{1}, Q_{1}, R_{2}.

Results: trios $P_{1}, Q_{1}, R_{3}^{(1)}$

Theorem: P_{1} is a Hamiltonian operator compatible with $R_{3}^{(1)}$ if and only if

$$
\begin{align*}
& g^{11}=c_{1} u^{1}+c_{2} u^{2}+c_{3}, \\
& g^{12}=c_{4} u^{1}+c_{1} u^{2}+c_{5} \tag{2}\\
& g^{22}=c_{6} u^{1}+c_{4} u^{2}+c_{7}
\end{align*}
$$

together with the Levi-Civita conditions

$$
\begin{equation*}
c_{1} c_{4}-c_{2} c_{6}=0, \quad c_{3} c_{4}-c_{7} c_{2}=0, \quad c_{3} c_{6}-c_{1} c_{7}=0 \tag{3}
\end{equation*}
$$

The above conditions imply the flatness of g. There is a 5 parameter family of mutually commuting pairs P_{1}, Q_{1} that commute with $R_{3}^{(1)}$.

Results: trios $P_{1}, Q_{1}, R_{3}^{(2)}$

Theorem: P_{1} is a Hamiltonian operator compatible with $R_{3}^{(2)}$ if and only if

$$
\begin{align*}
& g^{11}=c_{1} u^{1}+c_{2} u^{2} \tag{4a}\\
& g^{12}=c_{4} u^{1}+\frac{c_{3}}{u^{1}}+\frac{c_{2}\left(u^{2}\right)^{2}}{2 u^{1}} \tag{4b}\\
& g^{22}=2 c_{4} u^{2}+\frac{c_{6}}{u^{1}}-\frac{c_{1}\left(u^{2}\right)^{2}}{u^{1}}+c_{5} \tag{4c}
\end{align*}
$$

together with the Levi-Civita conditions

$$
\begin{equation*}
c_{2} c_{6}+2 c_{1} c_{3}=0, \quad c_{2} c_{5}=0, \quad c_{1} c_{5}=0 \tag{5}
\end{equation*}
$$

The above conditions imply the flatness of g. There exists a 4 parameter family of mutually commuting pairs P_{1}, Q_{1} that commute with $R_{3}^{(2)}$.

Results: trios $P_{1}, Q_{1}, R_{3}^{(3)}$

Theorem: P_{1} is a Hamiltonian operator compatible with $R_{3}^{(3)}$ if and only if

$$
\begin{align*}
& g^{11}=c_{1} u^{1}+c_{2} u^{2}+c_{3} \tag{6a}\\
& g^{12}=c_{4} u^{1}-\frac{c_{2}}{2 u^{1}}+\frac{c_{3} u^{2}}{u^{1}}+\frac{c_{2}\left(u^{2}\right)^{2}}{2 u^{1}}, \tag{6b}\\
& g^{22}=2 c_{4} u^{2}+\frac{c_{1}}{u^{1}}+\frac{c_{5} u^{2}}{u^{1}}-\frac{c_{1}\left(u^{2}\right)^{2}}{u^{1}}+c_{6}, \tag{6c}
\end{align*}
$$

together with the Levi-Civita conditions

$$
\begin{equation*}
c_{2} c_{5}+2 c_{1} c_{3}=0, \quad c_{2} c_{6}-2 c_{3} c_{4}=0, \quad c_{1} c_{6}+c_{4} c_{5}=0 \tag{7}
\end{equation*}
$$

The above conditions imply the flatness of g. There exists a 4 parameter family of mutually commuting pairs P_{1}, Q_{1} that commute with $R_{3}^{(3)}$.

Known examples with R_{2}

- The Kaup-Broer system (Kupershmidt 1985):

$$
\left\{\begin{array}{l}
u_{t}^{1}=\left(\left(u^{1}\right)^{2} / 2+u^{2}+\beta u_{x}^{1}\right)_{x} \tag{8}\\
u_{t}^{2}=\left(u^{1} u^{2}+\alpha u_{x x}^{1}-\beta u_{x}^{2}\right)_{x}
\end{array}\right.
$$

- In De Sole, Kac, Turhan 2014, a six-parameter family of pairwise compatible Hamiltonian operators defined by the cohomology spaces of curves is considered. A subset of these operator belongs to our class, with R_{2}.

Known examples with $R_{3}^{(1)}$

- A version of the Dispersive Water Waves system (Antonowicz-Fordy, 1989):

$$
\begin{aligned}
& u_{t}^{1}=\frac{1}{4} u_{x x x}^{2}+\frac{1}{2} u^{2} u_{x}^{1}+u^{1} u_{x}^{2} \\
& u_{t}^{2}=u_{x}^{1}+\frac{3}{2} u^{2} u_{x}^{2}
\end{aligned}
$$

- Coupled Harry-Dym hierarchy (Antonowicz-Fordy, 1988):

$$
\begin{aligned}
& u_{1}^{1}=\left(\frac{1}{4\left(u^{2}\right)^{1 / 2}}\right)_{x x x}-\alpha\left(\frac{1}{\left(u^{2}\right)^{1 / 2}}\right)_{x} \\
& u_{t}^{2}=u^{1}\left(\frac{1}{\left(u^{2}\right)^{1 / 2}}\right)_{x}+\frac{u_{x}^{1}}{2\left(u^{2}\right)^{1 / 2}}
\end{aligned}
$$

New example with $R_{3}^{(2)}$

Two identical copies of the metric which solves the compatibility problem with $R_{3}^{(2)}, g$ and h.
Metric g of P_{1} parametrized by c_{i}.
Metric h of Q_{1} parametrized by d_{i}.
Choosing $c_{3}=0, d_{3}=1, c_{2}=2, c_{4}=1, d_{4}=0, d_{5}=0$ we obtain the bi-Hamiltonian system

$$
\begin{aligned}
u_{t_{2}}^{1} & =2 u^{2} u_{x}^{1}+u^{1} u_{x}^{2} \\
u_{t_{2}}^{2} & =u^{1} u_{x}^{1}+2 u^{2} u_{x}^{2}-\frac{u_{x}^{1} u_{x x}^{1}}{\left(u^{1}\right)^{2}}+\frac{u_{x x x}^{1}}{u^{1}}
\end{aligned}
$$

Another new example with $R_{3}^{(2)}$

Choosing $c_{4}=0, c_{1}=-1, c_{6}=-1, c_{2}=0, d_{2}=0, d_{1}=0$ we obtain the bi-Hamiltonian system

$$
\begin{aligned}
u_{t_{2}}^{1}= & \frac{3}{2} \frac{u_{x}^{2}}{u^{1}}-\frac{3}{2} \frac{u^{2} u_{x}^{1}}{\left(u^{1}\right)^{2}}-\frac{u_{x x x}^{1}}{\left(u^{1}\right)^{3}}+9 \frac{u_{x}^{1} u_{x x}^{1}}{\left(u^{1}\right)^{4}}-12 \frac{\left(u_{x}^{1}\right)^{3}}{\left(u^{1}\right)^{5}} \\
u_{t_{2}}^{2}= & \frac{3}{2} \frac{\left(1-\left(u^{2}\right)^{2}\right) u_{x}^{1}}{\left(u^{1}\right)^{3}}+\frac{3}{2} \frac{u^{2} u_{x}^{2}}{\left(u^{1}\right)^{2}}-\frac{30 u^{2}\left(u_{x}^{1}\right)^{3}}{\left(u^{1}\right)^{6}}+10 \frac{u_{x}^{2}\left(u_{x}^{1}\right)^{2}}{\left(u^{1}\right)^{5}} \\
& +12 \frac{u_{x}^{2}\left(u^{1}\right)_{x}^{2}}{\left(u^{1}\right)^{5}}+-\frac{3 u_{x}^{2} u_{x x}^{1}}{\left(u^{1}\right)^{4}}-2 \frac{u^{2} u_{x x x}^{1}}{\left(u^{1}\right)^{4}}-\frac{u_{x x}^{2} u_{x}^{1}}{\left(u^{1}\right)^{4}} .
\end{aligned}
$$

New examples with $R_{3}^{(3)}$

Choosing

$$
c_{1}=1, \quad c_{2}=-1, \quad d_{3}=1, \quad c_{3}=0, \quad c_{4}=0
$$

one easily gets the first non trivial flows of the associated bi-Hamiltonian hierarchy. Too big to be shown.

The multiparametric families of solutions allow for a great variety of bi-Hamiltonian systems.

Dubrovin and Zhang's perturbative approach

Our pencils can be regarded as deformations of a Poisson pencil of hydrodynamic type. The classification of deformations with respect to the Miura group

$$
\begin{equation*}
\tilde{u}^{i}=f^{i}\left(u^{1}, \ldots, u^{n}\right)+\sum_{k \geq 1} \epsilon^{k} F_{k}^{i}\left(u, u_{x}, \ldots, u_{(k)}\right), \tag{9}
\end{equation*}
$$

has been obtained in recent years in the semisimple case (see Liu and Zhang (2005) and Carlet, Posthuma, Shadrin (2015)).

Deformations are uniquely determined by their dispersionless limit and by n functions of one variable, the central invariants. Deformations with vanishing central invariants can be transformed to their dispersionless limit, and are trivial.

Central invariants of the examples with $R_{3}^{(2)}$

First example, canonical coordinates:

$$
\lambda^{1}=\left(u^{1}+u^{2}\right)^{2}, \quad \lambda^{2}=\left(u^{1}-u^{2}\right)^{2}
$$

central invariants:

$$
s_{1}=-\frac{1}{8 \sqrt{\lambda^{1}}}, \quad s_{2}=\frac{1}{8 \sqrt{\lambda^{2}}}
$$

Second example, canonical coordinates:

$$
\lambda^{1}=\frac{u^{2}+1}{u^{1}}, \quad \lambda^{2}=\frac{u^{2}-1}{u^{1}}
$$

central invariants:

$$
s_{1}=\frac{1}{2}, \quad s_{2}=-\frac{1}{2} .
$$

Central invariants of the example with $R_{3}^{(3)}$

In the example with $R_{3}^{(3)}$ (not shown), canonical coordinates:

$$
\lambda^{1}=-\frac{1}{2} \frac{\left(u^{2}\right)^{2}-1}{u^{2}}, \quad \lambda^{2}=\frac{1}{2} \frac{4\left(u^{1}\right)^{2}-4 u^{1} u^{2}+\left(u^{2}\right)^{2}-1}{2 u^{1}-u^{2}}
$$

central invariants:

$$
\begin{aligned}
& s_{1}=\frac{1}{2} \frac{\lambda^{1} \sqrt{\left(\lambda^{1}\right)^{2}+1}-\left(\lambda^{1}\right)^{2}-1}{\left(\lambda^{1}\right)^{2}+1} \\
& s_{2}=-\frac{1}{2} \frac{\lambda^{2} \sqrt{\left(\lambda^{2}\right)^{2}+1}+\left(\lambda^{2}\right)^{2}+1}{\left(\lambda^{2}\right)^{2}+1}
\end{aligned}
$$

This means that all the new examples of Poisson pencils obtained in the previous Section are not Miura-trivial.

Symbolic computations

Within the REDUCE CAS (now free software) we use the packages CDIFF and CDE, freely available at http://gdeq.org.
CDE (by RV) can compute symmetries and conservation laws, local and nonlocal Hamiltonian operators, Schouten brackets of local multivectors, Fréchet derivatives (or linearization of a system of PDEs), formal adjoints, Lie derivatives of Hamiltonian operators.
Cooperation with AC Norman (Trinity College, Cambridge) to improvements and documentation of REDUCE's kernel.

Thank you!
Contacts: raffaele.vitolo@unisalento.it

