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The Data Assimilation 

Problem



Data Assimilation
Aim:

Find the best estimate (analysis) of the 

expected states of a system, consistent with 

both observations and the system dynamics 

given:

• Numerical prediction model

• Observations of the system (over 

time)

• Background state (prior estimate)

• Estimates of error statistics



Significant Properties:

• Very large number of unknowns (108 – 109)

• Few observations (105 – 106)

• System nonlinear unstable/chaotic

• Multi-scale dynamics
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Best Unbiased Estimate
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x - Background state (prior estimate)

- Observations

- Observation operator

- Background error covariance matrix

- Observation error covariance matrix



Sequential and Variational 

Assimilation Techniques



Sequential and Variational 

Assimilation Techniques



Sequential Assimilation



Sequential Filter

Predict:

Correct:

where

and

=  the linearized observation operator

.



Difficulties:

• Need to propagate covariance 

matrices at each step

• Need to solve large inverse problem   

at each step.

Solutions:

• Approximate covariances – use ensemble

methods

• Use iterative methods and truncate



Ensemble Square Root Filter (EnRF)

At time  ti we have an ensemble of forecast states

generated by the model, initiated from perturbed analysis 

states at  time  ti -1 .  The ensemble is given by

We define the ensemble mean and covariance using

,



EnSRF

Then the analysis at time  ti is given by   

where

~

~

Obtain the analysis ensemble for the next forecast from

where       I  is a square root found from  

-----------



EnSRF

Problems:  arise because the covariance is not full rank, 

which leads to 

• spurious long range correlations

• filter collapse

• filter divergence

Treatments:

• inflation of variances

• localization methods

• regularization methods



Variational  Assimilation 



Observation

Time

x

Background     

Analysis

xa

Aim:  Find the initial state x0
a (analysis) such that the distance 

between the state trajectory and the observations is minimized, 

subject to x0
a remaining close to the prior estimate xb .

Variational  Assimilation



4DVar Assimilation
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Solve iteratively by gradient optimization methods.

Use adjoint methods to find the gradients.

3DVar if  n = 0       4DVar if  n > 1



Difficulties:

• Time constraints – solve in real time

• Need to build adjoints

• Conditioning of the problem

Treatment:

• Precondition using control variable transforms

• Use incremental method = Gauss Newton

• Use approximate linearization

• Solve on short windows and cycle sequentially

• Solve in restricted space (lower resolution)

(See Gratton, Lawless and Nichols, SIOPT, 2007)



Observation

Time

Temperature

Background      

Incremental 4D-Var

Analysis

Solve by iteration a sequence of linear least squares problems  

that approximate the nonlinear problem.



Incremental 4D-Var

Set (usually equal to background)

For k = 0, …, K  find:

Solve inner loop linear minimization problem:
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Low Order Models in Incremental 4DVar 

Find: restriction operators   Ui and prolongation

operators Vi with   Ui
T Vi =  Ir , r << N,   and

ViUi
T a projection. 

where ,                approximate  , ,  

Define:  a reduced order system in destem in 



Reduced Order Assimilation Problem

subject to the  reduced order system

The reduced order inner loop problem is to minimize

and set

(See Lawless et al,  Monthly Weather Review, 2008)



Projection Operators

A variety of ways are used for choosing the projection 

operators:

• Low resolution model of full nonlinear system

• Use ensemble filter method to provide a low order basis.

• POD methods to determine a low order basis (EOFs).

• Use balanced truncation / rational interpolation to 

find projections  (feasible for linear TI systems).



Recent Developments

Derive some of the coefficients from an ensemble (Berre

and Desroziers, 2010):  hybrid-Var

(Use some ensembles for low order covariance basis)

Direct use of localised ensemble  perturbations to define 

covarianc:.  ensemble-Var (EnVar)

Combine ensemble and climatological covariances: 

hybrid-EnVar

Use ensemble trajectories to define time-evolution of 

covariances:  4D-Ensemble-Var (4DEnVar)

Ensembles of 4DEnVar:  (En4DVar)

Lorenz, 2013



Application and Numerical

Results



Model Reduction

Aims:

• Find approximate linear system models 

using optimal reduced order modeling

techniques to improve the efficiency of the 

incremental 4DVar method.

• Test feasibility of approach in comparison 

with low resolution models using balanced 

truncation with a nonlinear model of shallow 

water flow.



Balanced Truncation

Find: such that 

where           is diagonal and 

Then: near optimal projections are given by



1D Shallow Water Model
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Numerical Experiments 

Error Norms

, .

linear



Errors between exact and approximate analysis

for 1-D SWE model

Low resolution model – dotted line

Reduced order model – dashed line



Comparison of Error Norms

Low resolution  vs  Reduced order models



(a) (b)

(c)

Eigenvalues of (a) full, (b) low resolution (c) reduced order

system matrices



Summary of experiments

• Reduced rank linear models obtained by optimal 

reduction techniques give more accurate analyses 
than low resolution linear models that are currently 
used in practice.

• Incorporating the background and observation 
error covariance information is necessary to 
achieve good results

• Reduced order systems capture the optimal 
growth behaviour of the model more accurately 
than low resolution models

• Can be extended to unstable systems 
(See Boess et al, CAF, 2011)



Conclusions 



Conclusions

The use of model reduction in data assimilation is 

generally based on low rank approximations to the 

prior error covariances, which leads to a low rank set

of basis vectors.  

+ This reduces the degrees of freedom in the 

optimization problem. 

- Does not necessarily reduce the work needed to 

integrate the dynamical model

Ideally want both, and that the low rank system  

minimizes the expected error between the outputs 

from the full system and those from the reduced model. 



Future 

Many more challenges left!
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