Scaling limits of planar random growth models

Amanda Turner
Department of Mathematics and Statistics
Lancaster University
UK

Work in progress with
Alan Sola (Stockholm) and Fredrik Viklund (KTH)
Physical motivation

DLA aggregate formed on electrode in copper sulphate solution

Photo by Kevin R Johnson

Amanda Turner Department of Mathematics and Statistics Lancaster University UK

Scaling limits of planar random growth models
Physical motivation

Eden cluster formed by lichen growth

Photo by James Wearn
Physical motivation

Electrical “tattoo” on survivor of lightning strike

From “Lichtenberg Figures Due to a Lightning Strike” by Yves Domart, MD, and Emmanuel Garet, MD
Conformal models for planar random growth

Conformal mapping representation of single particle

Let D_0 denote the exterior unit disk in the complex plane \mathbb{C} and P denote a particle of size d attached at the point 1.

We typically take P to be the “slit” $(1, d]$ and use the unique conformal mapping $f_P : D_0 \to D_0 \setminus (1, d]$ that fixes ∞ as a mathematical description of the particle.

(Usually talk in terms of logarithmic capacity $c = \log f_P'(\infty)$, instead of size d. For slit maps, $e^c = 1 + \frac{d^2}{4(1+d)}$ so $c \asymp d^2/4$.)
Suppose \(P_1, P_2, \ldots \) is a sequence of particles, where \(P_n \) has capacity \(c_n \) and attachment angle \(\theta_n, n = 1, 2, \ldots \).

- Set \(\Phi_0(z) = z \).
- Recursively define \(\Phi_n(z) = \Phi_{n-1} \circ f_{P_n}(z) \), for \(n = 1, 2, \ldots \).

This generates a sequence of conformal maps \(\Phi_n : D_0 \to K_n^c \), where \(K_{n-1} \subset K_n \) are growing compact sets, which we call clusters.

- By varying the sequences \(\{\theta_n\} \) and \(\{c_n\} \), it is possible to describe a wide class of growth models.
Cluster formed by iteratively composing slit mappings
Examples of models within this framework

- **Hastings-Levitov family, HL(\(\alpha\)) [1998]:**
 - \(\theta_n\) are i.i.d. \(U(-\pi, \pi)\) random variables;
 - \(c_n = c|\Phi'_{n-1}(e^{i\theta_n})|^{-\alpha}\).

- **Dielectric-breakdown models, DBM(\(\eta\)) [due to Mathiesen-Jensen, 2002]:**
 - \(\theta_n\) distributed \(\propto |\Phi'_{n-1}(e^{i\theta})|^{1-\eta} d\theta\);
 - \(c_n = c|\Phi'_{n-1}(e^{i\theta_n})|^{-2}\).

- **Quantum Loewner Evolution, QLE(\(\gamma, \eta\)) [due to Miller-Sheffield, 2013]:**
 - \(\theta_n\) “distributed” \(\propto e^{a(\gamma)h \circ \Phi_{n-1}(e^{i\theta})}|\Phi'_{n-1}(e^{i\theta})|^{b(\gamma)-1-\eta} d\theta\);
 - \(c_n = c\) for all \(n\), \(P_n\) a \(SLE_\kappa\) conditionally independent of the GFF \(h\), given \(\theta_n\) (\(a, b\), functions depending on \(\kappa\)).
Aggregate Loewner Evolution, $\text{ALE}(\alpha, \eta)$

- θ_n distributed $\propto |\Phi'_{n-1}(e^{i\theta})|^{-\eta} d\theta$;
- $c_n = c|\Phi'_{n-1}(e^{i\theta_n})|^{-\alpha}$.
Previous results

- Primary interest has been in asymptotic behaviour of large clusters.
- Almost all previous work relates to HL(0) as particle maps are i.i.d. so the model is mathematically the most tractable.
 - Norris and T. (2012) showed scaling limit of HL(0) is a growing disk with a branching structure related to the Brownian web.
 - Silvestri (2015) showed fluctuations form a Gaussian field.
- Results for HL(\(\alpha\)) with \(\alpha \neq 0\) have only been shown for regularized versions of the model.
 - Rohde and Zinsmeister (2005) analysed the dimension of scaling limits for HL(0) and for a regularized version of HL(\(\alpha\)) when \(\alpha > 0\).
 - Sola, T., Viklund (2015) showed scaling limit of regularized HL(\(\alpha\)) is a growing disk for all \(\alpha\) provided regularization is strong enough.
Open problems

- Does ALE(α, η) have phase transitions from disks to non-disks along the line $\alpha + \eta = 1$ (within some compact region)?

 Longstanding conjectures:
 - HL(α) has a phase transition at $\alpha = 1$.
 - DBM(η) has a phase transition at $\eta = 0$.

- Does ALE(α, η) have phase transitions to simple paths when η or α are large?

 Longstanding conjectures:
 - There exists some η_0 such that DBM(η) converges to a simple path for $\eta > \eta_0$.
 - There exists some α_0 such that HL(α) converges to a simple path for $\alpha > \alpha_0$.

- What other limit shapes are possible?
Natural to consider particle sizes that are very small compared to the overall size of the cluster and scaling limits where $n \to \infty$ while $c \to 0$.

Models are difficult to analyse mathematically as all models (except HL(0)) exhibit long-range dependencies.

Additional difficulty, when $\alpha \neq 0$, is total capacity of cluster is random and cannot, a priori, be bounded above or below, so unclear at what rate to let $n \to \infty$.

When $\alpha = 0$, K_n has capacity cn, so natural to look for scaling limits when $n = \lfloor T/c \rfloor$.
ALE(0,-1) cluster with 10,000 particles for $d = 0.02$
ALE(0,0) cluster with 10,000 particles for $d = 0.02$
ALE(0,1) cluster with 10,000 particles for $d = 0.02$
ALE(0,1.5) cluster with 10,000 particles for $d = 0.02$
ALE(0,2) cluster with 10,000 particles for $d = 0.02$
ALE(0,4) cluster with 10,000 particles for $d = 0.02$
Regularization for ALE(0,η)

- Even after the arrival of a single slit particle, the map $\theta \mapsto |\Phi'_n(e^{i\theta})|$ is badly behaved and takes the values 0 and ∞.
- For some values of η,
 $$\int_{\pi}^{\pi} |\Phi'_{n-1}(e^{i\theta})|^{-\eta} d\theta = \infty,$$
 so regularization is necessary to even define the measure.
- A solution is to let θ_n have distribution
 $$\propto |\Phi'_{n-1}(e^{\sigma+i\theta})|^{-\eta} d\theta$$
 for $\sigma > 0$ and take the limit $\sigma \to 0$.
Sequences $\{\theta_n\}$ in ALE(0,4) for varying γ where $\sigma = c^\gamma$
Sequences \(\{\theta_n\} \) in ALE(0,4) for varying \(\gamma \) where \(\sigma = c^\gamma \)
Results for ALE(0, η)

Suppose $n = \lceil T/c \rceil$, and ALE(0, η) is regularized by σ.

- **Stick Theorem:**
 There exist η_0 and γ_0 such that for all $\eta > \eta_0$ and all $\sigma \ll c^{\gamma_0}$,

 $\Phi_n(z) \to e^{i\theta_1} f_T(e^{-i\theta_1} z)$ in probability as $c \to 0$,

 where f_t is the map corresponding to a slit of capacity t at 1.

- **Ball Theorem:**
 For every $\eta \in \mathbb{R}$, there exists a γ_1 such that for all $\sigma \gg c^{\gamma_1}$

 $\Phi_n(z) \to e^T z$ in probability as $c \to 0$.

(Refining the values of η_0 and γ_i is work in progress.)
Fluctuations about disk ($\eta \leq 1$)

Set

$$\mathcal{F}_n(z) = c^{-1/2}(\Phi_n(z) - e^{cn} z).$$

Then $\mathcal{F}_n(z) \to \mathcal{W}_t(z)$ where

$$\mathcal{W}_t'(z) = (1 - \eta)z\mathcal{W}_t'(z) + \sqrt{2}\xi_t(z)$$

where $\xi_t(z)$ is complex space-time white noise on the circle, analytically continued to the exterior unit disk.

(Note that if $\eta > 1$ would need $|z| > e^{(\eta-1)t}$ for this SPDE to make sense – beginnings of a phase transition at $|\eta| = 1$?)
Conclusion

Implication of results

- Have family of random growth process for which we are able to prove that, by varying a single parameter, scaling limits transition from being:
 - Deterministic to random;
 - Absolutely continuous to singular.
- Specifically, have shown:
 - Existence of transition from disks to simple paths in $\text{ALE}(0,\eta)$ for fixed η as σ varies.
 - Existence of transition from disks to simple paths in $\text{ALE}(0,\eta)$ as η varies?
 - Existence of phase transition in fluctuations in $\text{ALE}(0,\eta)$ at $\eta = 1$?
References

