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Outline

� M2-Branes and three-algebras
� M5-branes and the (2, 0) Theory
� A (2, 0) System



Outline

We will discuss:

• Aspects of M2-branes and the role of three-algebras.
• M5-branes, mainly with a view to constructing the

(2, 0)-Theory in 6D

We will not discuss:

• The myriad of results arising from reduction to 4D and
below (e.g. novel non-Lagrangian field theories, dualities,
surface operators, AGT,...)[Gaiotto,...]

• Bootstrap results [Beem, Lemos, Rastelli, van Rees],...
• AdS/CFT [Heslop, Lipstein][Chester,Perlmutter],...



Gong Show Version

� M2-Branes are quite well understood but intricate
� M5-branes are hard and not well understood
� I think there is more to explore in terms of structures and

relation between of M2’s and M5’s.



M2-Branes and Three-algebras

The M2-brane SCFT arises as the strong coupling limit of N
D2-branes:

• Strong coupling IR fixed point of 3D MSYM

Lift to M-theory implies that the R-symmetry is enhanced

SO(1, 2)L × SO(7)R → SO(1, 2)L × SO(8)R

leading to a 3D SCFT with maximal supersymmetry.

Ultimately this is a statement about gauge theory and QFT
arising from M-theory. A prediction so to speak



The relevant theories have now been constructed:

With manifest maximal SUSY there is BLG [Bagger,
NL][Gustavson]

• Gauge group SU(2)× SU(2) or (SU(2)× SU(2))/Z2

• describes only two or three M2’s on an orbifold.

For arbitrary number of M2-branes one has 3/4 manifest SUSY
and ABJM [Aharony, Bergman, Jafferis, Maldacena] or ABJ

• Gauge group U(M)× U(N)
• describes N ≤M branes in an orbifold.

There is now a zoology of Chern-Simons Matter theories with
extended SUSY N = 4, 5, 6, 8

For N = 3 there is no restriction on the gauge group[Kao,Lee].



The main ingredient to all these theories is a 3-algebra.

• vector space V with a triple product

[ · , · , · ] : V ⊗ V ⊗ V → V

• such that the endomorphism ϕ( · ) = [ · , U, V ] : V → V is a
derivation (the so-called fundamental identity)

ϕ([A,B,C]) = [ϕ(A), B, C] + [A,ϕ(B), C] + [A,B,ϕ(C)]

For physics we require that there is a positive definite
inner-product on V:

〈 · , · 〉 : V ⊗ V → R

which induces an invariant inner-product on the space of
derivations:

(T, ϕ) = 〈T (U), V 〉



There is also a complex verion of a 3-algebra:

[·, ·; ·] : V ⊗ V ⊗ V̄ → V

with complex positive definite inner product: For physics we
require that there is a positive definite inner-product on V:

〈 · , · 〉 : V ⊗ V → C

Again the analog of adjoint map

ϕU,V̄ (X) = [X,U ; V̄ ] ϕU,V̄ (X̄) = −[X̄, V̄ ;U ]

is a derivation

ϕU,V̄ ([X,Y ; Z̄]) = [ϕU,V̄ (X), Y ; Z̄]+[X,ϕU,V̄ (Y ); Z̄]+[X,Y ;ϕU,V̄ (Z̄)]



The fundamental identity tells us that the action of ϕ on V is
that of a lie-algebra G generated by ϕU,V for all U, V ∈ V

• i.e. V is representation of G.
• thus a 3-algebra defines a lie-algebra G along with a

preferred representation

In fact the reverse is also true: Given a Lie-algebra and a
representation (along with invariant inner-products) one can
always construct a triple product satisfying the fundamental
identity (via the so-called Faulkner map).

Classified by [de Medeiros, Figueroa-O’Farrill,Ritter]...



Thus one need not think of a 3-algebra and just think of the
gauge group and matter representation. However susy fixes the
symmetry properties of the triple product

• and so which gauge algebras and representations arise
• leads to these rather esoteric choices (and indefinite

inner-products on the lie-algebra)

Thus the amount of susy is determined by the gauge algebra
and matter representations

• Whereas in super-Yang-Mills the gauge algebra is arbitrary
and all fields are in the adjoint (for more than 8 susys)

• possible because in Chern-Simons theories there are no
propagating gauge fields



BLG We take V real and [ · , · , · ] totally antisymmetric.

N = 8 Supersymmetry (here µ, ν = 0, 1, 2 and
I, J = 3, 4, 5, ..., 10)

δXI = iε̄ΓIΨ

δΨ = DµX
IΓµΓIε− 1

6
[XI , XJ , XK ]ΓIJKε

δAµ( · ) = iε̄ΓµΓI [ · , XI ,Ψ] .

Lagrangian

L = −1

2
〈DµX

IDµXI〉+ i

2
〈Ψ̄,ΓµDµΨ〉+ i

4
〈Ψ̄,ΓIJ [XI , XJ ,Ψ]〉−V+LCS ,

Potential
V =

1

12
〈[XI , XJ , XK ], [XI , XJ , XK ]〉

Chern-Simons term

LCS = εµνλ
(

(Aµ, ∂νAλ) +
1

3
(Aµ, [Aν , Aλ])

)



But for a positive definite choice of hab there is just one
finite-dimensional solution [Gauntlett,Gutowski][Papadopoulos]:

[T a, T b, T c] =
4π

k
εabcdT d a, b, c, d = 1, 2, 3, 4

The gauge algebra generated by ϕ is so(4) = su(2)+ ⊕ su(2)−
and

((T+, T−), (W+,W−)) =
k

4π
tr(T+W+)− k

4π
tr(T−W−)

so

LCS =
k

4π
εµνλtr

(
A+
µ ∂νA

+
λ +

1

3
A+
µ [A+

ν , A
+
λ ]

)
− k

4π
εµνλtr

(
A−µ ∂νA

−
λ ) +

1

3
(A−µ [A−ν , A

−
λ ])

)
Fields XI , Ψ are in the 4 = 2 + 2 = bifundamental.

A standard result tells us that k ∈ Z - no continuous parameter.



ABJM We need a little less symmetry and a complex V.

XI written as 4 complex scalar fields ZA A = 1, 2, 3, 4 in 4 of
SU(4) with U(1) charge 1

• (ZA)† = Z̄A in 4̄ of SU(4) with U(1) charge -1

Ψ written as 4 complex fermions ψA in 4 with U(1) charge 1

• (ψA)† = ψA in 4 of SU(4) with U(1) charge -1

The 16 components of ε are reduced to εAB = −εBA in 6 of
SU(4) with U(1) charge 0.

• (εAB)∗ = εAB = 1
2εABCDε

CD



N = 6 Supersymmetry:

δZA = iε̄ABψB

δψB = γµDµZ
AεAB + [ZC , ZA; Z̄C ]εAB + [ZC , ZD; Z̄B]εCD

δAµ( · ) = iε̄ABγµ[ · , ZA;ψB]− iε̄ABγµ[ · Z̄A;ψB]

Lagrangian

L = −〈DµZ̄A, DµZ
A〉 − i〈ψ̄Aγµ, DµψA〉 − V + LCS

−i〈ψ̄A, [ψA, ZB; Z̄B]〉+ 2i〈ψ̄A, [ψB, ZB; Z̄A]〉

+
i

2
εABCD〈ψ̄A, [ZC ;ZD;ψB]〉 − i

2
εABCD〈ψ̄A, [Z̄C , Z̄D;ψB]〉 .



The potential and Chern-Simons terms are

V =
2

3
〈ΥCD

B , ῩB
CD〉

ΥCD
B = [ZC , ZD, Z̄B]− 1

2
δCB [ZE , ZD; Z̄E ] +

1

2
δDB [ZE , ZC ; Z̄E ]

LCS = εµνλ (Aµ, ∂νAλ) +
1

3
εµνλ (Aµ, [Aν , Aλ])

An infinite class of solutions are given by M ×N complex
matrices with 〈A,B〉 = tr(AB†) and

[A,B;C] =
4π

k
(AC†B −BC†A)

Gauge group generated by δZA = [ZA, U, V̄ ] is

δZA = MZA − ZAN
where M = −V †U,N = UV † are M ×M and N ×N matrices
respectively and

(M,M ′) =
k

4π
tr(MM′) (N,N′) = − k

4π
tr(NN′)



Gauge group is U(M)× U(N) with matter in the
bi-fundamental.

• M = N gives SU(N)× SU(N) theories
• Add by hand U(1) gauge fields to get U(N)× U(N) ABJM
• M 6= N gives the ABJ theories

In the special case of SU(2)× SU(2) we recover the BLG
theory in complex notation.

And the list continues with less supersymmetry depending on
the symmetry properties of the structure constants

[T a, T b;Tc] = fabcdT
d

but the actions are essentially the same.



NOVELTIES: These actions ‘break’ some SUSY ‘rules’

• Gauge fields and matter fields are in the same multiplet but
not in the same representation of the gauge group.

• The amount of supersymmetry is determined by the gauge
group (the Lagrangians are essentially the same):

The three-algebra formalism is a neat way of encoding all this
data even though in the end one is always just talking about a
Chern-Simons-Matter field theory based on a gauge group and
choice of representation.

• Symmetry properties of triple-product⇐⇒ amount of
SUSY



fabcd = f [abcd] ⇐⇒N = 8⇐⇒ su(2)⊕ su(2)

(
fabcd = f [ab]

cd

fabcd = (f cdab)
∗

)
⇐⇒N = 6⇐⇒ u(N)⊕ u(M)

sp(N)⊕ u(1)

(
fabcd = f [ab]cd

fabcd = (fabcd)
∗

)
⇐⇒N = 5⇐⇒

sp(N)⊕ su(M)
so(7)⊕ su(2)
g2 ⊕ su(2)



Physical Analysis
The first thing to look at is the vacuum moduli space. This tells
us the space of all the zero-energy configurations of the
M2-branes.

Consider ABJM:

[ZA, ZB; Z̄C ] = 0←→ ZAZ̄CZ
B = ZBZ̄CZ

A

Generically this implies that all the ZA commute (c.f. D-branes):

ZA = diag(zA1 , ..., z
A
n )

To see that this is all requires one to evaluate the mass formula
for small fluctuations which one finds is non-zero (generically:
there are special points where extra massless modes arise but
are expected to be lifted by non-perturbative effects).

We must identify fields that differ by gauge transformations:

ZA → gLZ
Ag−1

R



We could set gL = gR so that this is an adjoint action, as with
D-branes. Thus allows us to put ZA in diagonal form (as we
have already done) and in addition acts as

zAi ↔ zAj for any i 6= j

e.g. for i, j = 1, 2 these are generated by

gL = gR =


0 i
i 0

1
. . .

1





These generate the action of the symmetric group SN on zAi .

Unlike D-branes we also have continuous gauge
transformations:

zAi → eiθizAi

These arise from taking

gL = g−1
R = diag(eiθ1/2, ..., eiθN/2)

To see the effect of this on the vacuum moduli space we must
examine the Lagrangian for the moduli zAi , including the gauge
fields:



L = −1

2

∑
i

Dµz
A
i D

µz̄Ai+
k

4π
εµνλ

∑
i

ALµi∂νA
L
λi−

k

4π
εµνλ

∑
i

ARµi∂νA
R
λi

where ALµ = diag(ALµ1, ..., A
L
µN ), AR = diag(ARµ1, ..., A

R
µN ) and

Dµz
A
i = ∂µz

A
i − i(ALµi −ARµi)zAi .

Note that zAi only couples to Bµi = ALµi −ARµi and not to
Qµi = ALµi +ARµi:

L = −1

2

∑
i

Dµz
A
i D

µz̄Ai +
k

4π
εµνλ

∑
i

Bµi∂νQλi

with Dµz
A
i = ∂µz

A
i − iBµizAi .



It’s helpful to dualize Qµi:

L = −1

2

∑
i

Dµz
A
i D

µz̄Ai +
k

8π
εµνλ

∑
i

BµiHνλi −
1

8π
εµνλσi∂µHνλi

∼= −1

2

∑
i

Dµz
A
i D

µz̄Ai +
k

8π
εµνλ

∑
i

BµiHνλi +
1

8π
εµνλ∂µσiHνλi

where Hνλi = ∂νQλi − ∂λQνi.

Integrating out Hνλi tells us Bµi = −k−1∂µσi and everything is
pure gauge:

L = −1

2

∑
i

∂µw
A
i ∂

µw̄Ai

where wAi = eiσi/kzAi is gauge invariant.



But σi is periodic:∫
L(σi + 2π)−

∫
L(σi) = −1

4

∑
i

∫
εµνλ∂µHνλi

= −1

2

∑
i

∫
dH

= −1

2

∑
i

∫
dFL + dFR

∈ 2πZ

because of the Dirac quantization rule∫
dF ∈ 2πZ

and the fact that Bi = −k−1dσi implies dBi = FLi − FRi = 0

NB This is very sensitive to the global choice of gauge group
u(N), su(N), su(N)/ZN .



This means that (recall wAi = eiσi/kzAi )

wAi
∼= e2πi/kwAi

Thus there is an extra orbifold action in spacetime

R8 → C4/Zk

and the vacuum moduli space is

M = Symn
(
C4/Zk

)
Corresponding to N M2-branes in an C4/Zk transverse space.

And indeed this orbifold preserves 12 supersymmeties.



Let us return to the moduli space. It follows that we can think of

ZA =

 zAi
. . .

zAn


as describing the positions of N M2-branes in C4/Zk.
Furthermore the natural circle for the M-theory direction is the
over-all phase.

Suppose we wanted to describe N M2-branes moving along
the M-theory circle with different speeds. One might expect that
this corresponds to

ZA =

 zAi e
iω1t

. . .
zANe

iωN t





But this is pure gauge! We can un-do it by taking

gL = g−1
R =

 e−iω1t/2

. . .
e−iωN t/2


(Note that this gauge transformation is not allowed for D-branes
where the scalars are in the adjoint.) So how do the M2-branes
’explore’ the full transverse space? Let us set the fermions to
zero and construct the hamiltonian

H =

∫
d2x ΠZAΠZ̄A

+DiZ
ADiZ̄A + V

+

(
iZAΠZA − iΠZ̄A

Z̄A −
k

2π
FL12

)
AL0

+

(
iZ̄AΠZ̄A

− iΠZAZA +
k

2π
FR12

)
AR0



As usual the time-components of the gauge field give
constraints:

k

2π
FL12 = iZAΠZA − iΠZ̄A

Z̄A

k

2π
FR12 = iΠZAZA − iZ̄AΠZ̄A

Consider the vacuum moduli again:

ZA =


1√
2
RA1 e

iθA1

. . .
1√
2
RAn e

iθAn


The constraint is

k

2π
FL12 =

k

2π
FR12 =


∑

A(RA1 )2∂0θ
A
0

. . . ∑
A(RAn )2∂0θ

A
n





In other words the momentum around the M-theory circle is
given by the magnetic flux.

This is, in spirit, the same as dualization:

∂µX
10 =

1

2
εµνλF

νλ ←→ ∂0X
10 = F12

This raises the next question: how do we compute quantities
with 11D momentum. In particular the gauge invariant
observables appear to only carry vanishing U(1) charges:

O = (ZAZ̄BZ
C ...) OK

O = (ZAZBZC ...) not OK

and hence don’t really explore all 11 dimensions.



This brings us to monopole or ’t Hooft operators: We want to
create states that carry magnetic charge.

These operators are defined as a prescription for computing
correlators in the path-integral. They are not constructed as a
local expression of the fields.

<M(y)O(z)... >=

∫
∮
y F=2πQM

DZDψDAO(z)e−S

in other words we require the fields in the path integral to have
a specific singularity

F = ?
Qm
2
d

(
1

|x− y|

)
+ nonsingular

QM ∈ u(n)× u(n) is the magnetic flux and is subject to the
standard Dirac quantization condition

e2πiQm = 1 .



Next we note that due to the Chern-Simons term monopole
operators transform locally under a gauge transformation
δA

L/R
µ = DµωL/R (with ω → 0 at infinity) as

MQM
(x) → e(ik/2π) tr

∫
(DωL∧FL−DωR∧FR)MQM

(x)

= eik tr((ωL(x)−ωR(x))QM )MQM
(x)

Note that by construction we have broken the gauge group to
U(1)N × U(1)N . This is enough to tell us that under full gauge
transformations the monopole operators transform in the
representation of U(n)× U(n) whose highest weight is

~Λ = k( ~Qm,− ~Qm)

(actually because of the sign the second factor is the lowest
weight)



This is all very abstract (and tricky to calculate with). Consider
the abelian case (from the moduli space calculation and Wick
rotated)

L = −1

2

∑
i

Dµz
A
i D

µz̄Ai+
k

8π
εµνλ

∑
i

BµiHνλi−
i

8π
εµνλσi∂µHνλi

The monopole operators are just

Mi(y) = eiσi(y)

Since

<Mi(y)O(z)... > =

∫
DzDBDQeiσi(y)O(z)e−

∫
d3xL(x)

=

∫
DzDBDQO(z)e−

∫
d3xL(x)−iσi(x)δ(x−y)

which is the same as taking
1

8π
εµνλ∂µHνλi →

1

8π
εµνλ∂µHνλi + 8πδ(x− y)

i.e. inserting a magnetic charge at x = y.



Thus our gauge invariant operator on the moduli space is just

wAi = eiσi/kzAi = (Mi)
1
k zAi

and indeedMi has charge (k,−k) under U(1)× U(1).

Thus we see that at k = 1 even translations in the transverse
space are not symmetries of the lagrangian.

PAµ = tr(DµZ
A) not OK

need
PAµ = tr(M~λ1,−~λ1DµZ

A) OK

as well as the additional two supersymmetries that enhance
N = 6→ N = 8:

Sµ = tr(M
2~λ1,−2~λ1

ΨADµZ
A) OK



How does BLG fit in? To cut a long story short
[N.L,Papageorgakis],[Bashkirov,Kapustin][Agmon,Chester,Pufu]:

• BLG (SU(2)× SU(2))/Z2 at k = 1 is dual to ABJM
U(2)× U(2) at k = 1, i.e. 2 M2’s in R8

• BLG SU(2)× SU(2) at k = 2 is dual to ABJM U(2)× U(2)
at k = 2, i.e. 2 M2’s in R8/Z2

• BLG (SU(2)× SU(2))/Z2 at k = 4 is dual to ABJ
U(2)×U(3) at k = 2, i.e. 2 M2’s in R8/Z2 with torsion i.e. 2
M2’s in R8/Z2

• BLG (SU(2)× SU(2))/Z2 at k = 3 is dual to ABJM
U(3)× U(3) at k = 1 without the centre of mass multiplet,
i.e. the interacting part of 3 M2’s in R8

So it describes 2 or 3 M2-branes in R8 or R8/Z2 with all
symmetries manifest.



LESSONS and a Question:

• Too much to ask for all symmetries to be manifest
• However for two M2’s more symmetries are manifest and

hence the action was easier to discover
• The quantum theory can be very different than the

classical one
• Must consider ‘quantum’ operators to see the full physics
• The role of the gauge group is non-trivial and global

choices matter
• Is there a role for the general BLG theories (i.e. for k > 4)?



M5-branes and the (2, 0) Theory
The decoupling limit of N M5-branes leads to an interacting
CFT in 5+1 dimensions.

In the abelian case N = 1 the dynamics are known
[Schwarz,Perry],[Howe,Sezgin,West],[Pasti,Sorokin,Tonin]

Five scalars XI (so now I = 6, 7, 8, 9, 10 and µ = 0, 1, 2, 3, 4, 5),
a 2-form B with self-dual field strength H and a 16-component
fermion Ψ. At the linearised level we simply have

∂µ∂
µXI = 0

Hµνλ = 3∂[µBνλ] Hµνλ =
1

3!
εµνλρστH

ρστ

iΓµ∂µΨ = 0

For N > 1 one finds the interacting AN (2, 0)-Theory.



The dynamics are thought to arise from self-dual strings
associated to M2-branes ending on M5-branes

• Natural BPS states
• Wilson-lines replaced by surface operators of B
• abelian case long understood [Howe,NL, West]
• non-abelian case of great interest as a higher gauge

theory analogue of the Nahm transform[Saemann,...].

AdS/CFT predicts that the number of ‘degrees of freedom’ of N
M5-branes scales as N3[Klebanov,Tsetylin]



Reduction on S1

Reduction of N -M5-branes on S1 of radius R5 gives N
D4-branes in type IIA string theory with coupling gs = R5/ls.

This is described by U(N) (4+1)-D MSYM and coupling
g2 = 4π2R5. So the (2, 0)-Theory is a UV completion of 5D
MSYM with enhanced Lorentz symmetry [Seiberg]

SO(1, 4)L × SO(5)R −→ SO(1, 5)L × SO(5)R

Another prediction so to speak

KK momenta are carried by instanton-solitons F = ?F [Rozali]:

P5 =
n

R5
, n =

1

8π2
tr

∫
F ∧ F

associated to the topological current

Jµ =
1

32π2
tr

∫
εµνλρσFνλFρσ



Reduction on T2

Let us reduce again on an S1 with radius R4. Here we find 4D
U(N) MSYM with coupling g2 = 2πR5/R4

S-duality swaps perturbative modes with monopoles and
R4 ↔ R5.

This is a modular transformation of T2 which is a
diffeomorphism in 6D and hence is a manifest symmetry of the
(2, 0)-Theory.

N.B. 4D MSYM is only self-dual for ADE gauge groups so the
(2, 0)-Theory can only exist for ADE gauge groups.

Indeed it was first constructed by a decoupling limit of type IIB
on K3 with an ADE singularity [Witten]



No Action?!

There are several arguments/issues/challanges against
constructing a 6D action.

1) Even without worrying about self-duality there are no ‘good’
interacting lagrangians in 6D (renormalizable, well-defined
vacuum).

S6D ∼
∫
d6xHµνλH

µνλ +DµX
IDµXI

+ (X)FµνF
µν + (X)3︸ ︷︷ ︸

unbounded

+non− renormalizable



2) How can one obtain [Witten]?

S4DMSYM =
R4

2πR5

∫
d4xL4DMSYM

from

S6D =

∫
d6xL6D = 4π2R4R5

∫
d4xL6Dzero−modes

3) Reduction to R1,1 onM4 leads to b+2 (M4) chiral bosons and
b−2 (M4) anti-chiral bosons.

But it is known that there is no modular invariant partition
function if b+2 (M4)− b−2 (M4) /∈ 8Z

So therefore no diffeomorphism invariant action in 6D [Witten].



4) The (2, 0)-Theory exists for ADE gauge groups but reduction
on S1 with a boundary condition that twists by an
outer-automorphism gives 5D MSYM with B,C gauge groups.

Take the Tachikawa Test:

Given a SU(2n) (2, 0)-Theory action add an Z2 twist along S1.
Does it give SO(2n+ 1) 5D MSYM (NB SO(2n+ 1) " SU(2n))?



Constructions

DLCQ[Aharony,Berkooz,Kashru,Seiberg,Silverstein]

Consider null-compactification: x± = x0 ± x5, xi, i = 1, 2, 3, 4

x− ∼= x− + 2πR− and fix P− = K/R−

We should view this as the limit of an infinite boost
v = 1− ε2 → 1 of a spacelike compactification x5 ∼= x5 + 2πR5

R− = R5/ε

Key point: To keep R− finite one must shrink R5 → 0 and hence
the (2, 0)-Theory on S1 is well described 5D MSYM with fixed
P5 = K/R5.



In this limit
K =

1

8π2
tr

∫
F ∧ F

and we are looking at the sector of 5D MSYM with instanton
number K.

Dynamics are reduced to quantum mechanics on the moduli
space of SU(N) instantons with instanton number K.

NB This relies heavily on the fact that g2 ∝ R5 so we find
weakly coupled 5D MSYM.



Deconstruction[Arkani-Hamed, Cohen, Kaplan, Karch, Motl]
Construct a quiver (moose) arising from the following brane
diagram:

The D4-branes are described by (SU(K))N SYM with Nf = 2K
fields in the bi-fundamental of each SU(K).

This gives a 4D N = 2 SCFT.



Need to go out on the Higg’s branch breaking
(SU(k))N → SU(K). A careful tuning of parameters: scalar
vev’s, coupling g and number of nodes N leads to a
well-defined limit as N →∞.

The periodicity leads to a finite but large tower of states which
for low energy look like a KK-tower.

There is an S-duality of the quiver field theory: ‘KK’ tower of the
quiver is enhanced non-perturbatively to an SL(2,Z) multiplet
of two towers: reconstruct a 6D theory with SO(5) R-symmetry.

Has recently been successfully used to make exact localization
calculations
[Hayling,Pomoni,Papageorgakis,Rodriguez-Gomez].



5D MSYM Maybe 5D MSYM is actually well defined
non-perturbatively and is an exact description of the (2, 0)-
Theory on S1

[Douglas],[NL,Papageorgakis,Schmidt-Sommerfeld]

It contains a complete KK tower of soliton states so any UV
completion would have to remove these. Why bother?

5D momentum inserted by ‘instanton’ operators
[NL,Papageorgakis,Schmidt-Sommerfeld][Tachikawa]...

< I(y)O(z)... >=

∫
tr

∮
y F∧F=8π2n

DΨDAO(z)e−S

Need to include zero-sized instantons but one can see N3

behaviour [Kim,Kim,Koh,Lee,Lee],[Kallen,Zabzine]

Perturbative divergences removed by small instanton-soliton
effects [Royston,Papageorgakis]



If so then 5D MSYM does provide an ‘action’ for the
(2, 0)-Theory on S1 for any radius

But thenM4 = S1 ×M3 so b+2 (M4) = b−2 (M4) and hence
no-chiral modes.

Consider insteadM4 as multi-Taub-NUT with b+2 (M4) 6= 0.
This is non-compact but has a nontrivial S1 fibration.

• Reduction to IIA leads to D4-branes intersecting with
D6-branes.

• two-dimensional Chiral charged modes localised at the
zeros of the fibration

We can describe it by a variation of 5D MSYM with a
Chern-Simons term [Linander,Ohlsson][Cordova,Jafferis].

Chiral modes exist as solitons [Ohlsson][NL, Owen]



These three descriptions are all related:

• The DLCQ description of the (2, 0)-Theory must also give
the UV completion of 5D MSYM. But it only uses
information arising from the classical IR dynamics of
instanton-solitons in 5D MSYM

• although there are singularities in the moduli space from
zero-sized instantons that need regularization

• The action obtained from deconstruction is a ‘lattice’-like
regularization of the 5D MSYM action.

• Formally 5D MSYM only exists as the (2, 0)-Theory on S1



There also exist some action proposals in the literature:

• Reduction on R× S5 to 5D MSYM on R× CP 4 with a
Chern-Simons term [Kim,Lee]

• Twistor-inspired action [Saemann, Wolf],[Saemann,
Schmidt ]

• D5 MSYM with KK-tower [Bonetti, Grimm, Hoghenneger]
• Mixed 5D/6D action [Chu,Lo]
• G×G action [Chu]
• Non-local 6D action [Ho, Huang, Matsuo]



Some Relations
There are a few ways that we expect M5s to arise from M2’s:

‘T-duality’ (reduction to IIA on the first S1, T-duality to type IIB
on the second S1, T-duality back to IIA on the third S1 and lift
back up to M-theory).

• M5’s on T3 gives M2’s orthogonal to T̂3 × R5

• M2’s orthogonal to T3 gives M5’s on T̂3

• But decoupling requires R→ 0 and R̂ = l3p/R
2 →∞

The first is rather trivial: M5 on T3 gives 3D MSYM and
shrinking the torus goes to strong coupling. Find M2’s as strong
coupling IR limit of 3D MSYM.

An attempt at the second was tried in [Jeon,NL, Richmond] and
gives a modified version of 5D MSYM.



Flux Background

• M2-branes in a background 3-form flux expand into
M5-branes on S3 a la Myers.

• Can construct the effective action from ABJM
[Nastase,Papageorgakis] but one just finds 5D MSYM

• Monopole operators of M2-momenta map to instanton
operators [NL,Nastase,Papageorgakis]

BLG with Nambu Bracket;

• It has been observed using [X,Y, Z] = εijk∂iX∂JY ∂kZ in
BLG leads to an abelian M5-brane wrapped on an auxiliary
three-manifold.[Ho,Matsuo][Bandos,Townsend]



Challenges/Wish List

• Provide a field definition/construction of the (2, 0)-Theory
i.e. without recourse to String Theory or M-Theory

• Find the mathematical structures that best capture aspects
of the (2, 0)-Theory e.g. Non-abelian periods of 2-forms.
Twistors, Lie-2-Groups etc. [Baez, Huerta, Sati,
Schreiber,Saemann,Wolf,...,Everyone Here,..]

• Obtain calculable formulations of the (2, 0)-Theory with 6D
Diffeomorphisms and Lorentz!

• Construct an action (?!), Partition function(s), families of
actions or something action-like.

• Better understand ‘quantum operators’ such monopole and
instanton operators.

• Make S-duality manifest?
• Make the N3 behaviour more apparent



A (2, 0) System
The (2, 0) superalgebra is [NL,Sacco][NL,Papageorgakis]

δXi = iε̄ΓiΨ

δY µ =
i

2
ε̄ΓλρC

µλρΨ

δHµνλ = 3iε̄Γ[µνDλ]Ψ + iε̄ΓiΓµνλρ[Y
ρ, Xi,Ψ]

+
i

2
ε̄(?C)µνλΓij [Xi, Xj ,Ψ] +

3i

4
ε̄Γ[µν|ρσC

ρσ
λ]Γ

ij [Xi, Xj ,Ψ]

δAµ(·) = iε̄Γµν [Y ν ,Ψ, · ] +
i

3!
ε̄CνλρΓµνλρΓ

i[Xi,Ψ, · ] ,

δΨ = ΓµΓiDµX
iε+

1

2 · 3!
HµνλΓµνλε− 1

2
ΓµΓij [Y µ, Xi, Xj ]ε

+
1

3! · 3!
CµνλΓµνλΓijk[Xi, Xj , Xk]ε

Γ012345ε = ε Γ012345Ψ = −Ψ



XI , Ψ and Hµνλ are dynamical, Aµ and Y µ are auxiliary but
Cµνλ is a background (abelian) 3-form

A standard (but trust me tedious) calculation shows that this
system indeed closes on the following equations of motion

0 = ΓρDρΨ + ΓρΓ
i[Y ρ, Xi,Ψ] +

i

2 · 3!
CρστΓρστΓij [Xi, Xj ,Ψ]

0 = D2Xi + [Y µ, Xj , [Yµ, X
j , Xi]] +

1

2 · 3!
C2[Xj , Xk, [Xj , Xk, Xi]]

+ fermions

0 = D[λHµνρ] +
1

2
(?C)[µνλ[Xi, Xj , [Yρ], X

i, Xj ]]

+
1

4
εµνλρστ [Y σ, Xi, DτXi] + fermions



As well as constraints:

Fµν(·) = [Y λ, Hµνλ, · ]− (?C)µνλ[Xi, DλXi, · ] + fermions

0 = DµY
ν − 1

2
HµλρC

νλρ

0 = [Y µ, Dµ(·), ·′ ] +
1

3
[DµY

µ, · , ·′ ]

0 = CµνλDλ(·)− [Y µ, Y ν , · ]
0 = C ∧ Y
0 = Cσ[µνC

σ
λ]ρ

Somewhat unconventional (ugly? beautiful?).



There is a conserved supercurrent:

Sµ = 2πi〈DνX
i,ΓνΓµΓiΨ〉+

2πi

4
〈Hνλρ,Γ

νλρΓµΨ〉

− 2πi

2
〈[Yµ, Xi, Xj ],ΓνΓµΓijΨ〉

+
2πi

3!2
Cνλρ〈[Xi, Xj , Xk],ΓνλρΓµΓijkΨ〉

and energy-momentum tensor :

Tµν =
π

2
〈Hµλρ, Hν

λρ〉+ 2π〈DµX
i, DνX

i〉 − πηµν〈DλX
i, DλXi〉

− π

2
ηµν〈[Yλ, Xi, Xj ], [Y λ, Xi, Xj ]〉

+
2π

3!
(CµλρCν

λρ − 1

6
ηµνC

2)〈[Xi, Xj , Xk], [Xi, Xj , Xk]〉

+
π

3!
Cµλρ(?C)ν

λρ〈[Xi, Xj , Xk], [Xi, Xj , Xk]〉+ fermions

One can also compute the superalgebra and central charges.



Solving the Constraints: M5’s

Let us start with the case Cµνλ = 0. Here DµY
ν = 0 and can fix

Y µ = V µT 4

where T 4 is some generator of the 3-algebra and V µ a constant
vector:

• All components of the fields along T 4 become free - 6D
centre of mass (2,0) multiplet

• Remaining modes are acted on by an su(2) gauge algebra.
• [Y µ, Dµ, · ] = 0 so these modes only depend on the the

coordinates orthogonal to V µ.
• Can extend to any gauge group by taking a Lorentzian

3-algebra



But there are still some choices:

We can fix V µ = 2πR5δ
µ
5 (spacelike).

The constraints then say that the remaining dynamical fields
only depend on x0, ..., x4 and

Fµν = 2πR5Hµν5

The dynamical equations then all arise from the action

S = −4π2

R5
tr

∫
d5x

1

4
FµνF

µν+
1

2
DµX

iDµXi−1

4
[Xi, Xj ]2+fermions

i.e. 5D maximally supersymmetric Yang-Mills corresponding to
M5-brane on S1 and KK-modes are instanton-solitons:

P5 =
n

R5
n =

1

8π2
tr

∫
R4

F ∧ F



Alternatively we can set V µ = 2πR0δ
µ
0 with Fµν = 2πR0Hµν0.

The dyanmical equations then all arise from the action

S =
4π2

R0
tr

∫
d5x

1

4
FabFab−

1

2
DaX

iDaX
i−1

4
[Xi, Xj ]2+fermions

i.e. 5D Euclidean maximally supersymmetric Yang-Mills.

Such a Euclidean theory with compact SO(5) R-symmetry was
noted by [Hull][Hull,Khuri] as a time-like reduction of the
M5-brane.

• Somewhat novel as typically Euclidean maximally
supersymmetric Yang-Mills theories have non-compact
R-symmetry. This one arises from reduction of
super-Yang-Mills in 5 + 5 dimensions.

• Field theory with an emergent compact time [Hull,NL]



Solving the Constraints: M2’s

Let us take C345 = l3 non-vanishing.

The constraint

[Y µ, Dµ · , ·′ ] +
1

3
[DµY

µ, · , ·′ ] = 0

suggests setting ∂a = 0, a = 3, 4, 5 and Y α = 0, α = 0, 1, 2.

In which case the constraint

CµνλDλ(·)− [Y µ, Y ν , · ] = 0

implies

Aa(·) = − 1

2l3
εabc[Y

b, Y c, · ]



From this the remaining constraints can solved leading to

Habc = − 1

l6
[Ya, Yb, Yc]

Hαbc = − 1

l3
εbcdDαY

d

Hαβc = − 1

l3
εαβγD

γYc

Hαβγ = − 1

3!l6
εαβγε

abc[Ya, Yb, Yc]

and

Fαa(·) =
1

l3
εabc[Y

b, DαY
c, · ]

Fab(·) =
1

l6
[Y c, [Ya, Yb, Yc], · ]



Let us write Xa = l−3/2Y a then everything is derived from the
action (I = 3, 4, 5, ..., 10)

S =

∫
d3x

[
〈DαX

I , DαXI〉 − 1

6
〈[XI , XJ , XK ], [XI , XJ , XK ]〉

+εαβγ(Aα, ∂βAγ)− 1

3
εαβγ(Aα, [Aβ, Aγ ])

]
+ fermions

This is the maximally supersymmetric M2-brane
Chern-Simons-Matter theory [B,L][G]

This is consistent with a T-duality along the directions of Cµνλ:

M5 : 0 1 2 3 4 5
T345⇐⇒ M2 : 0 1 2



We can also take a “timelike” C045 = l3.

Gives a Euclidean theory on x1, x2, x3 with no time
dependence.

This leads to a maximally supersymmetric Euclidean M2-brane
theory with SO(2, 6) R-symmetry.

• Similar in structure to the normal maximally
supersymmetric M2-brane case but with some funny signs

Consistent with [Hull],[Hull Khuri] where a time-like T-duality of
M-theory leads to M*-theory with signature (2, 9)

M5 : 0 1 2 3 4 5
T034⇐⇒ E3 : 1 2 5



The Null M5
Let us return to the M5-brane case and note that we can also
choose to set Y µ = 2πR−δ

µ
− so D− = 0. Here we find

Fij = 2πR−Hij−

and self-duality of H leads to self-duality of Fij . Similarly
Gij = 2πR−Hij+ is anti-self-dual (but doesn’t satisfy Bianchi).

The fields now depend on x+, xi, i = 1, 2, 3, 4.

The dynamics can all be derived from the action [NL, Owen]

S =
4π2

R−
tr

∫
d4xdx+

[
1

2
F+iF+i −

1

2
DiX

IDiX
I − 1

2
FijGij

− i
2

Ψ̄Γ−D+Ψ +
i

2
Ψ̄ΓiDiΨ−

1

2
Ψ̄[XI ,Γ−ΓIΨ]

]



This is novel field theory in 4+1 dimensions invariant under

• 16 supersymmetries
• translations in space and time
• SO(4) rotations
• SO(5) R-symmetry

Note that Gij = 2πR−Hij− acts as a Lagrange multiplier
imposing

Fij = ?Fij

This restricts the dynamics to motion on the moduli space of
self-dual gauge fields.



The action reduces to a sigma model on the ADHM moduli
space of fixed instanton number n:

S =
1

2

∫
dx+gMN (∂+ξ

M − LM )(∂+ξ
N − LN )− gMNK

MKN

+ fermions

Here LM ,KM are vectors on moduli space determined by the
vev’s of A+ and XI .

We can view a null choice of Y µ as a limit of an infinite boost of
a spacelike Y µ where we saw that the spatial momentum was
n/R5. Thus we are looking at an M5-brane with P− = n/R−

This reproduces the DLCQ description of the dynamics of
M5-brane [Aharony,Berkooz,Seiberg][Aharony, Kachru,
Seiberg,Silverstein]



The Null M2

We can also take a null C04+ = l3 [Kucharski, NL, Owen] which
leads to a rather odd system:

• Fields depend on x+, x1, x2

• Y 3, Y 4, Y − are non-zero
• Y − joins up with Xi to form an SO(6) multiplet XI

• Hµνλ is largely determined in terms of Y 3, Y 4, Y −

• self-duality implies Z = Y 4 + iY 3 is holomorphic D̄Z = 0,
z = x1 + ix2

• H = H+z3 = iH+z4 is undetermined



Dynamics obtained from the action [NL, Owen]

S =

∫
d2xdx+

[
1

4
〈D+Z,D+Z̄〉 − 〈DXI , D̄XI〉+ 〈DZ̄, H̄〉+ 〈D̄Z,H〉

− i
4
〈D+X

I , [Z, Z̄,XI ]〉 − 1

8
〈[XI , XJ , Z], [XI , XJ , Z̄]〉

+
i

2
(A+, Fzz̄) +

i

2
(Az, Fz̄+) +

i

2
(Az̄, F+z) +

i

2
(A+, [Az, Az̄])

+
il3

2
√

2
〈ΨT

+, D+Ψ+〉+ i〈ΨT
+, Γ̂zD̄Ψ− + Γ̂z̄DΨ−〉

− l6

2
√

2
〈ΨT

+, Γ̂ZZ̄ Γ̂IJ
[
XI , XJ ,Ψ+

]
〉+

1

4
√

2
〈ΨT
−,
[
Z, Z̄,Ψ−

]
〉

+
i

2
〈ΨT

+, Γ̂
I Γ̂Z

[
Z,XI ,Ψ−

]
〉+

i

2
〈ΨT

+, Γ̂
I Γ̂Z̄

[
Z̄,XI ,Ψ−

]
〉
]

where Ψ± = 1
2(1± Γ̂034)Ψ



This is novel field theory in 2+1 dimensions invariant under

• 16 supersymmetries
• translations in space and time
• SO(2) rotations
• SO(6) R-symmetry

Note that H = H+z3 acts as a Lagrange multiplier imposing

D̄Z = 0

Furthermore there is a Gauss Law constraint arising from the
the A+ equation of motion:

Fzz̄( · ) = −1

4

[
XI ,

[
Z, Z̄,XI

]
, ·
]

+ . . .

Thus the motion is constrained to the Hitchin Moduli space.



C34− is the limit of an infinite boost along x5 of the C345 case.

Indeed the Hitchin-system gives rise to a momentum along x5:

P5 ∼
∮
〈Z, D̄Z̄〉dz + 〈Z̄,DZ〉dz̄

which appears as a winding of the M2-branes around x3, x4.

So we are looking at intersecting M2-branes that have been
boosted along x5.



16 vs 8 Supersymmetries

The field theories that we have constructed have 16
supersymmetries but their on-shell conditions lead to a sigma
model on a moduli space that admits only 8 supersymmetries.

What happened to the other 8 supersymmetries?

In both cases the supersymmetries split Q → (Q+,Q−) and the
superalgebra is of the form

{Q+,Q+} ∼ P+

{Q+,Q−} ∼ P
{Q−,Q−} ∼ P−

where P are the spatial momentum.



In both cases P− = n/R− where n is given by a topological
quantity (an instanton number or a winding number) which
grades the moduli space

M = ⊕nMn

Thus when we restrict to motion onMn for n 6= 0 the Q−
supersymmetries are broken.



T-Duality and Doubled Field Theory?
The field theories that we obtain from this system are all
consistent with the notion of ‘T-duality’ (really a U-duality) in
M-theory on T3 along xµ, xν , xλ with radii Rµ, Rν , Rλ and

Cµνλ = (2π)3RµRνRλ

Maps M5’s wrapped on T3 to M2’s orthogonal to T3.

This system is reminiscent of doubled field theory:

• XI is a position coordinate
• Y µ is a winding coordinate
• under T-duality some Y µ become position coordinates
• the Y µDµ = 0 constraint is like a section condition

Although it should be noted that the fields are only functions of
ordinary 6D coordinates xµ (i.e. not winding coordinates).



Conclusions/Comments
So our representation of the (2, 0) superalgebra gives various
field theories associated to M-branes.

• 5D SYM as the M5 on S1

• Maximally supersymmetric M2 branes: [BL][G]
• Null M5-branes: QM on instanton moduli space
• Null M2-branes: QM on Hitchin moduli space

The later two are novel non-Lorentz invariant field theories
whose on-shell dynamics reduces to one-dimensional motion
on moduli space and breaks 1/2 the supersymmetry.

Consistent with T-duality in M-theory but one needs to
generalise all this to more than two branes!


