Hexagon Functions and Six-Gluon Scattering in Planar N=4 Super-Yang-Mills

L. Dixon, J. Drummond, M. von Hippel and J. Pennington, 1307.nnnn LMS Symposium, Durham July 8, 2013

All planar $\mathrm{N}=4 \mathrm{SYM}$ integrands

Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka, 1008.2958, 1012.6032

- All-loop BCFW recursion relation for integrand ©
- Or new approach

Arkani-Hamed et al. 1212.5605

- Manifest Yangian invariance ©
- Multi-loop integrands in terms of "momentum-twistors" ©
- Still have to do integrals over the loop momentum $)^{(2)}$

Our strategy in brief

Bootstrapping multi-loop amplitudes

- Make ansatz for functional form of amplitude
- Use "boundary value data" (like near collinear or multi-Regge limits) to fix constants in ansatz
- Also assisted by:
- dual conformal invariance
- Wilson loop correspondence
- First amplitude to try is $n=6 \mathrm{MHV}$ amplitude in planar N=4 SYM

Wilson loops at weak coupling

Computed for same boundary conditions as scattering amplitude $\boldsymbol{k}_{\boldsymbol{i}}=\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{\boldsymbol{i}+\boldsymbol{1}} \quad$ [inspired by Alday, Maldacena strong coupling result]:

- One loop, $n=4$

Drummond, Korchemsky, Sokatchev, 0707.0243

- One loop, any n Brandhuber, Heslop, Travaglini, 0707.1153
- Two loops, $n=4,5,6$

Drummond, Henn, Korchemsky, Sokatchev, 0709.2368, 0712.1223, 0803.1466;

Bern, LD, Kosower, Roiban, Spradlin, Vergu, Volovich, 0803.1465

Wilson-loop VEV always matches [MHV] scattering amplitude!
Weak-coupling properties $\leftarrow \rightarrow$ superconformal invariance for strings in AdS $_{5} \times \mathrm{S}^{5}$ under combined bosonic and fermionic T duality symmetry Berkovits, Maldacena, 0807.3196; Beisert, Ricci, Tseytlin, Wolf, 0807.3228

Six-point remainder function R_{6}

- $n=6$ first place BDS Ansatz must be modified, due to dual conformal cross ratios

$$
u=u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}} \quad v=u_{2}=\frac{x_{24}^{2} x_{51}^{2}}{x_{25}^{2} x_{41}^{2}} \quad w=u_{3}=\frac{x_{35}^{2} x_{62}^{2}}{x_{36}^{2} x_{52}^{2}}
$$

$$
\mathcal{A}_{6}^{\mathrm{MHV}\left(\epsilon ; s_{i j}\right)}=\mathcal{A}_{6}^{\mathrm{BDS}}\left(\epsilon ; s_{i j}\right) \exp \left[R_{6}\left(u_{1}, u_{2}, u_{3}\right)\right]
$$

Known function, accounts for infrared divergences (poles in ε), anomalies in dual conformal symmetry, and tree and 1-loop result
L. Dixon Hexagon functions

starts at
2 loops

Two loop answer: $\boldsymbol{R}_{6}^{(2)}\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right)$

- Wilson loop integrals performed by

Del Duca, Duhr, Smirnov, 0911.5332, 1003.1702

17 pages of Goncharov polylogarithms.

- Simplified to classical polylogarithms using symbology

Goncharov, Spradlin, Vergu, Volovich, 1006.5703

$$
\begin{aligned}
& R_{6}^{(2)}\left(u_{1}, u_{2}, u_{3}\right)=\sum_{i=1}^{3}\left(L_{4}\left(x_{i}^{+}, x_{i}^{-}\right)-\frac{1}{2} \operatorname{Li}_{4}\left(1-1 / u_{i}\right)\right) \\
& -\frac{1}{8}\left(\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-1 / u_{i}\right)\right)^{2}+\frac{1}{24} J^{4}+\frac{\pi^{2}}{12} J^{2}+\frac{\pi^{4}}{72}
\end{aligned}
$$

$$
x_{i}^{ \pm}=u_{i} x^{ \pm}, \quad x^{ \pm}=\frac{u_{1}+u_{2}+u_{3}-1 \pm \sqrt{\Delta}}{2 u_{1} u_{2} u_{3}} \quad \Delta=\left(u_{1}+u_{2}+u_{3}-1\right)^{2}-4 u_{1} u_{2} u_{3}
$$

multi-Regge
$(1,0,0)$
и

Wilson loop OPEs

Alday, Gaiotto, Maldacena, Sever, Vieira, 1006.2788; GMSV, 1010.5009, 1102.0062

- Remarkably, $R_{6}^{(2)}\left(u_{1}, u_{2}, u_{3}\right)$ can be recovered directly from analytic properties, using "near collinear limit", e.g.

$$
v \rightarrow 0, \quad u+w \rightarrow 1
$$

- Limit controlled by an operator product expansion (OPE)
- Possible to go to 3 loops, by combining OPE expansion with symbol ansatz LD, Drummond, Henn, 1108.4461

Here, promote symbol to unique function $R_{6}{ }^{(3)}\left(u_{1}, u_{2}, u_{3}\right)$

Pure functions and symbols

- A pure function $f^{(k)}$ of transcendental degree k is a linear combination of k-fold iterated integrals, with constant (rational) coefficients.
- We can also add terms like $\zeta(p) \times f^{(k-p)}$
- Derivatives of $f^{(k)}$ can be written as

$$
d f^{(k)}=\sum_{r} f_{r}^{(k-1)} d \log \phi_{r}
$$

for a finite set of algebraic functions ϕ_{r}

- Define the symbol S ($\{1,1,1, \ldots, 1\}$ element of coproduct) recursively in k :

$$
\mathcal{S}\left(f^{(k)}\right)=\sum_{r} \mathcal{S}\left(f_{r}^{(k-1)}\right) \otimes \phi_{r}
$$

What entries should symbol of R_{6} have?

- We assume entries can all be drawn from set:

$$
\left\{u, v, w, 1-u, 1-v, 1-w, y_{u}, y_{v}, y_{w}\right\}
$$

with

$$
\begin{aligned}
& y_{u} \equiv \frac{u-z_{+}}{u-z_{-}}+\text {perms } \\
z_{ \pm}= & \frac{1}{2}[-1+u+v+w \pm \sqrt{\Delta}] \\
\Delta= & (1-u-v-w)^{2}-4 u v w
\end{aligned}
$$

arise from 9 projectively invariant combinations of 6 momentum twistors

$S\left[\boldsymbol{R}_{6}^{(2)}(u, v, w)\right]$ in these variables

 GSVV, 1006.5703$$
\begin{aligned}
-8 \mathcal{S}\left[R_{6}^{(2)}\right]= & u \otimes(1-u) \otimes \frac{u}{(1-u)^{2}} \otimes \frac{u}{1-u} \\
& +2(u \otimes v+v \otimes u) \otimes \frac{w}{1-v} \otimes \frac{u}{1-u} \\
& +2 v \otimes \frac{w}{1-v} \otimes u \otimes \frac{u}{1-u} \\
& +u \otimes(1-u) \otimes y_{u} y_{v} y_{w} \otimes y_{u} y_{v} y_{w} \\
& -2 u \otimes v \otimes y_{w} \otimes y_{u} y_{v} y_{w}
\end{aligned}
$$

+5 permutations of (u, v, w)

First entry

- Always drawn from $\{u, v, w\} \quad$ GMSV, 1102.0062
- Because first entry controls branch-cut location
- Only massless particles
\rightarrow all cuts start at origin in $s_{i, i+1}, s_{i, i+1, i+2}$
\rightarrow Branch cuts all start from 0 or ∞ in

$$
u=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}=\frac{s_{12}^{2} s_{45}^{2}}{s_{123}^{2} s_{345}^{2}}
$$

Final entry

- Always drawn from

$$
\left\{\frac{u}{1-u}, \frac{v}{1-v}, \frac{w}{1-w}, y_{u}, y_{v}, y_{w}\right\}
$$

- Seen in structure of various Feynman integrals [e.g. Arkani-Hamed et al., 1108.2958] related to amplitudes
Drummond, Henn, Trnka 1010.3679;
LD, Drummond, Henn, 1104.2787, V. Del Duca et al., 1105.2011,...
- Same condition also from Wilson super-loop approach Caron-Huot, 1105.5606

Generic Constraints

- Integrability (must be symbol of some function)
- S_{3} permutation symmetry in $\{u, v, w\}$
- Even under "parity": every term must have an even number of $y_{i}-0,2$ or 4
- Vanishing in collinear limit

$$
v \rightarrow 0 \quad u+w \rightarrow 1
$$

- At 3 loops, these 4 constraints leave 35 free parameters

OPE Constraints

Alday, Gaiotto, Maldacena, Sever, Vieira, 1006.2788; GMSV, 1010.5009; 1102.0062 Basso, Sever, Vieira [BSV], 1303.1396; 1306.2058

- $\boldsymbol{R}_{6}{ }^{(L)}(u, v, w)$ vanishes in the collinear limit,

$$
v=1 / \cosh ^{2} \tau \rightarrow 0 \quad \tau \rightarrow \infty
$$

In near-collinear limit, described by an Operator Product Expansion, with generic form

$$
R_{6}^{(L)}(u, v, w)=R_{6}^{(L)}(\tau, \sigma, \phi) \sim \int d n C_{n}(g) \exp \left[-E_{n}(g) \tau\right]
$$

$$
\begin{aligned}
u & =\frac{e^{\sigma} \sinh \tau \tanh \tau}{2(\cosh \sigma \cosh \tau+\cos \phi)} \\
v & =\frac{1}{\cosh ^{2} \tau} \\
w & =u e^{-2 \sigma}
\end{aligned}
$$

[BSV parametrization a little different]

Durham July 8, 2013

OPE Constraints (cont.)

- Using conformal invariance, send one long line to ∞, put other one along x -
- Dilatations, boosts, azimuthal rotations preserve configuration.
- σ, ϕ conjugate to twist p, spin m of conformal primary fields (flux tube excitations)
- Expand anomalous dimensions in coupling g^{2} :

$$
E_{n}(g)=E_{n}^{(0)}+g^{2} E_{n}^{(1)}+g^{4} E_{n}^{(2)}+\ldots
$$

$\exp \left[-E_{n}(g) \tau\right]$
$=\exp \left[-E_{n}^{(0)} \tau\right] \times\left[1-g^{2} \tau E_{n}^{(1)}+g^{4}\left(\frac{1}{2} \tau^{2}\left[E_{n}^{(1)}\right]^{2}-\tau E_{n}^{(2)}\right)+\ldots\right]$

- Leading discontinuity τ^{L-1} of $\boldsymbol{R}_{6}{ }^{(L)}$ needs only one-loop anomalous dimension $E_{n}^{(1)}$

OPE Constraints (cont.)

- As $\tau \rightarrow \infty, \quad v=1 / \cosh ^{2} \tau \quad \rightarrow \quad \tau^{L-1} \sim[\ln \nu]^{L-1}$
- Extract this piece from symbol by only keeping terms with $L-1$ leading v entries

- Powerful constraint: fixes 3 loop symbol up to 2 parameters. But not powerful enough for $L>3$
- New results of BSV give

$$
v^{1 / 2} \mathrm{e}^{ \pm i \phi}[\ln \nu]^{k}, \quad k=0,1,2, \ldots L-1
$$

and even

$$
v^{1} \mathrm{e}^{ \pm 2 i \phi}[\ln v]^{k}, \quad k=0,1,2, \ldots L-1
$$

Constrained Symbol

- Leading discontinuity constraints reduced symbol ansatz to just 2 parameters:

DDH, 1108.4461

$$
\mathcal{S}\left[R_{6}^{(3)}\right]=\mathcal{S}[X]+\alpha_{1} \mathcal{S}\left[f_{1}\right]+\alpha_{2} \mathcal{S}\left[f_{2}\right]
$$

- $f_{1,2}$ have no double- v discontinuity, so $\alpha_{1,2}$ couldn't be determined this way.
- Determined soon after using Wilson super-loop integro-differential equation

Caron-Huot, He, 1112.1060

$$
\alpha_{1}=-3 / 8 \quad \alpha_{2}=7 / 32
$$

- Also follow from BSV

Hexagon functions

- Build up a complete description of pure functions $F(u, v, w)$ with correct branch cuts (corresponding to first-entry constraint on symbol) iteratively in the weight n, using $\{n-1,1\}$ element of the co-product $\Delta_{n-1,1}(F)$ Duhr, Gangl, Rhodes, 1110.0458

$$
\Delta_{n-1,1}(F) \equiv \sum_{i=1}^{3} F^{u_{i}} \otimes \ln u_{i}+F^{1-u_{i}} \otimes \ln \left(1-u_{i}\right)+F^{y_{i}} \otimes \ln y_{i}
$$

which specifies all first derivatives of F :

$$
\left.\frac{\partial F}{\partial u}\right|_{v, w}=\frac{F^{u}}{u}-\frac{F^{1-u}}{1-u}+\frac{1-u-v-w}{u \sqrt{\Delta}} F^{y_{u}}+\frac{1-u-v+w}{(1-u) \sqrt{\Delta}} F^{y_{v}}+\frac{1-u+v-w}{(1-u) \sqrt{\Delta}} F^{y_{w}}
$$

$$
\begin{aligned}
\left.\sqrt{\Delta} y_{u} \frac{\partial F}{\partial y_{u}}\right|_{y_{v}, y_{w}}= & (1-u)(1-v-w) F^{u}-u(1-v) F^{v}-u(1-w) F^{w}-u(1-v-w) F^{1-u} \\
& +u v F^{1-v}+u w F^{1-w}+\sqrt{\Delta} F^{y_{u}}
\end{aligned}
$$

Hexagon functions (cont.)

- Coefficients $F^{u_{i}}, F^{1-u_{i}}, F^{y_{i}}$ are weight $n-1$ hexagon functions that can be identified (iteratively) from the symbol of F
- "Beyond-the-symbol" [bts] ambiguities in reconstructing them, proportional to $\zeta(k)$.
- Most ambiguities resolved by equating $2^{\text {nd }}$ order mixed partial derivatives.
- Remaining ones represent freedom to add globally well-defined weight n - k functions multiplied by $\zeta(k)$.

Harmonic Polylogarithms (HPLs)

Remiddi, Vermaseren, hep-ph/9905237

- Describe the y^{0} sector of the hexagon functions. Symbol letters: $\{u, 1-u\}$
- Functions defined iteratively by:

$$
H_{0, \vec{w}}(u)=\int_{0}^{u} \frac{d t}{t} H_{\vec{w}}(t), \quad H_{1, \vec{w}}(u)=\int_{0}^{u} \frac{d t}{1-t} H_{\vec{w}}(t)
$$

- Here we use argument 1-u.
- Regularity (vanishing) at $u=1$
\rightarrow last entry of \vec{w} in $H_{\vec{w}}(1-u)$ can't be 0 .

How many hexagon functions?

First entry $\{u, v, w\}$; irreducible (non-product)

$R_{6}{ }^{(3)}(u, v, w)$

$$
\begin{aligned}
R_{6}^{(3)}(u, v, w)= & R_{\mathrm{ep}}(u, v, w)+R_{\mathrm{ep}}(v, w, u)+R_{\mathrm{ep}}(w, u, v) \\
& +P_{6}(u, v, w)+c_{1} \zeta_{6}+c_{2}\left(\zeta_{3}\right)^{2} \\
P_{6}= & -\frac{1}{4}\left(\Omega^{(2)}(u, v, w) \operatorname{Li}_{2}(1-1 / w)+\operatorname{cyc}\right)-\frac{1}{16}\left(\tilde{\Phi}_{6}\right)^{2} \\
& +\frac{1}{4} \operatorname{Li}_{2}(1-1 / u) \operatorname{Li}_{2}(1-1 / v) \mathrm{Li}_{2}(1-1 / w) .
\end{aligned}
$$

Many relations among coproduct coefficients for $R_{\text {ep }}$:

$$
\begin{aligned}
& R_{\mathrm{ep}}^{v}=-R_{\mathrm{ep}}^{1-v}=-R_{\mathrm{ep}}^{1-u}(u \leftrightarrow v)=R_{\mathrm{ep}}^{u}(u \leftrightarrow v), \quad R_{\mathrm{ep}}^{y_{\nu}}=R_{\mathrm{ep}}^{y_{\mu}}, \\
& R_{\mathrm{ep}}^{w}=R_{\mathrm{ep}}^{1-w}=R_{\mathrm{ep}}^{y_{w}^{w}}=0
\end{aligned}
$$

Only 2 indep. $\boldsymbol{R}_{\text {ep }}$ coproduct coefficients

$$
\begin{aligned}
& R_{\mathrm{ep}}^{y_{u}}=-\frac{1}{32} H_{1}(u, v, w)-\frac{3}{32} H_{1}(v, w, u)-\frac{1}{32} H_{1}(w, u, v)+\frac{3}{128} J_{1}(u, v, w)+\frac{3}{128} J_{1}(v, w, u) \\
&+\frac{3}{128} J_{1}(w, u, v)-\frac{1}{8} H_{2}^{u} \tilde{\Phi}_{6}-\frac{1}{8} H_{2}^{v} \tilde{\Phi}_{6}-\frac{1}{32} \ln ^{2} u \tilde{\Phi}_{6}+\frac{1}{16} \ln u \ln v \tilde{\Phi}_{6} \\
&-\frac{1}{16} \ln u \ln w \tilde{\Phi}_{6}-\frac{1}{32} \ln ^{2} v \tilde{\Phi}_{6}-\frac{1}{16} \ln v \ln w \tilde{\Phi}_{6}+\frac{1}{32} \ln ^{2} w \tilde{\Phi}_{6}+\frac{11}{16} \zeta_{2} \tilde{\Phi}_{6}, \\
& R_{\mathrm{ep}}^{u}=-\frac{2}{3} Q_{\mathrm{ep}}^{u}(u, v, w)+\frac{2}{3} Q_{e \mathrm{ep}}^{u}(u, w, v)-\frac{2}{3} Q_{\mathrm{ep}}^{u}(v, w, u)-\frac{1}{3} Q_{\mathrm{ep}}^{u}(v, u, w)+Q_{\mathrm{ep}}^{u}(w, v, u) \\
&+\frac{1}{32} M_{1}(u, v, w)-\frac{1}{32} M_{1}(v, u, w)+\frac{5}{32} \ln u \Omega^{(2)}(u, v, w)-\frac{3}{32} \ln u \Omega^{(2)}(v, w, u) \\
&-\frac{1}{32} \ln u \Omega^{(2)}(w, u, v)-\frac{5}{32} \ln v \Omega^{(2)}(u, v, w)-\frac{1}{32} \ln v \Omega^{(2)}(v, w, u)-\frac{3}{32} \ln v \Omega^{(2)}(w, u, v) \\
&+\frac{1}{8} \ln w \Omega^{(2)}(u, v, w)+\frac{1}{16} \ln w \Omega^{(2)}(v, w, u)+\frac{1}{8} \ln w \Omega^{(2)}(w, u, v)+R_{\text {ep }, \text { rat }}^{u}, \\
& 2 \text { pages of 1-d HPLs }
\end{aligned}
$$

Similar (but shorter) expressions for lower degree functions

Integrating the coproducts

- Can express in terms of multiple polylog's $G(\vec{w} ; 1)$, with w_{i} drawn from $\left\{0,1 / y_{i}, 1 /\left(y_{i} y_{j}\right), 1 /\left(y_{1} y_{2} y_{3}\right)\right\}$
- Alternatively:
- Coproducts define coupled set of first-order PDEs
- Integrate them numerically from base point $(1,1,1)$ [only need initial value at one point]
- Or solve PDEs analytically in special limits, especially:

1. Near-collinear limit
2. Multi-regge limit

Integration contours in (u, v, w)

$$
F(u, v, w)=-\sqrt{\Delta} \int_{1}^{u} \frac{d u_{t}}{v_{t}\left[u(1-w)+(w-u) u_{t}\right]} \frac{\partial F}{\partial \ln y_{v}}\left(u_{t}, v_{t}, w_{t}\right)
$$

base point $(u, v, w)=(1,1,1)$

$$
y_{u} y_{v} y_{w}=1
$$

$$
\begin{aligned}
v_{t} & =1-\frac{(1-v) u_{t}\left(1-u_{t}\right)}{u(1-w)+(w-u) u_{t}} \\
w_{t} & =\frac{(1-u) w u_{t}}{u(1-w)+(w-u) u_{t}} .
\end{aligned}
$$

$$
F(u, v, w)=F(1,0,0)+\sqrt{\Delta} \int_{1}^{u} \frac{d u_{t}}{\left(1-v_{t}\right)\left[u w+(1-u-w) u_{t}\right]} \frac{\partial F}{\partial \ln \left(y_{u} / y_{w}\right)}\left(u_{t}, v_{t}, w_{t}\right)
$$

base point $(u, v, w)=(1,0,0)$

$$
y_{u}=1
$$

L. Dixon Hexagon functions

L. Dixon Hexagon functions

Fixing all the constants

- 11 bts constants (plus $\alpha_{1,2}$) before analyzing limits
- Vanishing of collinear limit $v \rightarrow 0$ fixes everything, except α_{2} and 1 bts constant
- Near-collinear limit,

$$
v^{1 / 2} \mathrm{e}^{ \pm i \phi}[\ln v]^{k}, k=0,1
$$

fixes last 2 constants
(α_{2} agrees with Caron-Huot+He and BSV)

Multi-Regge limit

- Minkowski kinematics, large rapidity separations between the 4 final-state gluons:

- Properties of planar $\mathrm{N}=4 \mathrm{SYM}$ amplitude in this limit studied extensively at weak coupling:
Bartels, Lipatov, Sabio Vera, 0802.2065, 0807.0894; Lipatov, 1008.1015; Lipatov, Prygarin, 1008.1016, 1011.2673; Bartels, Lipatov, Prygarin, 1012.3178, 1104.4709; LD, Drummond, Henn, 1108.4461; Fadin, Lipatov, 1111.0782; LD, Duhr, Pennington, 1207.0186
- Factorization and exponentiation in this limit provides additional source of "boundary data" for bootstrapping!

Physical $2 \rightarrow 4$ multi-Regge limit

- Euclidean MRK limit vanishes
- To get nonzero result for physical region, first let $u \rightarrow u e^{-2 \pi i}$, then $u \rightarrow 1, v, w \rightarrow 0$

$$
\frac{v}{1-u} \rightarrow \frac{1}{(1+w)\left(1+w^{*}\right)} \quad \frac{w}{1-u} \rightarrow \frac{w w^{*}}{(1+w)\left(1+w^{*}\right)}
$$

$$
R_{6}^{(L)} \rightarrow(2 \pi i) \sum_{r=0}^{L-1} \ln ^{r}(1-u)\left[g_{r}^{(L)}\left(w, w^{*}\right)+2 \pi i h_{r}^{(L)}\left(w, w^{*}\right)\right]
$$

$g_{L-1}^{(L)}$ (LLA) and $g_{L-2}^{(L)}$ (NLLA) well understood
Fadin, Lipatov,
1111.0782;

LD, Duhr, Pennington,
Put LLA, NLLA results into bootstrap; extract \mathbf{N}^{k} LLA, $k>1$
1207.0186;

Pennington, 1209.5357

NNLLA impact factor now fixed

Result from DDP, 1207.0186 still had 3 beyond-the-symbol ambiguities

$$
\begin{aligned}
\Phi_{\mathrm{Reg}}^{(2)}(\nu, n) & =\frac{1}{2}\left[\Phi_{\mathrm{Reg}}^{(1)}(\nu, n)\right]^{2}-E_{\nu, n}^{(1)} E_{\nu, n}+\frac{1}{8}\left[D_{\nu} E_{\nu, n}\right]^{2}+\frac{5 \pi^{2}}{16} E_{\nu, n}^{2}-\frac{1}{2} \zeta_{3} E_{\nu, n}+\frac{5}{64} N^{4} \\
& +\frac{5}{16} N^{2} V^{2}-\frac{5 \pi^{2}}{64} N^{2}-\frac{\pi^{2}}{4} V^{2}+\frac{17 \pi^{4}}{360}-d_{1} E_{\nu, n}-d_{2} \frac{\pi^{2}}{6}\left[12 E_{\nu, n}^{2}+N^{2}\right] \\
& +\left(\gamma^{\prime \prime} \frac{\mathrm{T}^{2}}{6}\left[E_{\nu, n}^{2}-\frac{1}{4} N^{2}\right] .\right.
\end{aligned}
$$

Now all 3 are fixed:

$$
\gamma^{\prime \prime}=-5 / 4 \quad d_{1}=1 / 2 \quad d_{2}=3 / 32
$$

Simple slice: $(u, u, 1) \longleftrightarrow \rightarrow(1, v, v)$

Collapses to Id HPLs:

$$
H_{3,2,1}^{u} \equiv H_{0,0,1,0,1,1}(1-u), \text { etc. }
$$

$$
\begin{aligned}
R_{6}^{(3)}(u, u, 1)= & -3 H_{6}^{u}+2 H_{5,1}^{u}-9 H_{4,1,1}^{u}-2 H_{3,2,1}^{u}+6 H_{3,1,1,1}^{u}-15 H_{2,1,1,1,1}^{u} \\
& -\frac{1}{4}\left(H_{3}^{u}\right)^{2}-\frac{1}{2} H_{3}^{u} H_{2,1}^{u}+\frac{3}{4}\left(H_{2,1}^{u}\right)^{2}-\frac{5}{12}\left(H_{2}^{u}\right)^{3}+\frac{1}{2} H_{2}^{u}\left[3\left(H_{4}^{u}+H_{2,1,1}^{u}\right)+H_{3,1}^{u}\right] \\
& -H_{1}^{u}\left(3 H_{5}^{u}-2 H_{4,1}^{u}+9 H_{3,1,1}^{u}+2 H_{2,2,1}^{u}-6 H_{2,1,1,1}^{u}-H_{2}^{u} H_{3}^{u}\right) \\
& -\frac{1}{4}\left(H_{1}^{u}\right)^{2}\left[3\left(H_{4}^{u}+H_{2,1,1}^{u}\right)-5 H_{3,1}^{u}+\frac{1}{2}\left(H_{2}^{u}\right)^{2}\right] \\
& -\zeta_{2}\left[H_{4}^{u}+H_{31}^{u}+3 H_{211}^{u}+H_{1}^{u}\left(H_{3}^{u}+H_{21}^{u}\right)-\left(H_{1}^{u}\right)^{2} H_{2}^{u}-\frac{3}{2}\left(H_{2}^{u}\right)^{2}\right] \\
& -\zeta_{4}\left[\left(H_{1}^{u}\right)^{2}+2 H_{2}^{u}\right]+\frac{413}{24} \zeta_{6}+\left(\zeta_{3}\right)^{2} .
\end{aligned}
$$

Includes base point $(1,1,1)$:

$$
R_{6}^{(3)}(1,1,1)=\frac{413}{24} \zeta_{6}+\left(\zeta_{3}\right)^{2}
$$

cf. cusp ratio: $\quad \frac{\gamma_{K}^{(3)}}{\gamma_{K}^{(2)}}=\frac{22 \zeta_{4}}{-4 \zeta_{2}}=-3.61885 \ldots$
L. Dixon Hexagon functions

Proportionality ceases at large u

Ratio for $(u, u, 1) \leftarrow \rightarrow(1, v, v) \leftarrow \rightarrow(w, 1, w)$

Sign is stable within $\Delta>0$ regions

relation to positive Grassmannian? Arkani-Hamed et al
L. Dixon Hexagon functions

Almost vanishes on

$u+v+w=1$

Four loops

LD, Duhr, Drummond, Pennington, in progress

- In the course of 1207.0186, we "determined" the 4 loop remainder-function symbol.
- But still had 113 undetermined constants : 2
- Consistency with LLA and NLLA multi-Regge limits $\rightarrow 81$ constants $:$
- Consistency with BSV's $v^{1 / 2} \mathrm{e}^{ \pm i \phi} \rightarrow 4$ constants :)
- Adding BSV's $v^{1} \mathrm{e}^{ \pm 2 i \phi} \rightarrow 0$ constants!! ©)
[Thanks to BSV for supplying this info!]
- Next step: Fix bts constants, after defining functions globally...

Conclusions

- Ansatz for function space allows determination of integrated planar N=4 SYM amplitudes over full kinematical phase space
- No need to know any integrands at all
- Important additional inputs from boundary data: near-collinear and/or multi-Regge limits
- First constrained symbol, then promoted symbol to a function via the $\{n-1,1\}$ coproduct, working in space of hexagon functions.
- Would be very nice to have a more systematic construction of this space!

Extra Slides

Slices of constant w

$\gamma_{K}(\lambda)$ to all orders

Beisert, Eden, Staudacher [hep-th/0610251]

Cusp Anomalous Dimension in Planar MSYM

+ leading and subleading large-a coeffs.
BBKS numerical solution for BES kernel
Full strong-coupling expansion
$0.0 \begin{gathered}\text { 苋, Benna, Belnvenuti,KKlebalnov, Scardicchior[hep-th/064111.35]_ } \\ 0\end{gathered}$
a
Basso,Korchemsky, Kotański,
0708.3933 [th]

Integrability and planar N=4 SYM

- Anomalous dimensions for excitations of the

GKP string, defined by $\operatorname{Tr}\left[X_{1} \mathcal{D}^{+j} X_{1}\right] \quad j \rightarrow \infty$ which also corresponds to excitations of a light-like Wilson line

- And scattering of these excitations $S(u, v)$
- And the related pentagon transition
$P(u \mid v)$ for Wilson loops
Basso, Sever, Vieira [BSV],
1303.1396; 1306.2058

Multi-Regge kinematics

$$
u=\frac{s_{12}^{2} s_{45}^{2}}{s_{123}^{2} s_{345}^{2}} \rightarrow 1 \quad 6 \underset{5}{\longleftrightarrow} 3
$$

$$
\begin{aligned}
& \frac{v}{1-u} \rightarrow x \\
& \frac{w}{1-u} \rightarrow y
\end{aligned}
$$

Very nice change of variables
[LP, 1011.2673] is to (w, w^{*}) :

$$
x=\frac{1}{(1+w)\left(1+w^{*}\right)}
$$

$$
y_{u} \rightarrow 1
$$

$$
y_{v} \rightarrow \frac{1+w^{*}}{1+w}
$$

$$
y_{w} \rightarrow \frac{(1+w) w^{*}}{w\left(1+w^{*}\right)}
$$

2 symmetries: conjugation $\quad w \leftrightarrow w^{*}$ and inversion $w \leftrightarrow 1 / w, w^{*} \leftrightarrow 1 / w^{*}$

Wilson Loop Ratio Normalized by Cusp Anomaly

L. Dixon Hexagon functions

Durham July 8, 2013

