Multiple polylogarithms and Feynman integrals

Christian Bogner (HU Berlin)

joint work with
Francis Brown (arXiv:1209.6524 and in progress), M. Lüders (arXiv:1302.6215),
L. Adams and S. Weinzierl (arXiv:1302.7004)

Durham, 11.07.2013

Outline:

Part 1: Multiple polylogarithms and Feynman parameters

- Multiple polylogarithms in several variables (with F. Brown)
- The criterion of linear reducibility
- Integration over Feynman parameters
- Minor-closedness (with M. Lüders)

Part 2: A case "beyond multiple polylogs" (with L. Adams and S. Weinzierl)

- The two-loop sunrise graph with arbitrary masses
- A second order differential equation
- A solution in terms of elliptic integrals

Part 1:

Multiple polylogarithms in several variables

Let

- k be a field (either \mathbb{R} or \mathbb{C}),
- M a smooth manifold over k,
- $\gamma:[0,1] \rightarrow M$ a smooth path on M,
- $\omega_{1}, \ldots, \omega_{n}$ smooth differential 1-forms on M,
- $\gamma^{\star}\left(\omega_{i}\right)=f_{i}(t) d t$ the pull-back of ω_{i} to $[0,1]$

Def.: The iterated integral of $\omega_{1}, \ldots, \omega_{n}$ along γ is

$$
\int_{\gamma} \omega_{n} \ldots \omega_{1}=\int_{0 \leq t_{1} \leq \ldots \leq t_{n} \leq 1} f_{n}\left(t_{n}\right) d t_{n} \ldots f_{1}\left(t_{1}\right) d t_{1}
$$

We use the term iterated integral for k-linear combinations of such integrals.

We obtain different classes of functions by choosing different finite sets of 1 -forms Ω.

- $\Omega_{1}=\left\{\frac{d t}{t}, \frac{d t}{t-1}\right\}, \omega_{0} \equiv \frac{d t}{t}, \omega_{1} \equiv \frac{d t}{t-1}$
- classical polylogarithms: $\mathrm{Li}_{n}(z)=\int_{\gamma} \underbrace{\omega_{0} \ldots \omega_{0}}_{n-1 \text { times }} \omega_{1}=$

$$
\int_{0 \leq t_{1} \leq \ldots \leq t_{n} \leq 1} \frac{d t_{n}}{t_{n}} \ldots \frac{d t_{2}}{t_{2}} \frac{z d t_{1}}{1-z t_{1}}
$$

- multiple polylogarithms in one variable: $\operatorname{Li}_{n_{1}}, \ldots, n_{r}(z)=(-1)^{r} \int_{\gamma} \underbrace{\omega_{0} \ldots \omega_{0}}_{n_{r}-1} \omega_{1} \ldots \underbrace{\omega_{0} \ldots \omega_{0}}_{n_{1}-1} \omega_{1}$, where γ a smooth path in $\mathbb{C} \backslash\{0,1\}$ with end-point z
- $\Omega_{n}^{\mathrm{Hyp}}=\left\{\frac{d t_{1}}{t_{1}}, \frac{d t_{1}}{t_{1}-1}, \frac{t_{2} d t_{1}}{t_{1} t_{2}-1}, \ldots, \frac{\left(\prod_{i=2}^{n} t_{i}\right) d t_{1}}{\prod_{i=1}^{n} t_{i}-1}\right\}$: hyperlogarithms (Poincare, Kummer 1840, Lappo-Danilevsky 1911)
including harmonic polylogarithms (Remiddi, Vermaseren 1999), two-dimensional harmonic polylogarithms (Gehrmann, Remiddi '01)

Let Ω_{n} be the set of differential 1-forms $\frac{d f}{f}$ with $f \in\left\{t_{1}, \ldots, t_{n}, \prod_{a \leq i \leq b} t_{i}-1\right\}$, for $1 \leq a \leq b \leq n$:

$$
\Omega_{n}=\left\{\frac{d t_{1}}{t_{1}}, \ldots, \frac{d t_{n}}{t_{n}}, \frac{d\left(\prod_{a \leq i \leq b} t_{i}\right)}{\prod_{a \leq i \leq b} t_{i}-1} \text { where } 1 \leq a \leq b \leq n\right\}
$$

Examples:

$$
\begin{gathered}
\Omega_{1}=\left\{\frac{d t_{1}}{t_{1}}, \frac{d t_{1}}{t_{1}-1}\right\}(\rightarrow \text { multiple polylogs in one variable }) \\
\Omega_{2}=\left\{\frac{d t_{1}}{t_{1}}, \frac{d t_{2}}{t_{2}}, \frac{d t_{1}}{t_{1}-1}, \frac{d t_{2}}{t_{2}-1}, \frac{t_{1} d t_{2}+t_{2} d t_{1}}{t_{1} t_{2}-1}\right\}
\end{gathered}
$$

From this Ω_{n} we want to construct iterated integrals which are homotopy invariant, i.e.

$$
\int_{\gamma_{\mathbf{1}}} \omega_{n} \ldots \omega_{1}=\int_{\gamma_{\mathbf{2}}} \omega_{n} \ldots \omega_{\mathbf{1}} \text { for homotopic paths } \gamma_{\mathbf{1}}, \gamma_{2} .
$$

Consider tensor products $\omega_{1} \otimes \ldots \otimes \omega_{m} \equiv\left[\omega_{1}|\ldots| \omega_{m}\right]$ over \mathbb{Q}.
Define an operator D by
$D\left(\left[\omega_{1}|\ldots| \omega_{m}\right]\right)=\sum_{i=1}^{m}\left[\omega_{1}|\ldots| \omega_{i-1}\left|d \omega_{i}\right| \omega_{i+1} \mid \ldots \omega_{m}\right]+\sum_{i=1}^{m-1}\left[\omega_{1}|\ldots| \omega_{i-1}\left|\omega_{i} \wedge \omega_{i+1}\right| \ldots \mid \omega_{m}\right]$.

Def.: A \mathbb{Q}-linear combination of tensor products

$$
\xi=\sum_{l=0}^{m} \sum_{i_{\mathbf{1}}, \ldots, \boldsymbol{i}_{l}} c_{i_{\mathbf{1}}}, \ldots, i_{l}\left[\omega_{i_{\mathbf{1}}}|\ldots| \omega_{i_{l}}\right], c_{\boldsymbol{i}_{1}}, \ldots, i_{\boldsymbol{l}} \in \mathbb{Q}
$$

is called integrable word if

$$
D(\xi)=0
$$

Consider the integration map

$$
\sum_{l=0}^{m} \sum_{i_{1}, \ldots, i_{l}} c_{i_{1}}, \ldots, i_{l}\left[\omega_{i_{1}}|\ldots| \omega_{i_{l}}\right] \mapsto \sum_{l=0}^{m} \sum_{i_{1}, \ldots, i_{l}} c_{i_{1}}, \ldots, i_{l} \int_{\gamma} \omega_{i_{1}} \ldots \omega_{i_{l}}
$$

Theorem (Chen '77): Under certain conditions on Ω this map is an isomorphism from integrable words to homotopy invariant iterated integrals.
(also see Lemma 1.1.3 of Zhao's lecture)

Our class of homotopy invariant functions:

- Construct the integrable words of 1-forms in Ω_{n}.
(for an explicit construction see CB, Brown ' 12
and cf. Duhr, Gangl, Rhodes '11, Goncharov et al '10)
- By the integration map obtain the set of multiple polylogarithms in several variables $\mathcal{B}\left(\Omega_{n}\right)$.

Properties of $\mathcal{B}\left(\Omega_{n}\right)$ (Brown '05):

- They are well-defined functions of n variables, corresponding to end-points of paths.
- On these functions, functional relations are algebraic identities.
- They can be decomposed to an explicit basis.
- $\mathcal{B}\left(\Omega_{n}\right)$ is closed under taking primitives.
- Let \mathcal{Z} be the \mathbb{Q}-vector space of multiple zeta values. The limits at 0 and 1 of functions in $\mathcal{B}\left(\Omega_{n}\right)$ are \mathcal{Z}-linear combinations of elements in $\mathcal{B}\left(\Omega_{n-1}\right)$.

Consequence:

Let F_{n} be the vector space of rational functions with denominators in $\left\{t_{1}, \ldots, t_{n}, \prod_{a \leq i \leq b} t_{i}-1\right\}, 1 \leq a \leq b \leq n$.

Consider integrals of the type MPL

$$
\int_{0}^{1} d t_{n} \sum_{j} f_{j} \beta_{j} \text { with } f_{j} \in F_{n}, \beta_{j} \in \mathcal{B}\left(\Omega_{n}\right)
$$

We can compute such integrals. The results are \mathcal{Z}-linear combinations of elements in $\mathcal{B}\left(\Omega_{n-1}\right)$, multiplied by elements in F_{n-1}.

Concept: Map Feynman integrals to integrals of this type and evaluate them.

When is this possible?

Scalar Feynman integrals

For a generic Feynman graph G with N edges and loop-number (first Betti number) L we consider the scalar Feynman integral

$$
I(\Lambda)=\int \prod_{i=1}^{L} \frac{d^{D} k_{i}}{i \pi^{D / 2}} \prod_{j=1}^{N} \frac{1}{\left(-q_{j}^{2}+m_{j}^{2}\right)^{\nu_{j}}}, \quad N, L, \nu_{j} \in \mathbb{Z}, D \in \mathbb{C}
$$

Λ : external parameters, i.e. kinematical invariants and masses $m_{j} ; q_{j}$: momenta
Using the "Feynman trick" we can re-write this as

$$
\begin{gathered}
I(\Lambda)=\frac{\Gamma(\nu-L D / 2)}{\prod_{j=1}^{N} \Gamma\left(\nu_{j}\right)} \int_{0}^{\infty} \cdots \int_{0}^{\infty}\left(\prod_{i=1}^{N} d x_{i} x_{i}^{\nu_{i}-1}\right) \delta\left(1-\sum_{i=1}^{N} x_{i}\right) \frac{\mathcal{U}^{\nu-(L+1) D / 2}}{(\mathcal{F}(\Lambda))^{\nu-L D / 2}}, \\
\text { where } \nu=\sum_{j=1}^{N} \nu_{j}, \epsilon=(4-D) / 2 .
\end{gathered}
$$

\mathcal{U} and \mathcal{F} are the first and the second Symanzik polynomial.

Labelling the edges of G with Feynman parameters x_{1}, \ldots, x_{N}, we obtain the Symanzik polynomials as:

$$
\begin{aligned}
\mathcal{U} & =\sum_{\text {spanning trees } T \text { of } G \text { edges } \notin \boldsymbol{T}} \prod_{i} \\
\mathcal{F}_{0} & \left.=-\sum_{\text {spanning }} \sum_{2 \text {-forests }}{\left(T_{1}, T_{2}\right)} \prod_{\text {edges } \notin\left(\boldsymbol{T}_{1}, T_{2}\right)} x_{i}\right)\left(\sum_{\text {edges } \notin\left(T_{1}, T_{2}\right)} q_{i}\right)^{2}, \\
\mathcal{F} & =\mathcal{F}_{0}+\mathcal{U} \sum_{i=1}^{N} x_{i} m_{i}^{2} .
\end{aligned}
$$

Assumption: We are interested in integrands with \mathcal{U} and/or \mathcal{F} in the denominator and arguments of polylogs:

$$
\frac{\text { (multiple) polylogs of }\{\mathcal{U}, \mathcal{F}\}}{\{\mathcal{U}, \mathcal{F}\}}
$$

i.e. a Feynman integral which is finite from the beginning or appropriately renormalized (see Kreimer's talk)

Approach: Try to integrate out all Feynman parameters:

- After integration over x_{i}, consider the set of polynomials in the denominator and in arguments of (possible) multiple polylogs in the integrand. Condition: If there is a next Feynman parameter x_{j} in which all of these polynomials are linear, we can continue.
- Map the integral over x_{j} to an integral over t_{n} of the type MPL and integrate over t_{n}.

Alternatively: Integrate over x_{j} directly, using an appropriate class of iterated integrals.
(see recent work by E. Panzer, C. Duhr, F. Wissbrock, ...)

Question: For which polynomials (i.e. which graph) does this approach succeed?

Linear reduction algorithm (Brown '08)

- If the polynomials $S=\left\{f_{1}, \ldots, f_{n}\right\}$ are linear in a Feynman parameter $x_{r_{1}}$, consider:

$$
f_{i}=g_{i} x_{r_{1}}+h_{i}, g_{i}=\frac{\partial f_{i}}{x_{r_{1}}}, h_{i}=\left.f_{i}\right|_{x_{r_{1}}=0}
$$

- $S_{\left(r_{1}\right)}=$ irreducible factors of $\left\{g_{i}\right\}_{1 \leq i \leq n},\left\{h_{i}\right\}_{1 \leq i \leq n},\left\{h_{i} g_{j}-g_{i} h_{j}\right\}_{1 \leq i<j \leq n}$
- iterate for a sequence $\left(x_{r_{1}}, x_{r_{2}}, \ldots, x_{r_{n}}\right) \Rightarrow S_{\left(r_{1}\right)}, S_{\left(r_{1}, r_{2}\right)}, \ldots, S_{\left(r_{1}, \ldots, r_{n}\right)}$
- take intersections:

$$
\begin{aligned}
S_{\left[r_{1}, r_{2}\right]} & =S_{\left(r_{1}, r_{2}\right)} \cap S_{\left(r_{2}, r_{1}\right)} \\
S_{\left[r_{1}, r_{2}, \ldots, r_{k}\right]} & =\cap_{1 \leq i \leq k} S_{\left[r_{1}, \ldots, r_{i}, \ldots, r_{k}\right]\left(r_{i}\right)}, k>3 \\
x_{r_{1}}, x_{r_{2}}, \ldots, x_{r_{n}} & \Rightarrow S_{\left(r_{1}\right)}, S_{\left[r_{1}, r_{2}\right]}, \ldots, S_{\left[r_{1}, \ldots, r_{n}\right]}
\end{aligned}
$$

Def.: A Feynman graph G is called linearly reducible, if the set $\left\{\mathcal{U}_{G}, \mathcal{F}_{G}\right\}$ is linearly reducible, i.e. there is a $\left(x_{r_{1}}, x_{r_{2}}, \ldots, x_{r_{n}}\right)$ such that for all $1 \leq k \leq n$ every polynomial in $S_{\left[r_{1}, \ldots, r_{k}\right]}$ is linear in $x_{r_{k+1}}$.

For e an edge of G consider the deletion ($G \backslash e$) and contraction ($G / / e$) of e

The deletion and contraction of different edges is commutative.
\Rightarrow If C, D are disjoint sets of edges of G then $G \backslash D / / C$ is a unique graph. Any such graph is called minor of G.

Def.: A set \mathcal{G} of graphs is called minor-closed if for each $G \in \mathcal{G}$ all minors belong to \mathcal{G} as well.

Example: The set of all planar graphs is minor-closed.

Let \mathcal{H} be a finite set of graphs.
Define $\mathcal{G}_{\mathcal{H}}$ to be the set of graphs whose minors do not belong to \mathcal{H}.
Then the graphs in \mathcal{H} are called forbidden minors of $\mathcal{G}_{\mathcal{H}}$. The set $\mathcal{G}_{\mathcal{H}}$ is minor-closed.
Theorem (Robertson and Seymour): Any minor-closed set of graphs can be defined by a finite set of forbidden minors.

Example:

The set of planar graphs is the set of all graphs which have neither K_{5} nor $K_{3,3}$ as a minor. (Wagner's theorem)

Theorem (Brown '09, CB and Lüders '13):
The set of linearly reducible Feynman graphs is minor-closed.

We should search for the forbidden minors!

A first case study (with M. Lüders):

- Let Λ be the set of massless Feynman graphs with four on-shell legs. (On-shell condition: $\left.p_{i}^{2}=0, i=1, \ldots, 4\right)$
- At two loops we find all graphs to be linearly reducible.
- At three loops we find first forbidden minors.
- Four loops are running on our computers and confirm the forbidden three-loop minors so far.

Part 2:

The sunrise graph - a case beyond multiple polylogarithms
Consider the sunrise graph with arbitrary masses:

In $D=2$ dimensions we obtain the finite Feynman integral

$$
S_{D=2}(t)=\int_{\sigma} \frac{\omega}{\mathcal{F}_{G}},
$$

with

$$
\omega=x_{1} d x_{2} \wedge d x_{3}+x_{2} d x_{3} \wedge d x_{1}+x_{3} d x_{1} \wedge d x_{2}
$$

$$
\begin{gathered}
\mathcal{F}_{G}\left(t, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right)=-x_{1} x_{2} x_{3} t+\left(x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}\right)\left(x_{1} m_{1}^{2}+x_{2} m_{2}^{2}+x_{3} m_{3}^{2}\right), t=p^{2}, \\
\sigma=\left\{\left[x_{1}: x_{2}: x_{3}\right] \in \mathbb{P}^{2} \mid x_{i} \geq 0, i=1,2,3\right\}
\end{gathered}
$$

Simple observation: As \mathcal{F}_{G} is not linear in any x_{i}, the graph is not linearly reducible.
(Incomplete) history of sunrises:
Equal mass case:

- Broadhurst, Fleischer, Tarasov (1993): result with hypergeometric functions
- Groote, Pivovarov (2000): Cutkosky rules \Rightarrow imaginary part expressed by elliptic integrals
- Laporta, Remiddi (2004): solving a second-order differential equation \Rightarrow result by integrals over elliptic integrals
- Bloch, Vanhove (in progress): a new result involving the elliptic dilogarithm (see talks by Broadhurst and Kerr)

Arbitrary mass case:

- Berends, Buza, Böhm, Scharf (1994): result with Lauricella functions
- Caffo, Czyz, Laporta, Remiddi (1998): system of four first-order differential equations (and numerical solutions)
- Groote, Körner, Pivovarov (2005): integral representations involving Bessel functions
- Müller-Stach, Weinzierl, Zayadeh (2012): one second-order differential equation

Our goal: Solve the new differential equation (as Laporta and Remiddi did for equal masses) and obtain a result involving elliptic integrals

A result for D dimensions is known from Berends, Buza, Böhm and Scharf (1994): $S_{D}(t)=$
$(-t)^{D-3}\left(\frac{\Gamma(3-D) \Gamma\left(\frac{D}{2}-1\right)^{3}}{\Gamma\left(\frac{3}{2} D-3\right)} F_{C}\left(3-D, 4-\frac{3}{2} D ; 2-\frac{D}{2}, 2-\frac{D}{2}, 2-\frac{D}{2} ; \frac{m_{1}^{2}}{t}, \frac{m_{2}^{2}}{t}, \frac{m_{3}^{2}}{t}\right)\right.$
$\frac{\Gamma\left(2-\frac{D}{2}\right) \Gamma\left(1-\frac{D}{2}\right) \Gamma\left(\frac{D}{2}-1\right)^{2}}{\Gamma(D-2)}\left(F_{C}\left(3-D, 2-\frac{D}{2} ; \frac{D}{2}, 2-\frac{D}{2}, 2-\frac{D}{2} ; \frac{m_{1}^{2}}{t}, \frac{m_{2}^{2}}{t}, \frac{m_{3}^{2}}{t}\right)\left(-\frac{m_{1}^{2}}{t}\right)^{\frac{D}{2}-1}\right.$
$+F_{C}\left(3-D, 2-\frac{D}{2} ; 2-\frac{D}{2}, \frac{D}{2}, 2-\frac{D}{2} ; \frac{m_{1}^{2}}{t}, \frac{m_{2}^{2}}{t}, \frac{m_{3}^{2}}{t}\right)\left(-\frac{m_{2}^{2}}{t}\right)^{\frac{D}{2}-1}$
$\left.+F_{C}\left(3-D, 2-\frac{D}{2} ; 2-\frac{D}{2}, 2-\frac{D}{2}, \frac{D}{2} ; \frac{m_{1}^{2}}{t}, \frac{m_{2}^{2}}{t}, \frac{m_{3}^{2}}{t}\right)\left(-\frac{m_{3}^{2}}{t}\right)^{\frac{D}{2}-1}\right)$
$+\Gamma\left(1-\frac{D}{2}\right)^{2}\left(F_{C}\left(1,2-\frac{D}{2} ; \frac{D}{2}, \frac{D}{2}, 2-\frac{D}{2} ; \frac{m_{1}^{2}}{t}, \frac{m_{2}^{2}}{t}, \frac{m_{3}^{2}}{t}\right)\left(\frac{m_{1}^{2} m_{2}^{2}}{t^{2}}\right)^{\frac{D}{2}-1}\right.$
$+F_{C}\left(1,2-\frac{D}{2} ; \frac{D}{2}, 2-\frac{D}{2}, \frac{D}{2} ; \frac{m_{1}^{2}}{t}, \frac{m_{2}^{2}}{t}, \frac{m_{3}^{2}}{t}\right)\left(\frac{m_{1}^{2} m_{3}^{2}}{t^{2}}\right)^{\frac{D}{2}-1}$
$\left.\left.+F_{C}\left(1,2-\frac{D}{2} ; 2-\frac{D}{2}, \frac{D}{2}, \frac{D}{2} ; \frac{m_{1}^{2}}{t}, \frac{m_{2}^{2}}{t}, \frac{m_{3}^{2}}{t}\right)\left(\frac{m_{2}^{2} m_{3}^{2}}{t^{2}}\right)^{\frac{D}{2}-1}\right)\right)$
with the Lauricella function
$F_{C}\left(a_{1}, a_{2} ; b_{1}, b_{2}, b_{3} ; x_{1}, x_{2}, x_{3}\right)=\sum_{j_{1}=0}^{\infty} \sum_{j_{2}=0}^{\infty} \sum_{j_{3}=0}^{\infty} \frac{\left.\left.\left(a_{1}\right)\right)_{j_{1}+j_{2}+j_{3}}\left(a_{2}\right)\right)_{j_{1}+j_{2}+j_{3}}}{\left(b_{1}\right)_{j_{1}}\left(b_{2}\right) j_{j_{2}}\left(b_{3}\right) j_{j_{3}}} \frac{x_{1} x_{2}^{j_{2}} x_{3}^{j_{3}}}{j_{1}!j_{2}!j_{3}!}$
and the Pochhammer symbol $(a)_{n}=\frac{\Gamma(a+n)}{\Gamma(a)}$

Using Euler-Zagier sums $Z_{1}(n)=\sum_{j=1}^{n} \frac{1}{j}, Z_{11}(n)=\sum_{j=1}^{n} \frac{1}{j} Z_{1}(j-1)$ we can expand this result in $D=2$ and obtain:

$$
\begin{aligned}
& S_{D=2}(t)=-\frac{1}{t} \sum_{j_{1}=0}^{\infty} \sum_{j_{2}=0}^{\infty} \sum_{j_{3}=0}^{\infty}\left(\frac{j_{123}!}{j_{1}!j_{2}!j_{3}!}\right)^{2}\left(\frac{m_{1}^{2}}{t}\right)^{j_{1}}\left(\frac{m_{2}^{2}}{t}\right)^{j_{2}}\left(\frac{m_{3}^{2}}{t}\right)^{j_{3}} \\
& \left(12 Z_{11}\left(j_{123}\right)+6 Z_{1}\left(j_{123}\right) Z_{1}\left(j_{123}\right)-8 Z_{1}\left(j_{123}\right)\left(Z_{1}\left(j_{1}\right)+Z_{1}\left(j_{2}\right)+Z_{1}\left(j_{3}\right)\right)\right. \\
& 4\left(Z_{1}\left(j_{1}\right) Z_{1}\left(j_{2}\right)+Z_{1}\left(j_{2}\right) Z_{1}\left(j_{3}\right)+Z_{1}\left(j_{3}\right) Z_{1}\left(j_{1}\right)\right)+ \\
& 2\left(2 Z_{1}\left(j_{123}\right)-Z_{1}\left(j_{2}\right)-Z_{1}\left(j_{3}\right)\right) \ln \left(-\frac{m_{1}^{2}}{t}\right)+2\left(2 Z_{1}\left(j_{123}\right)-Z_{1}\left(j_{3}\right)-Z_{1}\left(j_{1}\right)\right) \ln \left(-\frac{m_{2}^{2}}{t}\right) \\
& +2\left(2 Z_{1}\left(j_{123}\right)-Z_{1}\left(j_{1}\right)-Z_{1}\left(j_{2}\right)\right) \ln \left(-\frac{m_{3}^{2}}{t}\right) \\
& \left.+\ln \left(-\frac{m_{1}^{2}}{t}\right) \ln \left(-\frac{m_{2}^{2}}{t}\right)+\ln \left(-\frac{m_{2}^{2}}{t}\right) \ln \left(-\frac{m_{3}^{2}}{t}\right)+\ln \left(-\frac{m_{1}^{2}}{t}\right) \ln \left(-\frac{m_{3}^{2}}{t}\right)\right)
\end{aligned}
$$

We obtain a five-fold nested sum.
Can we obtain a result avoiding multiple nested sums?

Start from the second order differential equation (Müller-Stach, Weinzierl, Zayadeh '12):

$$
\left(p_{0}(t) \frac{d^{2}}{d t^{2}}+p_{1}(t) \frac{d}{d t}+p_{2}(t)\right) S(t)=p_{3}(t)
$$

$p_{0}, p_{1}, p_{2}, p_{3}$ are polynomials in t (of degrees $7,6,5,4$) and in $m_{1}^{2}, m_{2}^{2}, m_{3}^{2}$ and p_{3} involves $\ln \left(\frac{m_{i}^{2}}{\mu^{2}}\right)$
Ansatz for the solution:

$$
S(t)=C_{1} \psi_{1}(t)+C_{2} \psi_{2}(t)+\int_{0}^{t} d t_{1} \frac{p_{3}\left(t_{1}\right)}{p_{0}\left(t_{1}\right) W\left(t_{1}\right)}\left(-\psi_{1}(t) \psi_{2}\left(t_{1}\right)+\psi_{2}(t) \psi_{1}\left(t_{1}\right)\right)
$$

with the solutions of the homogeneous equation ψ_{1}, ψ_{2}, constants C_{1}, C_{2},
Wronski determinant $W(t)=\psi_{1}(t) \frac{d}{d t} \psi_{2}(t)-\psi_{2}(t) \frac{d}{d t} \psi_{1}(t)$

We will use

- complete elliptic integral of the first kind:

$$
K(k)=\int_{0}^{1} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}
$$

- complete elliptic integral of the second kind:

$$
E(k)=\int_{0}^{1} \frac{\sqrt{1-k^{2} x^{2}}}{\sqrt{1-x^{2}}} d x
$$

- the moduli $k(t), k^{\prime}(t)$ satisfy $k(t)^{2}+k^{\prime}(t)^{2}=1$

Introduce the notation

$$
x_{1}=\left(m_{1}-m_{2}\right)^{2}, x_{2}=\left(m_{3}-\sqrt{t}\right)^{2}, x_{3}=\left(m_{3}+\sqrt{t}\right)^{2}, x_{4}=\left(m_{1}+m_{2}\right)^{2}
$$

Consider the auxiliary elliptic curve given by the equation

$$
y^{2}=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)
$$

By the associated holomorphic 1-form $d x / y$ one obtains the period integrals

$$
\begin{gathered}
\psi_{1}(t)=2 \int_{x_{2}}^{x_{3}} \frac{d x}{y}=\frac{4}{\xi(t)} K(k(t)), \\
\psi_{2}(t)=2 \int_{x_{4}}^{x_{3}} \frac{d x}{y}=\frac{4 i}{\xi(t)} K\left(k^{\prime}(t)\right) \\
\text { with } \xi(t)=\sqrt{\left(x_{3}-x_{1}\right)\left(x_{4}-x_{2}\right)}, \\
k(t)=\sqrt{\frac{\left(x_{3}-x_{2}\right)\left(x_{4}-x_{1}\right)}{\left(x_{3}-x_{1}\right)\left(x_{4}-x_{2}\right)}}, k^{\prime}(t)=\sqrt{\frac{\left(x_{2}-x_{1}\right)\left(x_{4}-x_{3}\right)}{\left(x_{3}-x_{1}\right)\left(x_{4}-x_{2}\right)}}, k(t)^{2}+k^{\prime}(t)^{2}=1
\end{gathered}
$$

$\psi_{1}(t)$ and $\psi_{2}(t)$ solve the homogeneous differential equation for $S(t)$.

Furthermore, from integrating over $\frac{x d x}{y}$ we obtain

$$
\begin{gathered}
\phi_{1}(t)=\frac{4}{\xi(t)}(K(k(t))-E(k(t))) \\
\phi_{2}(t)=\frac{4 i}{\xi(t)} E\left(k^{\prime}(t)\right)
\end{gathered}
$$

The period matrix of the elliptic curve is

$$
\left(\begin{array}{ll}
\psi_{1}(t) & \psi_{2}(t) \\
\phi_{1}(t) & \phi_{2}(t)
\end{array}\right)
$$

and we have the Legendre relation

$$
\psi_{1}(t) \phi_{2}(t)-\psi_{2}(t) \phi_{1}(t)=\frac{8 \pi i}{\xi(t)} .
$$

These are appropriate functions to express the full solution in a compact way.

Full solution (Adams, CB, Weinzierl '13):

$$
S(t)=\frac{1}{\pi}\left(\sum_{i=1}^{3} \mathrm{Cl}_{2}\left(\alpha_{i}\right)\right) \psi_{1}(t)+\frac{1}{i \pi} \int_{0}^{t} d t_{1}\left(\eta_{1}\left(t_{1}\right)-\frac{b_{1} t_{1}-b_{0}}{3\left(x_{2}-x_{1}\right)\left(x_{4}-x_{3}\right)}\left(\eta_{2}\left(t_{1}\right)-\eta_{1}\left(t_{1}\right)\right)\right)
$$

where

$$
\begin{aligned}
& \eta_{1}\left(t_{1}\right)=\psi_{2}(t) \psi_{1}\left(t_{1}\right)-\psi_{1}(t) \psi_{2}\left(t_{1}\right) \\
& \eta_{2}\left(t_{1}\right)=\psi_{2}(t) \phi_{1}\left(t_{1}\right)-\psi_{1}(t) \phi_{2}\left(t_{1}\right)
\end{aligned}
$$

Clausen function: $\mathrm{Cl}_{2}(x)=\frac{1}{2 i}\left(\operatorname{Li}_{2}\left(e^{i x}\right)-\operatorname{Li}_{2}\left(e^{-i x}\right)\right)$
$\alpha_{i}=2 \arctan \left(\frac{\sqrt{\Delta}}{\delta_{i}}\right), \Delta, \delta_{i}$: polynomials in m_{1}, m_{2}, m_{3} of degrees 4 and 2 resp.
$b_{i}=d_{i}\left(m_{1}, m_{2}, m_{3}\right) \ln \left(m_{1}^{2}\right)+d_{i}\left(m_{2}, m_{3}, m_{1}\right) \ln \left(m_{2}^{2}\right)+d_{i}\left(m_{3}, m_{1}, m_{2}\right) \ln \left(m_{3}^{2}\right)$,
$d_{1}\left(m_{1}, m_{2}, m_{3}\right)=2 m_{1}^{2}-m_{2}^{2}-m_{3}^{2}$,
$d_{0}\left(m_{1}, m_{2}, m_{3}\right)=2 m_{1}^{4}-m_{2}^{4}-m_{3}^{4}-m_{1}^{2} m_{2}^{2}-m_{1}^{2} m_{3}^{2}+2 m_{2}^{2} m_{3}^{2}$

Conclusions:

- Multiple polylogarithms in several variables are homotopy invariant iterated integrals with particularly good properties. We want to use them to iteratively integrate out Feynman parameters.
- To decide whether the approach can succeed there is a criterion of linear reducibility on the graphs. The class of linearly reducible graphs is minor-closed. This allows for a convenient classification by forbidden minors.
- The sunrise integral with arbitrary masses is a case where we can express the result by integrals over elliptic integrals. This result can be built up from the period integrals of an (auxiliary) elliptic curve.

