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Outline:

Part 1: Multiple polylogarithms and Feynman parameters

® Multiple polylogarithms in several variables (with F. Brown)
® The criterion of linear reducibility

® |[ntegration over Feynman parameters

® Minor-closedness (with M. Liiders)

Part 2: A case “beyond multiple polylogs” (with L. Adams and S. Weinzierl)

® The two-loop sunrise graph with arbitrary masses
® A second order differential equation

® A solution in terms of elliptic integrals



Part 1:

Multiple polylogarithms in several variables

Let
® k be a field (either R or C),
® M a smooth manifold over k,
® ~: [0, 1] — M a smooth path on M,
® 1, ..., wy smooth differential 1-forms on M,
® ~*(w;) = f;(t)dt the pull-back of w; to [0, 1]
Def.: The iterated integral of wi, ..., wn along ~ is

/w,,...wl =/ fn(tn)dtn...fl(tl)dtl.
v 0<t1<...<tp<1

We use the term iterated integral for k-linear combinations of such integrals.



We obtain different classes of functions by choosing different finite sets of 1-forms Q.

dt _dt _ dt — _dt
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(Poincare, Kummer 1840, Lappo-Danilevsky 1911)

including harmonic polylogarithms (Remiddi, Vermaseren 1999), two-dimensional
harmonic polylogarithms (Gehrmann, Remiddi '01)



Let Q, be the set of differential 1-forms 4

with f € {tl, o oy Tlacicp i — 1}, for1<a<b<n:

o, o dn ¢ (sicst)

ey , where 1 <a<b<n
t1 tn Tlacicnti—

Examples:

Q= dt—tll, tftjl} (— multiple polylogs in one variable)

Q, = dty dt; dty dta tydta+tadty
27\ a2 u—1’ -1’ tita—1



From this 2, we want to construct iterated integrals which are homotopy invariant, i.e.

/ Wp...w1 :/ Wp...w1 for homotopic paths v1,72.-
" V2

Consider tensor products w1 ® ... ® wm = [wi]...|wm] over Q.

Define an operator D by

m m—1
D ([wil.Jwm]) =D [wi].-|wj—1|dwilwit1]...wm] + D [wil..Jwi—1]wi A wiga].-|wm]-
i=1 i=1

Def.: A Q—linear combination of tensor products

§= Z Z Cl;_ Hul’[wll‘ |wl,] Cll,.”,l'l €Q

1=0 iy, .

is called integrable word if

D(¢) = 0.



Consider the integration map

m m
DD Cglwnledwl = Yo Y C;I,A.A,;,/w,'l..iwi,
vy

1=0 i1, ... i 1=0 i1, ..., iy

Theorem (Chen '77): Under certain conditions on Q this map is an isomorphism from

integrable words to homotopy invariant iterated integrals.

(also see Lemma 1.1.3 of Zhao's lecture)

Our class of homotopy invariant functions:

® Construct the integrable words of 1-forms in Q.

(for an explicit construction see CB, Brown '12
and cf. Duhr, Gangl, Rhodes '11, Goncharov et al "10)

® By the integration map obtain the set of multiple polylogarithms in several
variables B(Q,).



Properties of B(2,) (Brown '05):

® They are well-defined functions of n variables, corresponding to end-points of

paths.

® On these functions, functional relations are algebraic identities.

® They can be decomposed to an explicit basis.

® 3(€n) is closed under taking primitives.

® |et Z be the Q-vector space of multiple zeta values. The limits at 0 and 1 of
functions in B(2,) are Z-linear combinations of elements in B(Q,-1).



Consequence:

Let F, be the vector space of rational functions with denominators in
{1 tn Tlacicpti —1},1<a<b<n

Consider integrals of the type MPL

1
/ dta > £:5; with f; € Fn, f; € B(Qa).
0 -
J

We can compute such integrals. The results are Z-linear combinations of elements in
B(Q2n—1), multiplied by elements in F,_;.

Concept: Map Feynman integrals to integrals of this type and evaluate them.

When is this possible?



Scalar Feynman integrals
For a generic Feynman graph G with N edges and loop-number (first Betti number) L
we consider the scalar Feynman integral

dPk; 1
H , N,L,yje€Z DeC
/ ID/2. 5 21/]7 y &=y Fy ) k)
4 1( qj+mj>

A : external parameters, i.e. kinematical invariants and masses m;; g; : momenta

Using the “Feynman trick” we can re-write this as

r(v—LD/2) [ oo (N vl yv—(L+1)D/2
I(/\) ( / / / <HdX;xl.’ ) <1—ZX,> W7
i=1

where v = N

-1V, €= (4—D)/2.

U and F are the first and the second Symanzik polynomial.



Labelling the edges of G with Feynman parameters xy, ..., xy, we obtain the

Symanzik polynomials as:

u = > [T =«

spanning trees T of G edges ¢T

Fo = - Z H Xj Z qi

spanning 2-forests (Ty, T2) \edges ¢(T1, T2) edges ¢(T1, T2)
N
F = Fo+U E x;m,?.

i=1



Assumption: We are interested in integrands with ¢/ and/or F in the denominator
and arguments of polylogs:
(multiple) polylogs of {U/, F}
{u, 7}

i.e. a Feynman integral which is finite from the beginning or appropriately

renormalized (see Kreimer's talk)

Approach: Try to integrate out all Feynman parameters:

® After integration over x;, consider the set of polynomials in the denominator

and in arguments of (possible) multiple polylogs in the integrand.
Condition: If there is a next Feynman parameter x; in which all of these
polynomials are linear, we can continue.

® Map the integral over x; to an integral over t, of the type MPL and integrate
over tn.
Alternatively: Integrate over x; directly, using an appropriate class of iterated

integrals.
(see recent work by E. Panzer, C. Duhr, F. Wissbrock, ...)

Question: For which polynomials (i.e. which graph) does this approach succeed?



Linear reduction algorithm (Brown '08)
® |f the polynomials S = {fi, ..., fa} are linear in a Feynman parameter x,,,
consider: of
fi = gixn + hi, gi = 7'7 hi = filxy o

ry
® S(,,) = irreducible factors of {g;i}1<i<n, {hit1<i<n, {higj — gihj}1§i<j§n
® iterate for a sequence (Xry, Xra; s Xrn )= S(r1)> S(ry,r2)s =+ S(ra, ..., rn)

® take intersections:

Sir, r2] S(ra,r2) N S(r2, r1)
Stn,raynd = M1<i<kS[ry, ., o nd(r)> K>3
Xrys Xrgs «ooy Xrg = S(r1)7 S[rl,rz]v sy S.[rl,m,r,,]

Def.: A Feynman graph G is called linearly reducible, if the set {Ug, Fg} is linearly
reducible, i.e. there is @ (Xry, Xra, ..., Xr,) such that for all 1 < k < n every

polynomial in S, nl is linear in xp .



For e an edge of G consider the deletion (G\e) and contraction (G//e) of e
The deletion and contraction of different edges is commutative.

=If C, D are disjoint sets of edges of G then G\D//C is a unique graph.
Any such graph is called minor of G.

Def.: A set G of graphs is called minor-closed if for each G € G all minors belong to G
as well.

Example: The set of all planar graphs is minor-closed.
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Let H be a finite set of graphs.
Define Gy to be the set of graphs whose minors do not belong to H.
Then the graphs in # are called forbidden minors of G3;. The set Gy is minor-closed.

Theorem (Robertson and Seymour): Any minor-closed set of graphs can be defined by
a finite set of forbidden minors.

Example:
The set of planar graphs is the set of all graphs which have neither Ks nor K3 3 as a
minor. (Wagner's theorem)



Theorem (Brown '09, CB and Liiders '13):
The set of linearly reducible Feynman graphs is minor-closed.

We should search for the forbidden minors!

A first case study (with M. Liiders):
® Let A be the set of massless Feynman graphs with four on-shell legs. (On-shell
condition: p? =0, i =1, ..., 4)
® At two loops we find all graphs to be linearly reducible.
® At three loops we find first forbidden minors.

® Four loops are running on our computers and confirm the forbidden three-loop
minors so far.



Part 2:
The sunrise graph - a case beyond multiple polylogarithms
Consider the sunrise graph with arbitrary masses:

In D = 2 dimensions we obtain the finite Feynman integral
w
Sp=2(t) = / —,
o ~FG
with

w = x1dx2 N dx3 + x2dxz A dx1 + xz3dx1 A dxa

2 2 2 2 2 2 2
Fe (t, mi, m3, m3) = —xpxexat+(xixe+xexs+x1x3)(xami +xems +x3m3), t = p°,

o={x:x:x]€P?x>0,i=1,2 3}

Simple observation: As F¢ is not linear in any x;, the graph is not linearly reducible.



(Incomplete) history of sunrises:
Equal mass case:
® Broadhurst, Fleischer, Tarasov (1993): result with hypergeometric functions
® Groote, Pivovarov (2000): Cutkosky rules = imaginary part expressed by elliptic
integrals

® |aporta, Remiddi (2004): solving a second-order differential equation = result
by integrals over elliptic integrals

® Bloch, Vanhove (in progress): a new result involving the elliptic dilogarithm (see
talks by Broadhurst and Kerr)

Arbitrary mass case:

® Berends, Buza, Bohm, Scharf (1994): result with Lauricella functions

® Caffo, Czyz, Laporta, Remiddi (1998): system of four first-order differential
equations (and numerical solutions)

® Groote, Kdrner, Pivovarov (2005): integral representations involving Bessel
functions

® Miiller-Stach, Weinzierl, Zayadeh (2012): one second-order differential equation

Our goal: Solve the new differential equation (as Laporta and Remiddi did for equal
masses) and obtain a result involving elliptic integrals



A result for D dimensions is known from Berends, Buza, B6hm and Scharf (1994)
Sp(t) =

D-3 (3-D)r(3 ) 3p-2 D D 2 D. m m; m;3
( l') <7F(3C ) FC(3 D, 4 2D, 274 2 **Z,leTzT
b _,
(2— ra-3)r s _1) D. D D D. m m; m3 m
NCE) Fc(3-D,2-%; ;2 — 7:2_,’717T7T _TI

-1
2 2 2 2 2
L. D D _b.m m my my my
+r(1 (FC(172 212’272 2' ¢ttt (tz)
2 2 2 2 2 21
2
_D.D 5_D D.m m m3 mym3
+FC(1 2 2027 303 0 T x (:2

D
b_,;
2 2 2 2 2\ 2
_b.,_D D D.Mm m m mym3
+FC<172 2!2 27 2 21" ¢ ¢t t)(tz ) >>

with the Lauricella function

(31)js 1o 474 (32)js 4047 A1, d2 3
Fel(ay, an: by, b, bs: x1, X2, x3) = 5°° oo oo 1 Hia+i3\ 32 )iy Hi+iz X1T X" X3
C( 1,42, 01, P2, U3, X1, X2, 3) Z“ Ozjz 0 22j3=0 (bl)i1(b2)i2(b3)j3

Jili2ljs!

and the Pochhammer symbol (a), = r(ra(j;)")



Using Euler-Zagier sums Z1(n) =307, 1 » Zu(n) =307 7 1Z1(j — 1) we can expand
this result in D = 2 and obtain:

L \2 [ m2 i1 m2 J2 m2 i3
5D:2(t) = J1 =0 Z.lz 02./3 =0 (j].lljz?j; ) (T) (T) (T)
(12711 (j123) + 6 Z1(j123) Z1(j123) — 8Z1(j123) (Z1(j1) + Z1(j2) + Z1(j3))

4(21(1)21(2) + Z1(j2) Z1(j3) + Z1(j3) Z1 (1)) +
2(2Z1(j123) — Z1(J2) — Z1(j3)) In (_T +2(2Z1(j123) — Z1(J3) — Z1(j1)) In (—%)

+2(2Z1(j123) — Z1(7) = Z1(j2)) In <_mT§>

e (=) (<E) () () o (< Yo (-8

We obtain a five-fold nested sum.
Can we obtain a result avoiding multiple nested sums?



Start from the second order differential equation (Miiller-Stach, Weinzierl, Zayadeh '12):

(Po( )52 +p1(t) +p2(t)> 5(t) = pa(t)

Po, P1, P2, p3 are polynomials in t (of degrees 7, 6, 5, 4) and in m?, m3, m3 and p3

2
m;
2

Ansatz for the solution:

involves In <

p3(t1)

o)W (1) (=1 (t)Y2(t1) + 2(t) 1 (1))

S(t) = G (t) + Gaapa(t) + /Ot dty

with the solutions of the homogeneous equation 1, ¥2, constants Cy, Gy,

Wronski determinant W(t) = 1/11(1‘) FWa(t) — wz(t) s 1(t)



We will use

® complete elliptic integral of the first kind:

1 dx
Kk = /0 VA=) - k2x2)

® complete elliptic integral of the second kind:

1 /T~ k2x2
E(k) = - dx
(k) /0 —

® the moduli k(t), k’(t) satisfy k(£)2 + k’(t)> =1



Introduce the notation
x1 = (m— m)?, x2 =(m3 —Vt)?, x3 = (ms + V)2, xa = (m + m2)?

Consider the auxiliary elliptic curve given by the equation

¥? = (x —x1)(x = x)(x — x3)(x — x4)-

By the associated holomorphic 1-form dx/y one obtains the period integrals

*3 dx 4
wa(t) = 2/X2 = g ).

val) =2 [ % = Bk ()

with £(t) = /(x3 — x1)(xa — x2),

k(t) =/ Lazlbaza) iy — | fhemallba=xs) y)2 4 ()2 =1

(x3—x1)(xa—x2)’ TV e—xa)(xa—x2)’

¥1(t) and 2 (t) solve the homogeneous differential equation for S(t).



Furthermore, from integrating over X};ﬂ we obtain

ba(t) = % (K(k(t)) - E (K(1)))
4
¢2(t) = %E (K'(1))

The period matrix of the elliptic curve is

( Y1(t)  a(t) )
#1(t)  ¢a(t)

and we have the Legendre relation

_ 8mi

Y1(t)p2(t) — P2(t)da(t) 0

These are appropriate functions to express the full solution in a compact way.



Full solution (Adams, CB, Weinzierl '13):

S(t) = % <2012(a, >w1(t)+;/0t dty (Til(tl) TP p— 312)?:(’_ o~ (nz(tl)—m(tl))>

where

m(t1) = Ya(t)a(tr) — 1(t)a(t1)

n2(t1) = 2(t)$1(t1) — Ya(t)d2(t1)
Clausen function: Cla(x) = 2 (Liz(e™) — Lia(e=*))
a;j = 2arctan (\F) A, §; : polynomials in my, ma, m3 of degrees 4 and 2 resp.
b; = di(my, my, m3) In(ml) + d;(r2n2, msz, my) In(mg) + di(m3, my, my) In(mg),

di(my, mz, m3) = 2mf - mg — mi,

—opd 1 2 2 2 2 2 2
do(my1, ma, m3) =2my — mj —m3 — mim; — mim3 +2msmj3



Conclusions:

® Multiple polylogarithms in several variables are homotopy invariant iterated
integrals with particularly good properties. We want to use them to iteratively

integrate out Feynman parameters.

® To decide whether the approach can succeed there is a criterion of linear
reducibility on the graphs. The class of linearly reducible graphs is minor-closed.

This allows for a convenient classification by forbidden minors.

® The sunrise integral with arbitrary masses is a case where we can express the
result by integrals over elliptic integrals. This result can be built up from the
period integrals of an (auxiliary) elliptic curve.



