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Part 1: Introduction

motivations for studying amplitudes

modern methods for computation at one loop
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Obvious motivation: Large Hadron Collider

The searches at LHC for physics beyond the Standard Model
require a detailed understanding of background, especially QCD,
processes.
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Examples of signals and QCD backgrounds

Signal: An example of a Higgs boson process:

Background: An example of a QCD background process:
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Two motivations, actually

In fact, there are two important motivations:

LHC phenomenology
Quantitative estimates of QCD background: needed for
precision measurements, uncertainty estimates of NLO
calculations, and reducing renormalization scale dependence.

Reveal fascinating structure in QFT
For N = 4 SYM: hidden symmetries (integrability −→
non-perturbative solution) and new dualities (to Wilson loops
and correlators).

For N ≤ 4: connection to multivariate complex analysis and
algebraic geometry.
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The Feynman diagram prescription

In practice, the Feynman diagram
prescription produces a very large number
of terms: e.g. for the five-gluon tree-level
amplitude
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Feynman diagrams hide simplicity

Yet, the final result for five-gluon tree-level amplitude is simple,

Atree
5 (1±, 2+, 3+, 4+, 5+) = 0

Atree
5 (1−, 2−, 3+, 4+, 5+) =

i〈1 2〉4

〈1 2〉〈2 3〉〈3 4〉〈4 5〉〈5 1〉
.

This strongly suggests there should exist better methods for
computing amplitudes.

At one-loop level, unitarity has proven very successful, allowing e.g.
the calculation of qg →W + multi-jets.

This talk is about extending generalized unitarity (systematically)
to two loops.
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Integral reductions and integral basis

Feynman rules −→ numerator powers in integrals

At one loop, all such integrals can be expanded in a basis.

For example, consider the box insertion

By using the identity ` · k4 = 1
2

(
(`+ k4)2 − `2

)
, this can be

reduced to
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The modern unitarity approach (1/2)

Use integral reductions to write the one-loop amplitude as a linear
combination of basis integrals

To determine ci , apply cuts 1
(`−K)2 −→ δ

(
(`− K )2

)
to both sides.

Applying a quadruple cut [Britto, Cachazo, Feng] isolates a single box
integral:
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The modern unitarity approach (2/2)

A triple cut will leave 4− 3 = 1 free complex parameter z .
Parametrizing the loop momentum,

`µ = α1K
[µ
1 + α2K

[µ
2 + z

2〈K
[−
1 |γµ|K

[−
2 〉+ α4(z)

2 〈K
[−
2 |γµ|K

[−
1 〉

one obtains an explicit formula for the triangle coefficient [Forde]
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Part 2: From trees to two loops

maximal cuts at two loops

constructing two-loop amplitudes out of tree-level data

elliptic integrals in N = 4 SYM amplitudes
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From trees to two loops

Expand the massless 4-point two-loop amplitude in a basis, e.g.

Compute c1(ε) and c2(ε) according to

The machinery: contour integrals
∮

Γj
(· · · )

The philosophy: basis integral Ij ←→ unique Γj producing cj
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The anatomy of two-loop maximal cuts

Cutting all seven visible propagators in the double-box integral,

produces (cf. [Buchbinder, Cachazo]), setting χ ≡ t
s ,

∫
d4pd4q

7∏
i=1

1

`2
i

−→
∫
d4pd4q

7∏
i=1

δC(`2
i ) =

∮
Γ

dz

z(z + χ)
,

a contour integral in the complex plane.

Jacobian poles z = 0 and z = −χ: composite leading singularities

encircle z = 0 and z = −χ with Γ = ω1Cε(0) + ω2Cε(−χ)
−→ freeze z (“8th cut”)
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Choosing contours: die Qual der Wahl

Six inequivalent classes of solutions to on-shell constraints

4 massless external states −→ 8 independent leading singularities

How do we select contours within this variety of possibilities?
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Principle for selecting contours

To fix the contours, insist that

vanishing Feynman integrals must have vanishing heptacuts.

This ensures that

I1 = I2 =⇒ cut(I1) = cut(I2) .

Origin of terms with vanishing RD × RD integration:
reduction of Feynman diagram expansion to a basis of integrals
(including use of integration-by-parts identities).

Remarkable simplification:

4 massless external states: 22 −→ 2 double-box integrals

5 massless external states: 160 −→ 2 “turtle-box” integrals

5 massless external states: 76 −→ 1 pentagon-box integral
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Contour constraints, part 1/2

There are two classes of constraints on Γ’s:

1) Levi-Civita integrals. For example,

2) integration by parts (IBP) identities must be preserved. For
example,
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Contour constraints, part 2/2

The constraints in the case of four massless external momenta:

leaving 8− 4− 2 = 2 free winding numbers.
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Master contours: the concept

Going back to the two-loop basis expansion

and applying a heptacut one finds

Exploit free parameters −→ ∃ contours with

P1 :
(
cut(I1), cut(I2)

)
= (1, 0)

P2 :
(
cut(I1), cut(I2)

)
= (0, 1) .

We call such Pi master contours.
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Master contours: results

With four massless external states,

c1 =
iχ

8

∮
P1

dz

z(z + χ)

6∏
j=1

Atree
j (z) c2 =− i

4s12

∮
P2

dz

z(z + χ)

6∏
j=1

Atree
j (z)

With our choice of basis integrals, the Pi are
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Characterizing the on-shell solutions

There are six solutions for the heptacut loop momenta

Set kµi = λiσ
µλ̃i and classify each vertex according to

λa ∝ λb ∝ λc (MHV) −→ •
λ̃a ∝ λ̃b ∝ λ̃c (MHV) −→ ◦
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Two-loop leading singularities

heptacut solutions −→ Riemann spheres
(e.g., c4 =

∮
Cε(∞)

dz
z

∏3
j=1 A

tree
j (z))

points ∈ Si ∩ Sj −→ no notion of • or ◦ −→ resp. prop. is soft
also: Si ∩ Sj ⊂ {leading singularities}!

two-loop leading singularities −→ IR singularities of integral
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Two-loop leading vs. IR singularities

Observation: leading-singularity residues cancel between
virtual (a) and real (b) contributions to cross section

in complete analogy with the KLN theorem on IR cancelations.
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Classification of heptacut solutions

Arbitrary # of external states. Define

µi ≡

{
m if ith vertical prop. ∈ 3-pt. vertex

M if ith vertical prop. /∈ 3-pt. vertex

The solution to `2
i = 0, i = 1, . . . , 7 is

case 1 (M,M,M): 1 torus

case 2 (M,M,m) etc.: 2 CP1 with Si ←→ distrib. of •, ◦
case 3 (M,m,m) etc.: 4 CP1 with Si ←→ distrib. of •, ◦
case 4 (m,m,m): 6 CP1 with Si ←→ distrib. of •, ◦
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Uniqueness of master contours

Limits µi → m =⇒ chiral branchings: torus
µ3→m−→

Each torus-pinching: new IR-pole + new residue thm
=⇒ # of lead. sing. same in all cases

In all cases: # of master Γ’s = # of basis integrals
=⇒ all linear relations are preserved
=⇒ perfect analogy with one-loop generalized unitarity
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Symmetries and systematics of IBP constraints

The IBP constraints are invariant under flips.

Reverse logic −→ demand constraints to be
invariant under flips and π-rotations.

{M,m,m} case: choose basis, e.g. ω1,2,5,6 = 0

r
(b)
1

(
ω3 + ω4 + ω7 + ω8

)
+ r

(b)
2

(
ω9 + ω10 − ω11 − ω12

)
= 0

where, in fact, r (b)
1 = r

(b)
2 6= 0.

(m,m,m) case:

1) constraint from {M,m,m} case inherited.
2) new flip symmetry −→ new constraint:

r
(c)
1

(
ω3 + ω4

)
+ r

(c)
2

(
ω11 + ω12 − ω13 − ω14

)
= 0

as expressed in the basis ω1,2,5,6,7,8 = 0.

In fact, r (c)
1 = −r (c)

2 6= 0.
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Integrals with fewer propagators

Solution to slashed-box on-shell constraints:

On-shell constraints leave 8− 5 = 3 free complex parameters.

Multivariate residues depend on the order of integration.

Example: f (zi ) = z1

z2(a1z1+a2z2)(b1z1+b2z2) . Residues at (z1, z2) = (0, 0):

1

(2πi)2

∫
Cε(0)×Cε2 (0)

dz1dz2 f (zi ) =
1

a1b1

1

(2πi)2

∫
Cε(0)×Cε2

(
− a1

a2
z1

) dz1dz2 f (zi ) =
a2

a1(a1b2 − a2b1)
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Elliptic curves vs. polylogs

sunrise integral not expressible through polylogs
−→ neither should 10-point integral be

Analytic expression ←→ maximal cut?

Wilson-loop amplitude correspondence =⇒
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Conclusions and outlook

First steps towards fully automatized two-loop amplitudes

Integration-by-parts identities −→ reduce # of Feynman
integrals by factor of 10-100

Two-loop master contours are unique
−→ perfect analogy with one-loop unitarity

Classification of maximal-cut solutions

Maximal cuts contain vital information:

pinches/punctures −→ IR/UV divergences

branch cuts −→ non-polylogs in uncut integral

Underlying algebraic geometry −→ deeper understanding of
maximal cuts (i.e., contour constraints)
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Backup slides
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Integrals and integral bases

ideal two-loop basis: chiral integrals

evaluate 4-point chiral integrals analytically
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Maximally IR-finite basis

The two-loop integral coefficients ci have O(ε) corrections.

Important to know, as the integrals have poles in ε.

IR-finite integrals −→ O(ε) corrections not needed for amplitude

Candidates: num. insertions → 0 in collinear int. regions, e.g.

I++ ≡ I
[
[1|/̀1|2〉〈3|/̀2|4]

]
× [2 3]〈1 4〉

I+− ≡ I
[
[1|/̀1|2〉〈4|/̀2|3]

]
× [2 4]〈1 3〉

Essentially the chiral integrals of [Arkani-Hamed et al.]

I++ and I+− lin. independent −→ use in any gauge theory

Philosophy: maximally IR-finite basis
−→ minimize need for cuts in D = 4− 2ε
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Evaluation of chiral integrals (1/3)

I+± are finite −→ can be computed in D = 4

1) Feynman parametrize

I++ = −χ2

(
1 + (1 + χ)

∂

∂χ

)
I1(χ) and I+− = −(1 + χ)2

(
1 + χ

∂

∂χ

)
I1(χ)

where

I1(χ) =

∫ d3a d3b dc c δ
(

1− c −
∑

i ai −
∑

i bi
)(∑

i ai
∑

i bi + c
(∑

i ai +
∑

i bi
))−1

(
a1a3

(
c +

∑
i bi
)

+ (a1b4 + a3b6 + a2b5χ)c + b4b6
(
c +

∑
i ai
))2

2) “Projectivize”

I1(χ) = 6

∫ ∞
1

dc

∫ ∞
0

d7(a1a2a3aIb1b2b3bI)

vol(GL(1))

1

(cA2 + A.B + B2)4
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Evaluation of chiral integrals (2/3)

3) Obtain symbol

Integrate projective form one variable at the time, at the level
of the symbol.

S[I1(χ)] =
2

χ
[χ⊗ χ⊗ (1 + χ)⊗ (1 + χ)]−

2

1 + χ
[χ⊗ χ⊗ (1 + χ)⊗ χ]

4) “Integrate” symbol, using

a) I1 has transcendentality 4 (fact, not a conjecture)

b) I1 has no u-channel discontinuity

c) Regge limits:

I1(χ) →
π2

6
log2 χ+

(
4ζ(3)−

π2

3

)
logχ+O(1) as χ→ 0

I1(χ) → 6ζ(3)
logχ

χ
+O(χ−1) as χ→∞
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Evaluation of chiral integrals (3/3)

In conclusion, for the “chiral” integrals

I++ ≡ I
[
[1|/̀1|2〉〈3|/̀2|4]

]
× [2 3]〈1 4〉

I+− ≡ I
[
[1|/̀1|2〉〈4|/̀2|3]

]
× [2 4]〈1 3〉

we find the results

I++(χ) = 2H−1,−1,0,0(χ)−
π2

3
Li2(−χ)

+

(
π2

2
log(1 + χ)−

π2

3
logχ+ 2ζ(3)

)
log(1 + χ)− 6χζ(3)

I+−(χ) = 2H0,−1,0,0(χ)− π2Li2(−χ)−
π2

6
log2 χ− 4ζ(3) logχ−

π4

10
− 6(1 + χ)ζ(3)

Actual chiral integrals: transcendentality-breaking terms cancel.
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