Maximal Unitarity at Two Loops

Durham, LMS Symposium
Polylogarithms as a Bridge between Number Theory and Particle Physics

July 12, 2013
Based on 1108.1180, 1205.0801, 1208.1754
(with S. Caron-Huot, H. Johansson and D. Kosower)

Part 1: Introduction

- motivations for studying amplitudes
- modern methods for computation at one loop

Obvious motivation: Large Hadron Collider

The searches at LHC for physics beyond the Standard Model require a detailed understanding of background, especially QCD, processes.

Examples of signals and QCD backgrounds

Signal: An example of a Higgs boson process:

Background: An example of a QCD background process:

Two motivations, actually

In fact, there are two important motivations:

- LHC phenomenology

Quantitative estimates of QCD background: needed for precision measurements, uncertainty estimates of NLO calculations, and reducing renormalization scale dependence.

- Reveal fascinating structure in QFT

For $\mathcal{N}=4$ SYM: hidden symmetries (integrability \longrightarrow non-perturbative solution) and new dualities (to Wilson loops and correlators).

For $\mathcal{N} \leq 4$: connection to multivariate complex analysis and algebraic geometry.

The Feynman diagram prescription

> In practice, the Feynman diagram prescription produces a very large number of terms: e.g. for the five-gluon tree-level amplitude

Feynman diagrams hide simplicity

Yet, the final result for five-gluon tree-level amplitude is simple,

$$
\begin{aligned}
& A_{5}^{\text {tree }}\left(1^{ \pm}, 2^{+}, 3^{+}, 4^{+}, 5^{+}\right)=0 \\
& A_{5}^{\text {tree }}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}, 5^{+}\right)=\frac{i\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 51\rangle} .
\end{aligned}
$$

This strongly suggests there should exist better methods for computing amplitudes.

At one-loop level, unitarity has proven very successful, allowing e.g. the calculation of $q g \rightarrow W+$ multi-jets.

This talk is about extending generalized unitarity (systematically) to two loops.

Integral reductions and integral basis

Feynman rules \longrightarrow numerator powers in integrals
At one loop, all such integrals can be expanded in a basis.
For example, consider the box insertion

Integral reductions and integral basis

Feynman rules \longrightarrow numerator powers in integrals
At one loop, all such integrals can be expanded in a basis.
For example, consider the box insertion

By using the identity $\ell \cdot k_{4}=\frac{1}{2}\left(\left(\ell+k_{4}\right)^{2}-\ell^{2}\right)$, this can be reduced to

The modern unitarity approach (1/2)
Use integral reductions to write the one-loop amplitude as a linear combination of basis integrals

+ rational terms

The modern unitarity approach (1/2)
Use integral reductions to write the one-loop amplitude as a linear combination of basis integrals

+ rational terms
To determine c_{i}, apply cuts $\frac{1}{(\ell-K)^{2}} \longrightarrow \delta\left((\ell-K)^{2}\right)$ to both sides.

The modern unitarity approach (1/2)

Use integral reductions to write the one-loop amplitude as a linear combination of basis integrals

+ rational terms
To determine c_{i}, apply cuts $\frac{1}{(\ell-K)^{2}} \longrightarrow \delta\left((\ell-K)^{2}\right)$ to both sides. Applying a quadruple cut [Britto, Cachazo, Feng] isolates a single box integral:

The modern unitarity approach $(1 / 2)$

Use integral reductions to write the one-loop amplitude as a linear combination of basis integrals

+ rational terms
To determine c_{i}, apply cuts $\frac{1}{(\ell-K)^{2}} \longrightarrow \delta\left((\ell-K)^{2}\right)$ to both sides. Applying a quadruple cut [Britto, Cachazo, Feng] isolates a single box integral:

$$
\Longrightarrow \quad c_{1}=\frac{1}{2} \sum_{\text {kin sols }} \prod_{j=1}^{4} A_{j}^{\text {tree }}
$$

The modern unitarity approach (2/2)

A triple cut will leave 4-3=1 free complex parameter z.
Parametrizing the loop momentum,

$$
\ell^{\mu}=\alpha_{1} K_{1}^{b \mu}+\alpha_{2} K_{2}^{b \mu}+\frac{z}{2}\left\langle K_{1}^{b-}\right| \gamma^{\mu}\left|K_{2}^{b-}\right\rangle+\frac{\alpha_{4}(z)}{2}\left\langle K_{2}^{b-}\right| \gamma^{\mu}\left|K_{1}^{b-}\right\rangle
$$

one obtains an explicit formula for the triangle coefficient [Forde]

$$
\begin{equation*}
c_{\triangle}=\oint_{C(\infty)} \frac{d z}{z} \tag{z}
\end{equation*}
$$

Part 2: From trees to two loops

- maximal cuts at two loops
- constructing two-loop amplitudes out of tree-level data
- elliptic integrals in $\mathcal{N}=4$ SYM amplitudes

From trees to two loops

Expand the massless 4-point two-loop amplitude in a basis, e.g.

From trees to two loops

Expand the massless 4-point two-loop amplitude in a basis, e.g.

Compute $c_{1}(\epsilon)$ and $c_{2}(\epsilon)$ according to

Expand the massless 4-point two-loop amplitude in a basis, e.g.

Compute $c_{1}(\epsilon)$ and $c_{2}(\epsilon)$ according to

The machinery: contour integrals $\oint_{\Gamma_{j}}(\cdots)$
The philosophy: basis integral $I_{j} \longleftrightarrow$ unique Γ_{j} producing c_{j}

The anatomy of two-loop maximal cuts
Cutting all seven visible propagators in the double-box integral,

produces (cf. [Buchbinder, Cachazo]), setting $\chi \equiv \frac{t}{s}$,

$$
\int d^{4} p d^{4} q \prod_{i=1}^{7} \frac{1}{\ell_{i}^{2}} \quad \longrightarrow \int d^{4} p d^{4} q \prod_{i=1}^{7} \delta^{\mathbb{C}}\left(\ell_{i}^{2}\right)=\oint_{\Gamma} \frac{d z}{z(z+\chi)}
$$

a contour integral in the complex plane.

Cutting all seven visible propagators in the double-box integral,

produces (cf. [Buchbinder, Cachazo]), setting $\chi \equiv \frac{t}{s}$,

$$
\int d^{4} p d^{4} q \prod_{i=1}^{7} \frac{1}{\ell_{i}^{2}} \longrightarrow \int d^{4} p d^{4} q \prod_{i=1}^{7} \delta^{\mathbb{C}}\left(\ell_{i}^{2}\right)=\oint_{\Gamma} \frac{d z}{z(z+\chi)},
$$

a contour integral in the complex plane.
Jacobian poles $z=0$ and $z=-\chi$: composite leading singularities
encircle $z=0$ and $z=-\chi$ with $\Gamma=\omega_{1} C_{\epsilon}(0)+\omega_{2} C_{\epsilon}(-\chi)$
\longrightarrow freeze z (" $8^{\text {th }}$ cut")

Choosing contours: die Qual der Wahl

Six inequivalent classes of solutions to on-shell constraints

4 massless external states $\longrightarrow 8$ independent leading singularities

Choosing contours: die Qual der Wahl

Six inequivalent classes of solutions to on-shell constraints

4 massless external states $\longrightarrow 8$ independent leading singularities

How do we select contours within this variety of possibilities?

Principle for selecting contours

To fix the contours, insist that
vanishing Feynman integrals must have vanishing heptacuts.
This ensures that

$$
\mathrm{I}_{1}=\mathrm{I}_{2} \quad \Longrightarrow \quad \operatorname{cut}\left(\mathrm{I}_{1}\right)=\operatorname{cut}\left(\mathrm{I}_{2}\right) .
$$

To fix the contours, insist that
vanishing Feynman integrals must have vanishing heptacuts.
This ensures that

$$
\mathrm{I}_{1}=\mathrm{I}_{2} \quad \Longrightarrow \quad \operatorname{cut}\left(\mathrm{I}_{1}\right)=\operatorname{cut}\left(\mathrm{I}_{2}\right) .
$$

Origin of terms with vanishing $\mathbb{R}^{D} \times \mathbb{R}^{D}$ integration: reduction of Feynman diagram expansion to a basis of integrals (including use of integration-by-parts identities).

Remarkable simplification:

- 4 massless external states: $22 \longrightarrow 2$ double-box integrals
- 5 massless external states: $160 \longrightarrow 2$ "turtle-box" integrals
- 5 massless external states: $76 \longrightarrow 1$ pentagon-box integral

Contour constraints, part $1 / 2$

There are two classes of constraints on 「's:

1) Levi-Civita integrals. For example,

Contour constraints, part $1 / 2$

There are two classes of constraints on 「's:

1) Levi-Civita integrals. For example,

2) integration by parts (IBP) identities must be preserved. For example,

Contour constraints, part $2 / 2$

The constraints in the case of four massless external momenta:

$$
\begin{array}{r}
\omega_{1}-\omega_{2}=0 \\
\omega_{3}-\omega_{4}=0 \\
\omega_{5}-\omega_{6}=0 \\
\omega_{7}-\omega_{8}=0 \\
\omega_{3}+\omega_{4}-\omega_{5}-\omega_{6}=0 \\
\omega_{1}+\omega_{2}-\omega_{5}-\omega_{6}+\omega_{7}+\omega_{8}=0
\end{array}
$$

leaving $8-4-2=2$ free winding numbers.

Master contours: the concept

Going back to the two-loop basis expansion

and applying a heptacut one finds

Master contours: the concept

Going back to the two-loop basis expansion

and applying a heptacut one finds

Exploit free parameters $\longrightarrow \exists$ contours with

$$
\begin{aligned}
& P_{1}:\left(\operatorname{cut}\left(\mathrm{I}_{1}\right), \operatorname{cut}\left(\mathrm{I}_{2}\right)\right)=(1,0) \\
& P_{2}:\left(\operatorname{cut}\left(\mathrm{I}_{1}\right), \operatorname{cut}\left(\mathrm{I}_{2}\right)\right)=(0,1) .
\end{aligned}
$$

We call such P_{i} master contours.

Master contours: results

With four massless external states,

$$
c_{1}=\frac{i \chi}{8} \oint_{P_{1}} \frac{d z}{z(z+\chi)} \prod_{j=1}^{6} A_{j}^{\text {tree }}(z)
$$

$$
c_{2}=-\frac{i}{4 s_{12}} \oint_{P_{2}} \frac{d z}{z(z+\chi)} \prod_{j=1}^{6} A_{j}^{\text {tree }}(z)
$$

With our choice of basis integrals, the P_{i} are

$n=$ winding number

Characterizing the on-shell solutions

There are six solutions for the heptacut loop momenta

Set $k_{i}^{\mu}=\lambda_{i} \sigma^{\mu} \widetilde{\lambda}_{i}$ and classify each vertex according to
$\lambda_{a} \propto \lambda_{b} \propto \lambda_{c}(\overline{\mathrm{MHV}})$
$\widetilde{\lambda}_{a} \propto \widetilde{\lambda}_{b} \propto \widetilde{\lambda}_{c}(\mathrm{MHV})$

Two-loop leading singularities
heptacut solutions \longrightarrow Riemann spheres

$$
\text { (e.g., } \left.c_{\triangle}=\oint_{C_{\epsilon}(\infty)} \frac{d z}{z} \prod_{j=1}^{3} A_{j}^{\text {tree }}(z)\right)
$$

points $\in \mathcal{S}_{i} \cap \mathcal{S}_{j} \longrightarrow$ no notion of \boldsymbol{O} or $\bigcirc \longrightarrow$ resp. prop. is soft also: $\quad \mathcal{S}_{i} \cap \mathcal{S}_{j} \subset\{$ leading singularities $\}$!
two-loop leading singularities $\longrightarrow I R$ singularities of integral

Observation: leading-singularity residues cancel between virtual (a) and real (b) contributions to cross section

(a)

(b)
in complete analogy with the KLN theorem on IR cancelations.

Classification of heptacut solutions

Arbitrary \# of external states. Define
$\mu_{i} \equiv \begin{cases}\mathrm{~m} & \text { if } i^{\text {th }} \text { vertical prop. } \in 3 \text {-pt. vertex } \\ \mathrm{M} & \text { if } i^{\text {th }} \text { vertical prop. } \notin 3 \text {-pt. vertex }\end{cases}$

$$
\text { is } \quad(m, m, M)
$$

The solution to $\ell_{i}^{2}=0, i=1, \ldots, 7$ is

- case $1(M, M, M)$: 1 torus
- case $2(M, M, m)$ etc.: $2 \mathbb{C P}^{1}$ with $\mathcal{S}_{i} \longleftrightarrow$ distrib. of \bullet, O
- case $3(\mathrm{M}, \mathrm{m}, \mathrm{m})$ etc.: $4 \mathbb{C P}^{1}$ with $\mathcal{S}_{i} \longleftrightarrow$ distrib. of \bullet, \bigcirc
- case $4(\mathrm{~m}, \mathrm{~m}, \mathrm{~m})$: $6 \mathbb{C P}^{1}$ with $\mathcal{S}_{i} \longleftrightarrow$ distrib. of \bullet, \bigcirc

Uniqueness of master contours

Limits $\mu_{i} \rightarrow \mathrm{~m} \Longrightarrow$ chiral branchings: torus $\xrightarrow{\mu_{3} \rightarrow \mathrm{~m}}$

Each torus-pinching: new IR-pole + new residue thm $\Longrightarrow \quad \#$ of lead. sing. same in all cases

In all cases: \# of master Г's = \# of basis integrals
\Longrightarrow all linear relations are preserved
\Longrightarrow perfect analogy with one-loop generalized unitarity

Symmetries and systematics of IBP constraints

The IBP constraints are invariant under flips.

Symmetries and systematics of IBP constraints

The IBP constraints are invariant under flips.
Reverse logic \longrightarrow demand constraints to be invariant under flips and π-rotations.
$\{M, m, m\}$ case: choose basis, e.g. $\omega_{1,2,5,6}=0$
$r_{1}^{(\mathrm{b})}\left(\omega_{3}+\omega_{4}+\omega_{7}+\omega_{8}\right)+r_{2}^{(\mathrm{b})}\left(\omega_{9}+\omega_{10}-\omega_{11}-\omega_{12}\right)=0$
where, in fact, $r_{1}^{(\mathrm{b})}=r_{2}^{(\mathrm{b})} \neq 0$.

Symmetries and systematics of IBP constraints

The IBP constraints are invariant under flips.
Reverse logic \longrightarrow demand constraints to be invariant under flips and π-rotations.
$\{M, m, m\}$ case: choose basis, e.g. $\omega_{1,2,5,6}=0$
$r_{1}^{(\mathrm{b})}\left(\omega_{3}+\omega_{4}+\omega_{7}+\omega_{8}\right)+r_{2}^{(\mathrm{b})}\left(\omega_{9}+\omega_{10}-\omega_{11}-\omega_{12}\right)=0$
where, in fact, $r_{1}^{(\mathrm{b})}=r_{2}^{(\mathrm{b})} \neq 0$.

(m, m, m) case:

1) constraint from $\{M, m, m\}$ case inherited.
2) new flip symmetry \longrightarrow new constraint:
$r_{1}^{(c)}\left(\omega_{3}+\omega_{4}\right)+r_{2}^{(c)}\left(\omega_{11}+\omega_{12}-\omega_{13}-\omega_{14}\right)=0$ as expressed in the basis $\omega_{1,2,5,6,7,8}=0$. In fact, $r_{1}^{(\mathrm{c})}=-r_{2}^{(\mathrm{c})} \neq 0$.

Integrals with fewer propagators

Solution to slashed-box on-shell constraints:

On-shell constraints leave $8-5=3$ free complex parameters.
Multivariate residues depend on the order of integration.
Example: $f\left(z_{i}\right)=\frac{z_{1}}{z_{2}\left(a_{1} z_{1}+a_{2} z_{2}\right)\left(b_{1} z_{1}+b_{2} z_{2}\right)}$. Residues at $\left(z_{1}, z_{2}\right)=(0,0)$:

$$
\begin{aligned}
\frac{1}{(2 \pi i)^{2}} \int_{C_{\epsilon}(0) \times C_{\epsilon^{2}}(0)} d z_{1} d z_{2} f\left(z_{i}\right) & =\frac{1}{a_{1} b_{1}} \\
\frac{1}{(2 \pi i)^{2}} \int_{C_{\epsilon}(0) \times C_{\epsilon^{2}}\left(-\frac{a_{1}}{a_{2}} z_{1}\right)} d z_{1} d z_{2} f\left(z_{i}\right) & =\frac{a_{2}}{a_{1}\left(a_{1} b_{2}-a_{2} b_{1}\right)}
\end{aligned}
$$

Elliptic curves vs. polylogs

$$
=\int_{u}^{\infty} \frac{d u^{\prime}}{\sqrt{\tilde{Q}\left(u^{\prime}\right)}} \times\left(\operatorname{Li}_{3}(\cdots)+\cdots\right)
$$

sunrise integral not expressible through polylogs
\longrightarrow neither should 10-point integral be
Analytic expression \longleftrightarrow maximal cut?
Wilson-loop amplitude correspondence \Longrightarrow

$$
\mathcal{N}=4 \text { SYM: } \quad A^{(2)}\left(10-\text { scalar } \mathrm{N}^{3} \mathrm{MHV}\right) \quad \propto
$$

Conclusions and outlook

- First steps towards fully automatized two-loop amplitudes
- Integration-by-parts identities \longrightarrow reduce \# of Feynman integrals by factor of 10-100
- Two-loop master contours are unique
\longrightarrow perfect analogy with one-loop unitarity
- Classification of maximal-cut solutions
- Maximal cuts contain vital information:
pinches/punctures $\longrightarrow I R / U V$ divergences branch cuts \longrightarrow non-polylogs in uncut integral
- Underlying algebraic geometry \longrightarrow deeper understanding of maximal cuts (i.e., contour constraints)

Backup slides

Integrals and integral bases

- ideal two-loop basis: chiral integrals
- evaluate 4-point chiral integrals analytically

Maximally IR-finite basis

The two-loop integral coefficients c_{i} have $\mathcal{O}(\epsilon)$ corrections. Important to know, as the integrals have poles in ϵ.

Maximally IR-finite basis

The two-loop integral coefficients c_{i} have $\mathcal{O}(\epsilon)$ corrections. Important to know, as the integrals have poles in ϵ.

IR-finite integrals $\longrightarrow \mathcal{O}(\epsilon)$ corrections not needed for amplitude
Candidates: num. insertions $\rightarrow 0$ in collinear int. regions, e.g.

$$
\begin{aligned}
I_{++} & \left.\equiv I\left[\left[1\left|\ell_{1}\right| 2\right\rangle\langle 3| \ell_{2} \mid 4\right]\right] \times[23]\langle 14\rangle \\
I_{+-} & \left.\equiv I\left[\left[1\left|\ell_{1}\right| 2\right\rangle\langle 4| \ell_{2} \mid 3\right]\right] \times[24]\langle 13\rangle
\end{aligned}
$$

Essentially the chiral integrals of [Arkani-Hamed et al.]
I_{++}and I_{+-}lin. independent \longrightarrow use in any gauge theory
Philosophy: maximally IR-finite basis
\longrightarrow minimize need for cuts in $D=4-2 \epsilon$

Evaluation of chiral integrals (1/3)

$I_{+ \pm}$are finite \longrightarrow can be computed in $D=4$

1) Feynman parametrize

$$
I_{++}=-\chi^{2}\left(1+(1+\chi) \frac{\partial}{\partial \chi}\right) I_{1}(\chi) \text { and } I_{+-}=-(1+\chi)^{2}\left(1+\chi \frac{\partial}{\partial \chi}\right) I_{1}(\chi)
$$

where

$$
I_{1}(\chi)=\int \frac{d^{3} a d^{3} b d c c \delta\left(1-c-\sum_{i} a_{i}-\sum_{i} b_{i}\right)\left(\sum_{i} a_{i} \sum_{i} b_{i}+c\left(\sum_{i} a_{i}+\sum_{i} b_{i}\right)\right)^{-1}}{\left(a_{1} a_{3}\left(c+\sum_{i} b_{i}\right)+\left(a_{1} b_{4}+a_{3} b_{6}+a_{2} b_{5} \chi\right) c+b_{4} b_{6}\left(c+\sum_{i} a_{i}\right)\right)^{2}}
$$

2) "Projectivize"

$$
I_{1}(\chi)=6 \int_{1}^{\infty} d c \int_{0}^{\infty} \frac{d^{7}\left(a_{1} a_{2} a_{3} a_{\mathcal{I}} b_{1} b_{2} b_{3} b_{\mathcal{I}}\right)}{\operatorname{vol}(G L(1))} \frac{1}{\left(c A^{2}+A \cdot B+B^{2}\right)^{4}}
$$

Evaluation of chiral integrals (2/3)

3) Obtain symbol

Integrate projective form one variable at the time, at the level of the symbol.

$$
\mathcal{S}\left[I_{1}(\chi)\right]=\frac{2}{\chi}[\chi \otimes \chi \otimes(1+\chi) \otimes(1+\chi)]-\frac{2}{1+\chi}[\chi \otimes \chi \otimes(1+\chi) \otimes \chi]
$$

4) "Integrate" symbol, using
a) I_{1} has transcendentality 4 (fact, not a conjecture)
b) I_{1} has no u-channel discontinuity
c) Regge limits:

$$
\begin{aligned}
& I_{1}(\chi) \rightarrow \frac{\pi^{2}}{6} \log ^{2} \chi+\left(4 \zeta(3)-\frac{\pi^{2}}{3}\right) \log \chi+\mathcal{O}(1) \text { as } \chi \rightarrow 0 \\
& I_{1}(\chi) \rightarrow 6 \zeta(3) \frac{\log \chi}{\chi}+\mathcal{O}\left(\chi^{-1}\right) \text { as } \chi \rightarrow \infty
\end{aligned}
$$

Evaluation of chiral integrals (3/3)

In conclusion, for the "chiral" integrals

$$
\begin{aligned}
I_{++} & \left.\equiv I\left[\left[1\left|\ell_{1}\right| 2\right\rangle\langle 3| \ell_{2} \mid 4\right]\right] \times\left[\begin{array}{ll}
2 & 3
\end{array}\langle 14\rangle\right. \\
I_{+-} & \left.\equiv I\left[\left[1\left|\ell_{1}\right| 2\right\rangle\langle 4| \ell_{2} \mid 3\right]\right] \times[24]\langle 13\rangle
\end{aligned}
$$

we find the results

$$
\begin{aligned}
I_{++}(\chi)= & 2 H_{-1,-1,0,0}(\chi)-\frac{\pi^{2}}{3} \operatorname{Li}_{2}(-\chi) \\
& +\left(\frac{\pi^{2}}{2} \log (1+\chi)-\frac{\pi^{2}}{3} \log \chi+2 \zeta(3)\right) \log (1+\chi)-6 \chi \zeta(3) \\
I_{+-}(\chi)= & 2 H_{0,-1,0,0}(\chi)-\pi^{2} \operatorname{Li}_{2}(-\chi)-\frac{\pi^{2}}{6} \log ^{2} \chi-4 \zeta(3) \log \chi-\frac{\pi^{4}}{10}-6(1+\chi) \zeta(3)
\end{aligned}
$$

Actual chiral integrals: transcendentality-breaking terms cancel.

