Maximal Unitarity at Two Loops

Durham, LMS Symposium

Polylogarithms as a Bridge between Number Theory and Particle Physics

July 12, 2013

Based on 1108.1180, 1205.0801, 1208.1754 (with S. Caron-Huot, H. Johansson and D. Kosower)

Kasper J. Larsen Nikhef Maximal Unitarity at Two Loops

- motivations for studying amplitudes
- modern methods for computation at one loop

< ≣ >

Obvious motivation: Large Hadron Collider

The searches at LHC for physics beyond the Standard Model require a detailed understanding of background, especially QCD, processes.

Examples of signals and QCD backgrounds

Signal: An example of a Higgs boson process:

Background: An example of a QCD background process:

In fact, there are two important motivations:

• LHC phenomenology

Quantitative estimates of QCD background: needed for precision measurements, uncertainty estimates of NLO calculations, and reducing renormalization scale dependence.

• Reveal fascinating structure in QFT

For $\mathcal{N} = 4$ SYM: hidden symmetries (integrability \longrightarrow non-perturbative solution) and new dualities (to Wilson loops and correlators).

For $\mathcal{N}\leq$ 4: connection to multivariate complex analysis and algebraic geometry.

・ロン ・回と ・ヨン ・ヨン

The Feynman diagram prescription

In practice, the Feynman diagram prescription produces a very large number of terms: e.g. for the five-gluon tree-level amplitude

(日) (四) (王) (王) (王)

 $k_1\cdot k_4\varepsilon_2\cdot k_1\varepsilon_1\cdot \varepsilon_3\varepsilon_4\cdot \varepsilon_5$

Yet, the final result for five-gluon tree-level amplitude is simple,

$$egin{aligned} &\mathcal{A}_5^{ ext{tree}}(1^\pm,2^+,3^+,4^+,5^+) \ = \ 0 \ &\mathcal{A}_5^{ ext{tree}}(1^-,2^-,3^+,4^+,5^+) \ = \ rac{i\langle 1\,2
angle^4}{\langle 1\,2
angle\langle 2\,3
angle\langle 3\,4
angle\langle 4\,5
angle\langle 5\,1
angle} \,. \end{aligned}$$

This strongly suggests there should exist better methods for computing amplitudes.

At one-loop level, unitarity has proven very successful, allowing e.g. the calculation of $qg \rightarrow W +$ multi-jets.

This talk is about extending generalized unitarity (systematically) to two loops.

・ 回 と ・ ヨ と ・ ヨ と

Integral reductions and integral basis

Feynman rules \longrightarrow numerator powers in integrals

At one loop, all such integrals can be expanded in a basis.

For example, consider the box insertion

Integral reductions and integral basis

Feynman rules \longrightarrow numerator powers in integrals

At one loop, all such integrals can be expanded in a basis.

For example, consider the box insertion

Kasper J. Larsen Nikhef Maximal Unitarity at Two Loops

Use integral reductions to write the one-loop amplitude as a linear combination of *basis integrals*

+ rational terms

Use integral reductions to write the one-loop amplitude as a linear combination of *basis integrals*

+ rational terms

To determine c_i , apply cuts $\frac{1}{(\ell-\kappa)^2} \longrightarrow \delta((\ell-\kappa)^2)$ to both sides.

Use integral reductions to write the one-loop amplitude as a linear combination of *basis integrals*

+ rational terms

To determine c_i , apply cuts $\frac{1}{(\ell-K)^2} \longrightarrow \delta((\ell-K)^2)$ to both sides. Applying a quadruple cut [Britto, Cachazo, Feng] isolates a single box integral:

Use integral reductions to write the one-loop amplitude as a linear combination of *basis integrals*

+ rational terms

To determine c_i , apply cuts $\frac{1}{(\ell-K)^2} \longrightarrow \delta((\ell-K)^2)$ to both sides. Applying a quadruple cut [Britto, Cachazo, Feng] isolates a single box integral:

A triple cut will leave 4 - 3 = 1 free *complex* parameter *z*. Parametrizing the loop momentum,

$$\ell^{\mu} = \alpha_1 K_1^{\flat \mu} + \alpha_2 K_2^{\flat \mu} + \frac{z}{2} \langle K_1^{\flat -} | \gamma^{\mu} | K_2^{\flat -} \rangle + \frac{\alpha_4(z)}{2} \langle K_2^{\flat -} | \gamma^{\mu} | K_1^{\flat -} \rangle$$

one obtains an explicit formula for the triangle coefficient [Forde]

個 と く ヨ と く ヨ と …

- maximal cuts at two loops
- constructing two-loop amplitudes out of tree-level data
- $\bullet\,$ elliptic integrals in $\mathcal{N}=4$ SYM amplitudes

• 3 > 1

Expand the massless 4-point two-loop amplitude in a basis, e.g.

+ ints with fewer props + rational terms

Kasper J. Larsen Nikhef Maximal Unitarity at Two Loops

Expand the massless 4-point two-loop amplitude in a basis, e.g.

+ ints with fewer props+ rational terms

< ≣⇒

Compute $c_1(\epsilon)$ and $c_2(\epsilon)$ according to

Expand the massless 4-point two-loop amplitude in a basis, e.g.

(4回) (4回) (日)

Compute $c_1(\epsilon)$ and $c_2(\epsilon)$ according to

The machinery: contour integrals $\oint_{\Gamma_i} (\cdots)$

The philosophy: basis integral $I_i \leftrightarrow$ unique Γ_i producing c_i

The anatomy of two-loop maximal cuts

Cutting all seven visible propagators in the double-box integral,

produces (cf. [Buchbinder, Cachazo]), setting $\chi \equiv \frac{t}{s}$,

$$\int d^4 p \, d^4 q \prod_{i=1}^7 \frac{1}{\ell_i^2} \longrightarrow \int d^4 p \, d^4 q \prod_{i=1}^7 \delta^{\mathbb{C}}(\ell_i^2) = \oint_{\Gamma} \frac{dz}{z(z+\chi)},$$

a contour integral in the complex plane.

The anatomy of two-loop maximal cuts

Cutting all seven visible propagators in the double-box integral,

produces (cf. [Buchbinder, Cachazo]), setting $\chi \equiv \frac{t}{s}$,

$$\int d^4p \, d^4q \prod_{i=1}^7 \frac{1}{\ell_i^2} \longrightarrow \int d^4p \, d^4q \prod_{i=1}^7 \delta^{\mathbb{C}}(\ell_i^2) = \oint_{\Gamma} \frac{dz}{z(z+\chi)},$$

a contour integral in the complex plane.

Jacobian poles z = 0 and $z = -\chi$: composite leading singularities

encircle
$$z = 0$$
 and $z = -\chi$ with $\Gamma = \omega_1 C_{\epsilon}(0) + \omega_2 C_{\epsilon}(-\chi)$
 \longrightarrow freeze z ("8th cut")

Choosing contours: die Qual der Wahl

Six inequivalent classes of solutions to on-shell constraints

4 massless external states \longrightarrow 8 independent leading singularities

Choosing contours: die Qual der Wahl

Six inequivalent classes of solutions to on-shell constraints

4 massless external states \longrightarrow 8 independent leading singularities

How do we select contours within this variety of possibilities?

Principle for selecting contours

To fix the contours, insist that

vanishing Feynman integrals must have vanishing heptacuts.

This ensures that

$$I_1 = I_2 \implies \operatorname{cut}(I_1) = \operatorname{cut}(I_2).$$

Principle for selecting contours

To fix the contours, insist that

vanishing Feynman integrals must have vanishing heptacuts.

This ensures that

$$\mathrm{I}_1 = \mathrm{I}_2 \quad \Longrightarrow \quad \mathsf{cut} \left(\mathrm{I}_1 \right) = \mathsf{cut} \left(\mathrm{I}_2 \right).$$

Origin of terms with vanishing $\mathbb{R}^D \times \mathbb{R}^D$ integration: reduction of Feynman diagram expansion to a *basis of integrals* (including use of integration-by-parts identities).

Remarkable simplification:

- 4 massless external states: 22 \longrightarrow 2 double-box integrals
- 5 massless external states: 160 \longrightarrow 2 "turtle-box" integrals
- 5 massless external states: 76 \longrightarrow 1 pentagon-box integral

- ◆ □ ▶ ◆ 三 ▶ ◆ □ ● ● ○ ○ ○ ○

Contour constraints, part 1/2

There are two classes of constraints on Γ 's:

1) Levi-Civita integrals. For example,

Contour constraints, part 1/2

There are two classes of constraints on Γ 's:

1) Levi-Civita integrals. For example,

 integration by parts (IBP) identities must be preserved. For example,

The constraints in the case of four massless external momenta:

	$\omega_1 - \omega_2 = 0$
	$\omega_3 - \omega_4 = 0$
	$\omega_5 - \omega_6 = 0$
	$\omega_7 - \omega_8 = 0$
$\omega_3 + \omega_4 -$	$\omega_5 - \omega_6 = 0$
$\omega_1 + \omega_2 - \omega_5 - \omega_6 + \omega_6$	$-\omega_7 + \omega_8 = 0$

 \cap

(本部)) (本語)) (本語)) (語)

leaving 8 - 4 - 2 = 2 free winding numbers.

ω

Master contours: the concept

Going back to the two-loop basis expansion

$$A_4^{2-\mathrm{loop}} = c_1(\epsilon)$$
 + $c_2(\epsilon)$

+ ints with fewer props
+ rational terms

and applying a heptacut one finds

Master contours: the concept

Going back to the two-loop basis expansion

$$A_4^{2-\text{loop}} = c_1(\epsilon)$$
 + $c_2(\epsilon)$

ints with fewer props
 rational terms

and applying a heptacut one finds

Exploit free parameters $\longrightarrow \exists$ contours with

 $\begin{array}{ll} {{\cal P}_1:\; \left({{\rm{cut}}\left({{\rm{I}}_1} \right),\,{\rm{cut}}\left({{\rm{I}}_2} \right)} \right)\;=\; (1,0)} \\ {{\cal P}_2:\; \left({{\rm{cut}}\left({{\rm{I}}_1} \right),\,{\rm{cut}}\left({{\rm{I}}_2} \right)} \right)\;=\; (0,1)\,. \end{array}$

We call such P_i master contours.

Master contours: results

With four massless external states,

$$c_{1} = \frac{i\chi}{8} \oint_{P_{1}} \frac{dz}{z(z+\chi)} \prod_{j=1}^{6} A_{j}^{\text{tree}}(z) \qquad c_{2} = -\frac{i}{4s_{12}} \oint_{P_{2}} \frac{dz}{z(z+\chi)} \prod_{j=1}^{6} A_{j}^{\text{tree}}(z)$$

With our choice of basis integrals, the P_i are

n =winding number

Characterizing the on-shell solutions

There are six solutions for the heptacut loop momenta

Kasper J. Larsen Nikhef

Maximal Unitarity at Two Loops

Two-loop leading singularities

 $\begin{array}{l} \text{heptacut solutions} \longrightarrow \text{Riemann spheres} \\ (\text{e.g., } c_{\triangle} = \oint_{\mathcal{C}_{\epsilon}(\boldsymbol{\infty})} \frac{dz}{z} \prod_{j=1}^{3} A_{j}^{\text{tree}}(z)) \end{array}$

points $\in S_i \cap S_j \longrightarrow$ no notion of \bullet or $\bigcirc \longrightarrow$ resp. prop. is soft also: $S_i \cap S_j \subset \{\text{leading singularities}\}!$

two-loop leading singularities \longrightarrow IR singularities of integral

□ > < E > < E > < E</p>

Two-loop leading vs. IR singularities

Observation: leading-singularity residues cancel between virtual (a) and real (b) contributions to cross section

in complete analogy with the KLN theorem on IR cancelations.

Classification of heptacut solutions

Arbitrary # of external states. Define

The solution to $\ell_i^2 = 0, i = 1, \dots, 7$ is

- case 1 (M,M,M): 1 torus
- case 2 (M,M,m) etc.: 2 \mathbb{CP}^1 with $S_i \longleftrightarrow$ distrib. of \bullet , \bigcirc
- case 3 (M,m,m) etc.: 4 \mathbb{CP}^1 with $S_i \leftrightarrow$ distrib. of \bullet , \bigcirc
- case 4 (m,m,m): 6 \mathbb{CP}^1 with $S_i \longleftrightarrow$ distrib. of \bullet , \bigcirc

・日・ ・日・

Limits $\mu_i \to m \implies$ chiral branchings: torus $\stackrel{\mu_3 \to m}{\longrightarrow}$

Each torus-pinching: new IR-pole + new residue thm \implies # of lead. sing. same in all cases

In all cases: # of master Γ 's = # of basis integrals

- \implies all linear relations are preserved
- \implies perfect analogy with one-loop generalized unitarity

• 3 > 1

Symmetries and systematics of IBP constraints

The IBP constraints are invariant under flips.

Symmetries and systematics of IBP constraints

The IBP constraints are invariant under flips. Reverse logic \longrightarrow demand constraints to be

invariant under flips and π -rotations.

$$\begin{split} \{\mathsf{M},\mathsf{m},\mathsf{m}\} \text{ case: choose basis, e.g. } \omega_{1,2,5,6} &= 0\\ r_1^{(\mathrm{b})}(\omega_3 + \omega_4 + \omega_7 + \omega_8) + r_2^{(\mathrm{b})}(\omega_9 + \omega_{10} - \omega_{11} - \omega_{12}) &= 0\\ \text{where, in fact, } r_1^{(\mathrm{b})} &= r_2^{(\mathrm{b})} \neq 0. \end{split}$$

Symmetries and systematics of IBP constraints

The IBP constraints are invariant under flips. Reverse logic \longrightarrow demand constraints to be invariant under flips and π -rotations.

$$\begin{split} \{\mathsf{M},\mathsf{m},\mathsf{m}\} \text{ case: choose basis, e.g. } \omega_{1,2,5,6} &= 0\\ r_1^{(\mathrm{b})}(\omega_3 + \omega_4 + \omega_7 + \omega_8) + r_2^{(\mathrm{b})}(\omega_9 + \omega_{10} - \omega_{11} - \omega_{12}) &= 0\\ \text{where, in fact, } r_1^{(\mathrm{b})} &= r_2^{(\mathrm{b})} \neq 0. \end{split}$$

(m,m,m) case:

1) constraint from {M,m,m} case inherited. 2) new flip symmetry \longrightarrow new constraint: $r_1^{(c)}(\omega_3 + \omega_4) + r_2^{(c)}(\omega_{11} + \omega_{12} - \omega_{13} - \omega_{14}) = 0$ as expressed in the basis $\omega_{1,2,5,6,7,8} = 0$. In fact, $r_1^{(c)} = -r_2^{(c)} \neq 0$.

イロン イ部ン イヨン イヨン 三日

Integrals with fewer propagators

Solution to slashed-box on-shell constraints:

On-shell constraints leave 8 - 5 = 3 free complex parameters.

Multivariate residues depend on the order of integration.

Example:
$$f(z_i) = \frac{z_1}{z_2(a_1z_1+a_2z_2)(b_1z_1+b_2z_2)}$$
. Residues at $(z_1, z_2) = (0, 0)$:

$$\frac{1}{(2\pi i)^2} \int_{C_{\epsilon}(0) \times C_{\epsilon^2}(0)} dz_1 dz_2 f(z_i) = \frac{1}{a_1 b_1}$$
$$\frac{1}{(2\pi i)^2} \int_{C_{\epsilon}(0) \times C_{\epsilon^2}\left(-\frac{a_1}{a_2} z_1\right)} dz_1 dz_2 f(z_i) = \frac{a_2}{a_1(a_1 b_2 - a_2 b_1)}$$

Elliptic curves vs. polylogs

sunrise integral not expressible through polylogs \longrightarrow neither should 10-point integral be

Analytic expression \leftrightarrow maximal cut?

Wilson-loop amplitude correspondence \Longrightarrow

$$\mathcal{N} = 4$$
 SYM: $A^{(2)}(10 - \text{scalar N}^3 \text{MHV}) \propto$

Conclusions and outlook

- First steps towards fully automatized two-loop amplitudes
- Integration-by-parts identities \longrightarrow reduce # of Feynman integrals by factor of 10-100
- Two-loop master contours are unique

 — perfect analogy with one-loop unitarity
- Classification of maximal-cut solutions
- Maximal cuts contain vital information: pinches/punctures → IR/UV divergences branch cuts → non-polylogs in uncut integral
- Underlying algebraic geometry → deeper understanding of maximal cuts (i.e., contour constraints)

・ロン ・回 と ・ ヨ と ・ ヨ と …

Backup slides

Kasper J. Larsen Nikhef Maximal Unitarity at Two Loops

◆□→ ◆□→ ◆三→ ◆三→

æ

- ideal two-loop basis: chiral integrals
- evaluate 4-point chiral integrals analytically

The two-loop integral coefficients c_i have $\mathcal{O}(\epsilon)$ corrections. Important to know, as the integrals have poles in ϵ .

- ∢ ⊒ ⊳

The two-loop integral coefficients c_i have $\mathcal{O}(\epsilon)$ corrections. Important to know, as the integrals have poles in ϵ . IR-finite integrals $\longrightarrow \mathcal{O}(\epsilon)$ corrections not needed for amplitude Candidates: num. insertions $\rightarrow 0$ in collinear int. regions, e.g.

$$I_{++} \equiv I[[1|\ell_1|2\rangle\langle 3|\ell_2|4]] \times [23]\langle 14\rangle$$
$$I_{+-} \equiv I[[1|\ell_1|2\rangle\langle 4|\ell_2|3]] \times [24]\langle 13\rangle$$

Essentially the chiral integrals of [Arkani-Hamed et al.]

 I_{++} and I_{+-} lin. independent \longrightarrow use in any gauge theory

Philosophy: maximally IR-finite basis

 \longrightarrow minimize need for cuts in $D = 4 - 2\epsilon$

(ロ) (同) (E) (E) (E)

Evaluation of chiral integrals (1/3)

 $I_{+\pm}$ are finite \longrightarrow can be computed in D=4

1) Feynman parametrize

$$I_{++} = -\chi^2 \left(1 + (1+\chi) \frac{\partial}{\partial \chi} \right) I_1(\chi) \text{ and } I_{+-} = -(1+\chi)^2 \left(1 + \chi \frac{\partial}{\partial \chi} \right) I_1(\chi)$$

where

$$h_{1}(\chi) = \int \frac{d^{3}a \ d^{3}b \ dc \ c \ \delta(1 - c - \sum_{i} a_{i} - \sum_{i} b_{i}) \left(\sum_{i} a_{i} \sum_{i} b_{i} + c(\sum_{i} a_{i} + \sum_{i} b_{i})\right)^{-1}}{\left(a_{1}a_{3}(c + \sum_{i} b_{i}) + (a_{1}b_{4} + a_{3}b_{6} + a_{2}b_{5}\chi)c + b_{4}b_{6}(c + \sum_{i} a_{i})\right)^{2}}$$

2) "Projectivize" $l_1(\chi) = 6 \int_1^\infty dc \int_0^\infty \frac{d^7(a_1 a_2 a_3 a_{\mathcal{I}} b_1 b_2 b_3 b_{\mathcal{I}})}{\operatorname{vol}(\operatorname{GL}(1))} \frac{1}{(cA^2 + A.B + B^2)^4}$

|▲□ ▶ ▲ 目 ▶ ▲ 目 ● のへの

3) Obtain symbol

Integrate projective form one variable at the time, at the level of the symbol.

$$\mathcal{S}[\mathit{h}_1(\chi)] \,=\, \frac{2}{\chi} \left[\chi \otimes \chi \otimes (1+\chi) \otimes (1+\chi) \right] - \frac{2}{1+\chi} \left[\chi \otimes \chi \otimes (1+\chi) \otimes \chi \right]$$

4) "Integrate" symbol, using

- a) I_1 has transcendentality 4 (fact, not a conjecture)
- b) I_1 has no *u*-channel discontinuity
- c) Regge limits:

$$\begin{split} h_1(\chi) &\to \ \frac{\pi^2}{6} \log^2 \chi + \left(4\zeta(3) - \frac{\pi^2}{3} \right) \log \chi + \mathcal{O}(1) \quad \text{as} \quad \chi \to 0 \\ h_1(\chi) &\to \ 6\zeta(3) \frac{\log \chi}{\chi} + \mathcal{O}(\chi^{-1}) \quad \text{as} \quad \chi \to \infty \end{split}$$

In conclusion, for the "chiral" integrals

$$I_{++} \equiv I[[1|\ell_1|2\rangle\langle 3|\ell_2|4]] \times [23]\langle 14\rangle$$
$$I_{+-} \equiv I[[1|\ell_1|2\rangle\langle 4|\ell_2|3]] \times [24]\langle 13\rangle$$

we find the results

$$I_{++}(\chi) = 2H_{-1,-1,0,0}(\chi) - \frac{\pi^2}{3}\text{Li}_2(-\chi) \\ + \left(\frac{\pi^2}{2}\log(1+\chi) - \frac{\pi^2}{3}\log\chi + 2\zeta(3)\right)\log(1+\chi) - \frac{6\chi\zeta(3)}{6}$$
$$I_{+-}(\chi) = 2H_{0,-1,0,0}(\chi) - \pi^2\text{Li}_2(-\chi) - \frac{\pi^2}{6}\log^2\chi - 4\zeta(3)\log\chi - \frac{\pi^4}{10} - 6(1+\chi)\zeta(3)$$

Actual chiral integrals: transcendentality-breaking terms cancel.

回 と く ヨ と く ヨ と