Locality and Unitarity from Positivity

Jaroslav Trnka
Princeton University

Durham, 11/7/2013
Work with Nima Arkani-Hamed, to appear

Introduction

Motivation

New methods in QFT - test case: planar N=4 SYM
Object of interest: on-shell scattering amplitudes at weak coupling At tree-level we have a well defined rational function.

Traditional method at loop level:

- Find the integrand - unique rational function in any planar theory.
- Integrate over the real contour.

Importance of the integrand

- Well defined finite object: rational function for any amplitude at all loop orders.
- A lot of structure is lost after integration over the real contour.
- There are also other interesting contours (leading singularities).

Motivation

Definition: Amplitude $=$ tree-level + integrand of loop level.
How to calculate the amplitudes?
Feynman diagrams:

- Locality and unitarity manifest.

- Not all symmetries manifest, extremely inefficient.

BCFW recursion relations:

- Locality not manifest - spurious poles.
- All symmetries manifest and very efficient.

Motivation

The amplitude can be defined using Locality and Unitarity

- It is a unique function that has local poles and factorization properties

- Feynman diagrams is a way how to make these properties manifest.
- BCFW is another way to satisfy the same equation.

This is still not a complete understanding.
New mathematical structures underlying amplitudes: on-shell diagrams and positive Grassmannian.

Positive Grassmannian

Remarkable relation between two different objects.
On-shell diagrams: physical quantities obtained by gluing together three-point amplitudes.

- They are cuts of higher loop amplitudes

- Any amplitude can be written as a sum of these objects via BCFW

Positive Grassmannian

Positive Grassmannian $G_{+}(k, n)$: basic object in algebraic geometry

- Grassmannian $G(k, n)$ describes a k-plane in n dimensional space,

$$
C=\left(\begin{array}{cccccc}
* & * & * & \ldots & * & * \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
* & * & * & \ldots & * & *
\end{array}\right)
$$

with $\mathrm{GL}(\mathrm{k})$ redundancy

- Positive Grassmannian $=$ all minors are positive, $G_{+}(2,4)$,

$$
C=\left(\begin{array}{cccc}
1 & a & 0 & -c \\
0 & b & 1 & d
\end{array}\right) \quad \text { where } a, b, c, d>0
$$

- There is an incredible mathematical structure related to the Positive Grassmannian ranging from algebraic geometry to combinatorics: permutations, stratification, configuration of vectors.

Positive Grassmannian

Connection between these two objects: an on-shell diagram determines a point in the positive Grassmannian $G_{+}(k, n)$

The function that represents the on-shell diagram can be calculated using the integral over the Grassmannian

$$
\rightarrow \quad \int \frac{d f_{1}}{f_{1}} \cdots \frac{d f_{d}}{f_{d}} \delta^{4 \mid 4}(C \cdot Z) .
$$

where C is the positive Grassmannian parametrized by face variables f_{i}. There are simple rules how to obtain C from the on-shell diagram.

There is still one unsatisfactory feature: the amplitude does not play a fundamental role in the story, construction via BCFW.

Momentum twistors

New variables for planar theories: momentum twistors Z_{i}^{α},

Manifest dual conformal symmetry for planar $\mathcal{N}=4$ SYM.
External particles: Z_{i}, η_{i}, loop momenta $Z_{A} Z_{B}$.
Translation between p and Z :

$$
\left(x_{i}-x_{j}\right)^{2}=\frac{\langle i i+1 j j+1\rangle}{\langle i i+1\rangle\langle j j+1\rangle}, \quad\left(x-x_{1}\right)^{2}=\frac{\langle A B 12\rangle}{\langle A B\rangle\langle 12\rangle}
$$

where $\langle a b c d\rangle=\epsilon_{\alpha \beta \gamma \delta} Z_{a}^{\alpha} Z_{b}^{\beta} Z_{c}^{\gamma} Z_{d}^{\delta}$.

Momentum twistors

Amplitudes in planar $\mathcal{N}=4 \mathrm{SYM}$

$$
\mathcal{A}_{n, k}=\frac{\delta^{4}(P) \delta^{8}(Q)}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle} \cdot A_{n, k-2}(Z, \eta)
$$

$A_{n, k}$ is a function of $\left\langle Z_{a} Z_{b} Z_{c} Z_{d}\right\rangle$ and η 's. E.g. 5 pt NMHV amplitude:

$$
A_{5,1}=\frac{\left(\langle 2345\rangle \eta_{1}+\langle 3451\rangle \eta_{2}+\langle 4512\rangle \eta_{3}+\langle 5123\rangle \eta_{4}+\langle 1234\rangle \eta_{5}\right)^{4}}{\langle 1234\rangle\langle 2345\rangle\langle 3451\rangle\langle 4512\rangle\langle 5123\rangle}
$$

One-loop MHV amplitude:

$$
A_{4,0}^{1-\text { loop }}=\frac{\left\langle A B d^{2} A\right\rangle\left\langle A B d^{2} B\right\rangle\langle 1234\rangle^{2}}{\langle A B 12\rangle\langle A B 23\rangle\langle A B 34\rangle\langle A B 41\rangle}
$$

which corresponds to the 0 -mass box.

NMHV polytopes

Hodges: the 6 pt NMHV split helicity amplitude $1^{-} 2^{-} 3^{-} 4^{+} 5^{+} 6^{+}$:

$$
A_{6}=\frac{\langle 1345\rangle^{3}}{\langle 1234\rangle\langle 1245\rangle\langle 2345\rangle\langle 2351\rangle}+\frac{\langle 1356\rangle^{3}}{\langle 1235\rangle\langle 1256\rangle\langle 2356\rangle\langle 2361\rangle}
$$

can be interpreted as a volume of polytope in \mathbb{P}^{3}.

Further developed for all NMHV amplitudes: polytopes in \mathbb{P}^{4}.

NMHV polytopes

Idea:

Amplitudes are "some volumes" of "some polytopes"in "some space".
We now know how to do this.

The New Positive Region

Inside of the simplex

Problem from classical mechanics: center-of-mass of three points

Imagine masses c_{1}, c_{2}, c_{3} in the corners.

$$
\overrightarrow{x_{T}}=\frac{c_{1} \overrightarrow{x_{1}}+c_{2} \overrightarrow{x_{2}}+c_{3} \overrightarrow{x_{3}}}{c_{1}+c_{2}+c_{3}}
$$

Interior of the triangle: ranging over all positive c_{1}, c_{2}, c_{3}.
Triangle in projective space \mathbb{P}^{2}

- Projective variables $Z_{i}=\binom{1}{\overrightarrow{x_{i}}}$
- Point Y inside the triangle (mod $\mathrm{GL}(1))$

$$
Y=c_{1} Z_{1}+c_{2} Z_{2}+c_{3} Z_{3}
$$

Inside of the simplex

Generalization to higher dimensions is straightforward.

Point Y inside tetrahedon in \mathbb{P}^{3} :

$$
Y=c_{1} Z_{1}+c_{2} Z_{2}+c_{3} Z_{3}+c_{4} Z_{4}
$$

Ranging over all positive c_{i} spans the interior of the simplex.

In general point Y inside a simplex in \mathbb{P}^{m-1} :

$$
Y^{I}=C_{1 a} Z_{a}^{I} \quad \text { where } I=1,2, \ldots, m
$$

and C is $(1 \times m)$ matrix of positive numbers,

$$
C=\left(c_{1} c_{2} \ldots c_{m}\right) / G L(1) \quad \text { which is } G_{+}(1, m)
$$

Into the Grassmannian

Generalization of this notion to Grassmannian
Let us imagine the same triangle and a line Y,

$$
\begin{aligned}
& Y_{1}=c_{1}^{(1)} Z_{1}+c_{2}^{(1)} Z_{2}+c_{3}^{(1)} Z_{3} \\
& Y_{2}=c_{1}^{(2)} Z_{1}+c_{2}^{(2)} Z_{2}+c_{3}^{(2)} Z_{3}
\end{aligned}
$$

writing in the compact form

$$
Y_{\alpha}^{I}=C_{\alpha a} Z_{a}^{I} \quad \text { where } \alpha=1,2
$$

The matrix C is a (2×3) matrix $\bmod \mathrm{GL}(2)$ - Grassmannian $G(2,3)$.
Positivity of coefficients? No, minors are positive!

$$
C=\left(\begin{array}{ccc}
1 & 0 & -a \\
0 & 1 & b
\end{array}\right)
$$

Into the Grassmannian

In the general case we define a "generalized triangle"

$$
Y_{\alpha}^{I}=C_{\alpha a} Z_{a}^{I}
$$

where $\alpha=1,2, \ldots, k$, ie. it is a k-plane in $(k+m)$ dimensions, $a, I=1,2, \ldots k+m$. Simplex has $\alpha=1$, for triangle also $m=2$.

The matrix C is a 'top cell' (no constraint imposed) of the positive Grassmannian $G_{+}(k, k+m)$, it is $k \cdot m$ dimensional.

We know exactly what these matrices are!

Beyond triangles

External points Z_{i} did not play role, we could always choose the coordinate system such that Z is identity matrix, then $Y \sim C$.

For more vertices than the dimensionality of the space external Z 's are crucial.

Let us consider the interior of the polygon in \mathbb{P}^{2}.

We need a convex polygon!

Key New Idea: Positivity of External Data

Beyond triangles

Convexity $=$ positivity of external Z 's. They form a $(3 \times n)$ matrix with all ordered minors being positive,

$$
\left\langle Z_{i} Z_{j} Z_{k}\right\rangle>0 \quad \text { for all } i<j<k
$$

The point Y inside this polygon is

$$
Y=c_{1} Z_{1}+\cdots+c_{n} Z_{n}=C_{1 a} Z_{a}
$$

where $C \in G_{+}(1, n)$ and $Z \in G_{+}(3, n)$.
Correct but redundant description: Point Y is also inside some triangle

Beyond triangles

Triangulation: set of non-intersecting triangles that cover the region.

$$
P_{n}=\sum_{i=2}^{n}[1 i i+1]
$$

The generic point Y is inside one of the triangles. The matrix C is

$$
C=\left(\begin{array}{lllllllll}
1 & 0 & \ldots & 0 & c_{i} & c_{i+1} & 0 & \ldots & 0
\end{array}\right)
$$

Two descriptions:

- "Top cell" $(n-1)$-dimensional of $G_{+}(1, n)$ - redundant.
- Collection of 2-dimensional cells of $G_{+}(1, n)$ - triangulation.

Into the Grassmannian

In general case:

- A k-plane Y moving in the $(k+m)$ space.
- Positive region given by n external points Z_{i}.
- The definition of the space:

$$
Y_{\alpha}^{I}=C_{\alpha a} Z_{a}^{I}
$$

It is a map that defines a positive region $P_{n, k, m}$,

$$
G_{+}(k, n) \times G_{+}(k+m, n) \rightarrow G(k, k+m)
$$

The physical case is $m=4$.
Conjecture: The positive region $P_{n, k, 4}$ represents the n-pt $\mathrm{N}^{k} \mathrm{MHV}$ tree-level amplitude.

Emergent Locality and Unitarity

How the locality and unitarity do emerge from positivity?
Locality: We show it for NMHV tree-level amplitudes

- Space is \mathbb{P}^{4}, vertices of the region are Z_{i}, boundaries are 3-planes $\left(Z_{i} Z_{j} Z_{k} Z_{\ell}\right)$. For what indices i, j, k, ℓ we get a boundary?
- Look at $\langle Y i j k \ell\rangle$: zero on the boundary and positive inside.

$$
\langle Y i j k \ell\rangle=\sum_{a=1}^{n} c_{a}\langle a i j k \ell\rangle
$$

- Always positive: $\langle Y i i+1 j j+1\rangle>0$ for Y inside the positive region.
- Reminder: $\left(x_{i}-x_{j}\right)^{2} \sim\langle i i+1 j j+1\rangle$, boundaries of the positive region correspond to local poles!
- Same proof holds for higher k.

Emergent Locality and Unitarity

Unitarity: Show on the example of $\mathrm{N}^{2} \mathrm{MHV}$ amplitudes.

- The space is defined by the equation (Y is a line, $Y=Y_{1} Y_{2}$)

$$
Y_{\alpha}^{I}=C_{\alpha a} Z_{a}^{I}
$$

where C is a top-cell of $G_{+}(2, n)$, all (2×2) minors are positive.

- On the factorization channel

$$
\left\langle Y_{1} Y_{2} 12 j j+1\right\rangle=0 \quad \rightarrow \quad Y_{1}=a_{1} Z_{1}+a_{2} Z_{2}+a_{j} Z_{j}+a_{j+1} Z_{j+1} .
$$

Therefore,

$$
C=\left(\begin{array}{cccccccccc}
a_{1} & a_{2} & 0 & \ldots & 0 & a_{j} & a_{j+1} & 0 & \ldots & 0 \\
b_{1} & b_{2} & b_{3} & \ldots & b_{j-1} & b_{j} & b_{j+1} & b_{j+2} & \ldots & b_{n}
\end{array}\right)
$$

- Positivity: $b_{3}=\cdots=b_{j-1}=0$ or $b_{j+2}=\cdots=b_{n}=0$.

Emergent Locality and Unitarity

- There are two options how to satisfy the positivity conditions:

$$
\left(\begin{array}{llllllllll}
* & * & 0 & \ldots & 0 & * & * & 0 & \ldots & 0 \\
* & * & 0 & \ldots & 0 & * & * & * & \ldots & *
\end{array}\right)\left(\begin{array}{llllllllll}
* & * & 0 & \ldots & 0 & * & * & 0 & \ldots & 0 \\
* & * & * & \ldots & * & * & * & 0 & \ldots & 0
\end{array}\right)
$$

- Factorization of $\mathrm{N}^{2} \mathrm{MHV}$ amplitude to MHV and NMHV,
- Same argument for all trees. Positivity forces C to split to C_{L}, C_{R}.
- Positivity of external data Z forces also positivity of Z_{L}, Z_{R}.
- We are not moving with external data to probe the factorization channel, Y is localized to more special position!

Canonical forms and amplitudes

Canonical form

How to get the actual formula from the positive region?
We define a canonical form Ω_{P} which has logarithmic singularities on the boundaries of P.

Example of triangle in \mathbb{P}^{2} :

$$
\Omega_{P}=\frac{\langle Y d Y d Y\rangle\langle 123\rangle^{2}}{\langle Y 12\rangle\langle Y 23\rangle\langle Y 31\rangle}
$$

We parametrize $Y=Z_{1}+c_{2} Z_{2}+c_{3} Z_{3}$ and get

$$
\Omega_{P}=\frac{d c_{2}}{c_{2}} \frac{d c_{3}}{c_{3}}=\mathrm{d} \log \mathrm{c}_{2} \operatorname{d} \log \mathrm{c}_{3}
$$

Logarithmic singularities when moving with Y on a line (12) for $c_{3}=0$ or a line (13) for $c_{2}=0$.

Canonical form

Simplex in \mathbb{P}^{4} - this is relevant for physics.

$$
\Omega_{P}=\frac{\langle Y d Y d Y d Y d Y\rangle\langle 12345\rangle^{2}}{\langle Y 1234\rangle\langle Y 2345\rangle\langle Y 3451\rangle\langle Y 4512\rangle\langle Y 5123\rangle}
$$

For $Y=Z_{1}+c_{2} Z_{2}+c_{3} Z_{3}+c_{4} Z_{4}+c_{5} Z_{5}$ we get

$$
\Omega_{P}=d \log c_{2} d \log c_{3} d \log c_{4} d \log c_{5}
$$

"Generalized triangle" given by $Y_{\alpha}^{I}=C_{\alpha a} Z_{a}^{I}$ with $C_{\alpha a} \in G_{+}(k, k+m)$.

- C is parametrized by $k \cdot m$ parameters - it is a $k \cdot m$ dimensional "top" cell of $G_{+}(k, k+m)$.
- We know all the matrices C as functions of $k m$ positive variables c_{j}.
- The form associated with this region is

$$
\Omega_{P}=\operatorname{d} \log c_{1} \operatorname{dlog} c_{2} \ldots \operatorname{dlog} c_{k m}
$$

Canonical form

For general positive region P we have the same definition of Ω_{P} : canonical form with logarithmic singularities on the boundaries of P.

$$
\Omega_{P}=\frac{\text { Measure of } \mathrm{Y} \times \text { Numerator }\left(Y, Z_{i}\right)}{\prod\langle Y \text { boundary }\rangle}
$$

such that the form has logarithmic singularities on the boundaries.
There is a natural strategy how to find the form:

- Triangulate the space, ie. find the set of non-overlapping "generalized triangles" that cover the space.
- Write the form for each triangle: dlogs of all variables $c_{1}, \ldots, c_{k m}$.
- Solve for variables c_{j} in terms of Y, Z_{i} for each "triangle", plug into the form and sum all "triangles".

The non-trivial operation: Triangulation of the positive region!

Canonical form

Example: Polygon

$$
\Omega_{P}=\sum_{i=2}^{n} \frac{\langle Y d Y d Y\rangle\langle 1 i i+1\rangle^{2}}{\langle Y 1 i\rangle\langle Y 1 i+1\rangle\langle Y i i+1\rangle}
$$

Spurious poles $\langle Y 1 i\rangle$ cancel in the sum.

We know how to do the triangulation for some cases, e.g. for all $m=2$ but not in general. The positive region is not known to mathematicians (only the "triangles" which are positive Grassmannians $G_{+}(k, n)$).

Canonical form

The case of physical relevance is $m=4$.
BCFW provides for us a triangulation of the space, different representations are different triangulations.

Spurious poles are internal boundaries that are absent once we put all pieces together.

Using BCFW we did many checks that the the picture is indeed correct!
We have also examples of triangulations that are not BCFW or anything else coming from physics.

From canonical forms to amplitudes

How to extract the amplitude from Ω_{P} ?
Look at the example of simplex in \mathbb{P}^{4}.

$$
\Omega_{P}=\frac{\langle Y d Y d Y d Y d Y\rangle\langle 12345\rangle^{4}}{\langle Y 1234\rangle\langle Y 2345\rangle\langle Y 3451\rangle\langle Y 4512\rangle\langle Y 5123\rangle}
$$

Note that the data are five-dimensional, it is purely bosonic and it is a form rather than function.

Let us rewrite Z_{i} as four-dimensional part and its complement

$$
Z_{i}=\binom{z_{i}}{\delta z_{i}} \quad \text { where } \quad \delta z_{i}=\left(\eta_{i} \cdot \phi\right)
$$

We define a reference point Y^{*} which is in the complement of 4d data z_{i},

$$
Y^{*}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

From canonical forms to amplitudes

We integrate the form, using $\left\langle Y^{*} 1234\right\rangle=\langle 1234\rangle$, etc. we get

$$
\int d^{4} \phi \int \delta\left(Y-Y^{*}\right) \Omega_{P}=\frac{\left(\langle 1234\rangle \eta_{5}+\langle 2345\rangle \eta_{1}+\cdots+\langle 5123\rangle \eta_{4}\right)^{4}}{\langle 1234\rangle\langle 2345\rangle\langle 3451\rangle\langle 4512\rangle\langle 5123\rangle}
$$

For higher k we have $(k+4)$ dimensional external Z_{i},

$$
Z_{i}=\left(\begin{array}{c}
z_{i} \\
\left(\eta_{i} \cdot \phi_{1}\right) \\
\vdots \\
\left(\eta_{i} \cdot \phi_{k}\right)
\end{array}\right) \quad Y^{*}=\left(\begin{array}{cccc}
\overrightarrow{0} & \overrightarrow{0} & \ldots & \overrightarrow{0} \\
1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

Reference k-plane Y^{*} orthogonal to external z_{i}. We consider integral

$$
A_{n, k}=\int d^{4} \phi_{1} \ldots d^{4} \phi_{k} \int \delta\left(Y-Y^{*}\right) \Omega_{P_{n, k}}
$$

Loop amplitudes

MHV amplitudes

Let us start with MHV amplitudes where there is no dependence on η. External data are just original $Z_{i}=z_{i}$.
The loop variable is represented by a line $Z_{A} Z_{B}$, at one-loop we have just one line parametrized as

$$
A_{\alpha}^{I}=C_{\alpha a} Z_{a}^{I}, \quad \text { where } \alpha=1,2
$$

where $A_{\alpha}=(A, B)$. We demand the matrix of coefficients to be positive, ie. $C \in G_{+}(2, n)$ and $Z \in G_{+}(4, n)$.

Boundaries of this region are $\langle A B i j\rangle$:

$$
\langle A B i j\rangle=\sum_{a<b}(a b)\langle a b i j\rangle
$$

Only $\langle A B i i+1\rangle$ are always positive - boundaries of the space.

MHV amplitudes

"Triangles" are just 4-dimensional cells of $G_{+}(2, n)$: "kermits"
Natural triangulation

$$
P_{n}=\sum_{i<j}[1, i, i+1 ; 1, j, j+1]
$$

where
$C_{1, i, i+1,1, j, j+1}=\left(\begin{array}{cccccccccccccc}1 & 0 & \ldots & 0 & c_{i} & c_{i+1} & 0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 \\ -1 & 0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 & c_{j} & c_{j+1} & 0 & \ldots & 0\end{array}\right)$
Each kermit has a simple form $\Omega_{P}=\operatorname{dlog} c_{i} \operatorname{dlog} c_{i+1} \operatorname{dlog} c_{j} \operatorname{dlog} c_{j+1}$, the full MHV one-loop amplitude is then

$$
\Omega_{P}=\sum_{i<j} \frac{\left\langle A B d^{2} A\right\rangle\left\langle A B d^{2} B\right\rangle\langle A B(i-1 i i+1) \bigcap(j-1 j j+1)\rangle^{2}}{\langle A B 1 i\rangle\langle A B 1 i+1\rangle\langle A B i i+1\rangle\langle A B 1 j\rangle\langle A B 1 j+1\rangle\langle A B j j+1\rangle}
$$

MHV amplitudes

At two-loop we have two lines $Z_{A} Z_{B}, Z_{C} Z_{D}$,

We combine matrices into

$$
\begin{aligned}
A_{\alpha}^{(1) I} & =C_{\alpha a}^{(1)} Z_{a}^{I} \\
A_{\alpha}^{(2) I} & =C_{\alpha a}^{(2)} Z_{a}^{I}
\end{aligned}
$$

$$
C=\binom{C^{(1)}}{C^{(2)}}
$$

We demand $C^{(1)}, C^{(2)}$ to be both $G_{+}(2, n)$. This is a "square" of one-loop problem: $\left(A_{n}^{1-\text { loop }}\right)^{2}$.

Additional constraint: All (4×4) minors of C are positive! This gives MHV two-loop amplitude.

We did many numerical checks that this picture is correct.

MHV amplitudes

New feature: "triangles" are not known to mathematicians, it is a generalization of the positive Grassmannian, the form for each "triangle" is again the dlog of all positive variables.

One way to triangulate: BCFW loop recursion - we checked it triangulates the space. But geometrically it is not very natural.

New geometric triangulation for 4pt 2-loop: new formula not derivable from any physical approach.

Local expansion: not positive term by term! It is not a triangulation (perhaps some external triangulation).

MHV amplitudes

At L-loop we have L lines A_{α}^{I}.

$$
\begin{aligned}
A_{\alpha}^{(1) I} & =C_{\alpha a}^{(1)} Z_{a}^{I} \\
\vdots & \\
A_{\alpha}^{(L) I} & =C_{\alpha a}^{(L)} Z_{a}^{I}
\end{aligned}
$$

$$
C=\left(\begin{array}{c}
C^{(1)} \\
\vdots \\
C^{(L)}
\end{array}\right)
$$

Positivity constraints:

- External data Z are positive.
- All minors of $C^{(1)}$ are positive.
- All (4×4) minors made of $C^{(i)}, C^{(j)}$ are positive, all (6×6) minors of $C^{(i)}, C^{(j)}, C^{(k)}$, etc. are also positive.
This conjecture passes many checks: locality, unitarity but also planarity are consequences of positivity.

MHV amplitudes

The geometry problem for 4 pt is incredible simple and it should be tractable to triangulate this space to all loop orders.

We have 2 d vectors a_{i}, b_{i} for $i=1, \ldots, L$ and we demand

- They all live in the first quadrant.
- For any pair $\left(a_{i}-b_{i}\right) \cdot\left(a_{j}-b_{j}\right)<0$.
- Triangulation: Find all possible configurations of vectors!

We did it manually up to 3-loops.

Cuts from positivity

Let us take $4 \mathrm{pt} \ell$-loop MHV amplitude and consider its cuts.

$$
C_{1}=\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & *
\end{array}\right) \quad \ldots \quad C_{\ell}=\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & *
\end{array}\right)
$$

Unitarity cut: $\langle A B 12\rangle=\langle A B 34\rangle=0$.

$$
C_{1}=\left(\begin{array}{llll}
1 & x & 0 & 0 \\
0 & 0 & y & 1
\end{array}\right)
$$

Positivity: $x, y>0$ and also

$$
(23)_{i}+x y(14)_{i}-x(13)_{i}-y(24)_{i}>0
$$

for all other matrices $i=2, \ldots, \ell$.

Cuts from positivity

For each loop we have:

$$
(12),(13),(14),(23),(24),(34)>0, \quad(23)+x y(14)-x(13)-y(24)>0
$$ splits the problem into two regions:

$$
C^{(1)}=C(1,2-x 1,3-y 4,4), \quad C^{(2)}=C\left(1-\frac{1}{x} 2,2,3,4-\frac{1}{y} 3\right)
$$

We can do it for all $\ell-1$ loops, all internal positivities magically work out and the result is

Cuts from positivity

$$
\begin{aligned}
& \text { Cut } A_{\ell}(1,2,3,4) \\
& \qquad=\sum_{\ell_{1}+\ell_{2}=\ell-1} A_{\ell_{1}}(1,2-x 1,3-y 4,4) A_{\ell_{2}}\left(1-\frac{1}{x} 2,2,3,4-\frac{1}{y} 3\right)
\end{aligned}
$$

which is the classical example of unitarity cut,

Cuts from positivity

Another example is the non-planar cut,

corresponding to $\langle A B 12\rangle=\langle A B 34\rangle=\langle C D 23\rangle=\langle C D 41\rangle=0$.
In this case first two C-matrices are localized to

$$
C_{1}=\left(\begin{array}{cccc}
1 & x & 0 & 0 \\
0 & 0 & y & 1
\end{array}\right) \quad C_{2}=\left(\begin{array}{cccc}
0 & 1 & a & 0 \\
-1 & 0 & 0 & b
\end{array}\right)
$$

But the (4×4) minor of $C_{1} C_{2}$ is then

$$
\left|C_{1} C_{2}\right|=-y b-x a<0
$$

and therefore the cut must be vanishing.

Cuts from positivity

There are examples that are not images of any known properties of amplitude: $\langle A B 12\rangle=\langle A B 23\rangle=\langle C D 34\rangle=\langle C D 41\rangle=\langle A B C D\rangle=0$.

This appears non-trivially even at two-loops!
Solution to this cut is not compatible with positivity of all minors and therefore it is forbidden.

Indeed this 5-cut vanishes at all loop orders for any n, invisible in local expansion.

Cuts from positivity

Let us consider 2 L cut at any loop order:

Parametrization of C matrices

$$
\begin{array}{cl}
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & x_{i} & 1 & y_{i}^{-1}
\end{array}\right) & \left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-u_{j}^{-1} & 0 & v_{j} & 1
\end{array}\right) \\
\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
-1 & -w_{k}^{-1} & 0 & z_{k}
\end{array}\right) & \left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
-s_{l} & -1 & -t_{l}^{-1} & 0
\end{array}\right)
\end{array}
$$

Cuts from positivity

Define

$$
\Omega(x, y)=\sum_{\sigma} \frac{d y_{1} \ldots d y_{\ell}}{y_{\sigma_{1}}\left(y_{\sigma_{2}}-y_{\sigma_{1}}\right) \ldots\left(y_{\sigma_{n}}-y_{\sigma_{n}-1}\right)} \prod_{i} \frac{d x_{i}}{\left(x_{i}-y_{\sigma_{n}}\right)}
$$

The residue is then

$$
\Omega=\Omega(v, y) \Omega(x, t) \Omega(z, u) \Omega(s, w)
$$

All-loop information, impossible to get using any standard method.

General case

In the general case of n-pt L-loop $\mathrm{N}^{k} \mathrm{MHV}$ amplitude we have

- Positive $k+4$-dimensional external data Z.
- k-plane Y in $k+4$ dimensions
- L lines in 4-dimensional complement to Y plane

$$
\begin{aligned}
& Y_{\sigma}^{I}=C_{\sigma a} Z_{a}^{I} \\
& A_{\alpha}^{(1) I}=C_{\alpha a}^{(1)} Z_{a}^{I} \\
& C=\left(\begin{array}{c}
C \\
C^{(1)} \\
\vdots \\
C^{(L)}
\end{array}\right)
\end{aligned}
$$

Positivity constraints:

- C is positive.
- $C+$ any combination of $C^{(i)}$'s is positive.

Everything is Positive

Positivity of amplitude

The integrand itself is positive in the positive region

- Choose positive external data Z_{i}.
- Choose Y-plane and lines $A B_{j}$ to be inside the positive region.
- The numerical value of the function is positive!

Checked for all available results available in the literature:

- Many tree amplitudes.
- MHV up to 3-loop, and up to 7-loop for 4pt.
- NMHV up to 2-loop.
- N^{k} MHV for 1-loop.

Even more surprising: the integrated IR finite expressions are positive for positive external data!

Positivity of amplitude

We checked the one-loop ratio functions for high n, k.

$$
R_{n, k}^{1-l o o p}=A_{n, k}^{1-l o o p}-A_{n, k}^{\text {tree }} \cdot A_{n, 0}^{1-\text { loop }}
$$

For six-point NMHV:

$$
R_{6,1}^{1-\text { loop }}=H_{1} \cdot[(2)-(3)+(4)]+\text { cycl. }
$$

where H_{1} is the chiral hexagon integral with unit LS,

$$
H_{1}=\frac{1}{2}\left[\operatorname{Li}_{2}(1-u)+\operatorname{Li}_{2}(1-v)+\operatorname{Li}_{2}(1-w)+\log (w) \log (u)-2 \zeta_{2}\right]
$$

In the positive region the sum is positive. Very non-trivial: combines rational functions (1), (2), .. (6) with dilogs.

Positivity of amplitude

Positivity of MHV remainder function:

$$
\begin{aligned}
R_{6}^{2-l o o p} & =\sum_{i=1}^{3}\left(L_{4}\left(x_{i}^{+}, x_{i}^{-}\right)-\frac{1}{2} \operatorname{Li}_{4}\left(1-1 / u_{i}\right)\right)-\frac{1}{8}\left(\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-1 / u_{i}\right)\right)^{2} \\
& +\frac{J^{4}}{24}+\frac{\pi^{2} J^{2}}{12}+\frac{\pi^{4}}{72}
\end{aligned}
$$

is positive in the positive region. Here the positivity implies
$u, v, w>0, \quad 1-u-v-w>0, \quad \Delta=(1-u-v-w)^{2}-4 u v w>0$
Lance checked the 3-loop remainder to be uniformly negative in this positive region (looking forward to 4-loops!)
Relation to cluster coordinates (see Mark tomorrow).

Conclusions

Definition of the object

The n-pt L-loop $\mathrm{N}^{k} \mathrm{MHV}$ amplitude:

- Positive $k+4$-dimensional external data Z.
- k-plane Y in $k+4$ dimensions
- L lines in 4-dimensional complement to Y plane

$$
\begin{aligned}
Y_{\sigma}^{I} & =C_{\sigma a} Z_{a}^{I} \\
A_{\alpha}^{(1) I} & \left.=C_{\alpha a}^{(1)} Z_{a}^{I} \quad C=\left(\begin{array}{c}
C \\
C^{(1)} \\
\vdots \\
C^{(L)}
\end{array}\right) \quad \begin{array}{c}
\text { k-plawe } \\
\text { dII } \\
\hline 4-d_{i m} \\
48 / d_{0}!
\end{array}\right\}(\mathrm{le}+4) \mathrm{dim},
\end{aligned}
$$

Positivity constraints:

- C is positive.
- $C+$ any combination of $C^{(i)}$'s is positive.
- We defined the Positive region $P_{n, k, \ell}$ and canonical form $\Omega_{n, k, \ell}$ with logarithmic singularities on the boundaries of this region.
- The n-pt ℓ-loop $\mathrm{N}^{k} \mathrm{MHV}$ amplitude then directly corresponds to this form.
- Calculating amplitude $=$ triangulating the positive region $\Omega_{n, k, \ell}$.
- Positivity of the integrand and also integrated expressions!

It is remarkable that this mathematical structure, generalizing positivity beyond the usual positive grassmannian, gives a complete definition of scattering amplitudes in planar $\mathrm{N}=4 \mathrm{SYM}$

- No reference to usual field theory notions whatsoever: no Feynman diagrams, not even on-shell diagams or recursion relations.
- Locality and Unitarity emerge from positivity.
- This rich structure is also completely new to the mathematicians.

It is remarkable that this mathematical structure, generalizing positivity beyond the usual positive grassmannian, gives a complete definition of scattering amplitudes in planar $\mathrm{N}=4 \mathrm{SYM}$

- No reference to usual field theory notions whatsoever: no Feynman diagrams, not even on-shell diagams or recursion relations.
- Locality and Unitarity emerge from positivity.
- This rich structure is also completely new to the mathematicians.

THANK YOU!

