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A geometric approach to topological groups

The goal of these talks is to present a new geometric approach to the
study of automorphism groups and more general topological groups.

As it turns out, this theory will extend geometric group theory of finitely
and compactly generated groups and thus permit a full scale import of the
vocabulary, tools and problems of that theory to our more general setting.

Similarly, our theory generalises geometric non-linear functional analysis
and hence provides a common framework for these two hitherto disjoint
theories.

The ultimate aim is to

provide a geometric picture of topological groups as we have of say
f.g. groups, Lie groups and Banach spaces,

identify new computable isomorphic invariants of topological groups.
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Overview of the three lectures:

1 Coarse geometry of topological groups

2 Geometry of automorphism groups

3 Equivariant geometry of topological groups
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First lecture:
Coarse geometry of topological groups
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Uniform spaces

To understand the framework, let us recall A. Weil’s concept of uniform
spaces.

A uniform space is a set X equipped with a family U of subsets
E ⊆ X × X called entourages verifying the following conditions.

1 Every E ∈ U contains the diagonal ∆ = {(x , x)
∣∣ x ∈ X},

2 U is closed under taking supersets, finite intersections and inverses,
E 7→ E−1 = {(y , x)

∣∣ (x , y) ∈ E},
3 for any E ∈ U , there is F ∈ U so that

F ◦ F = {(x , z)
∣∣ ∃y (x , y), (y , z) ∈ F} ⊆ E .

A uniform space is intended to capture the idea of being uniformly close in
a topological space and hence gives rise to concepts of Cauchy sequences
and completeness.
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Pseudometric spaces

The canonical example of a uniform space is when (X , d) is a metric or,
more generally, a pseudometric space.

Recall here that an écart on X is a map d : X × X → R+ satisfying

d(x , x) = 0,

d(x , y) = d(y , x),

d(x , z) 6 d(x , y) + d(y , z).

A pseudometric space is a set X equipped with an écart.

In this case, we may, for every α > 0, set

Eα = {(x , y)
∣∣ d(x , y) < α}

and define a uniformity Ud by

Ud = {E ⊆ X × X
∣∣ ∃α > 0 Eα ⊆ E}.
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J. Roe’s Coarse spaces

A coarse space is a set X equipped with a collection E of subsets
E ⊆ X × X called entourages satisfying the following conditions.

1 The diagonal ∆ belongs to E ,

2 if E ⊆ F ∈ E , then also E ∈ E ,

3 if E ,F ∈ E , then E ∪ F ,E−1,E ◦ F ∈ E .

Again, if (X , d) is a pseudometric space, there is a canonical coarse
structure Ed obtained by

Ed = {E ⊆ X × X
∣∣ ∃α <∞ E ⊆ Eα}.

The main point here is that, for a uniform structure, we are interested in
Eα for α small, but positive, while, for a coarse structure, α is often large,
but finite.
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Morphisms

Recall that a map φ : (X ,U)→ (M,V) between uniform spaces is
uniformly continuous if

∀F ∈ V ∃E ∈ U : (x , y) ∈ E ⇒
(
φ(x), φ(y)

)
∈ F .

Similarly, a map φ : (X , E)→ (M,F) between coarse spaces is
bornologous if

∀E ∈ E ∃F ∈ F : (x , y) ∈ E ⇒
(
φ(x), φ(y)

)
∈ F .

Moreover, φ is a coarse embedding if in addition

∀F ∈ F ∃E ∈ E : (x , y) /∈ E ⇒
(
φ(x), φ(y)

)
/∈ F .

E.g., a map φ : (X , d)→ (M, ∂) is a coarse embedding if

ρ
(
d(x , y)

)
6 ∂

(
φ(x), φ(y)

)
6 ω

(
d(x , y)

)
for some ρ, ω : R+ → R+ with limt→∞ ρ(t) =∞.
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Left-uniform structure on a topological group

If G is a topological group, its left-uniformity UL is that generated by
entourages of the form

EV = {(x , y) ∈ G × G
∣∣ x−1y ∈ V },

where V varies over all identity neighbourhoods in G .

A basic theorem, due essentially to G. Birkhoff (fils) and S. Kakutani, is
that

UL =
⋃
d

Ud ,

where the union is taken over all continuous left-invariant écarts d on G ,
i.e., so that

d(zx , zy) = d(x , y).

Christian Rosendal Coarse geometry of topological groups Durham, July 2015 9 / 25



Left-uniform structure on a topological group

If G is a topological group, its left-uniformity UL is that generated by
entourages of the form

EV = {(x , y) ∈ G × G
∣∣ x−1y ∈ V },

where V varies over all identity neighbourhoods in G .

A basic theorem, due essentially to G. Birkhoff (fils) and S. Kakutani, is
that

UL =
⋃
d

Ud ,

where the union is taken over all continuous left-invariant écarts d on G ,
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Left-coarse structure on a topological group

Now, coarse structures should be viewed as dual to uniform structures, so
we obtain appropriate definitions by placing negations strategically in
definitions for concepts of uniformities.

Definition

If G is a topological group, its left-coarse structure EL is given by

EL =
⋂
d

Ed ,

where the intersection is taken over all continuous left-invariant écarts d
on G .
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Relatively OB sets

The definition of the coarse structure EL is not immediately transparent
and it is thus useful to have alternate descriptions of it.

Definition

A subset A ⊆ G of a topological group is said to be relatively (OB) in G if

diamd(A) <∞

for every continuous left-invariant écart d on G .

One may easily show that the class OB of relatively (OB) subsets is an
ideal of subsets of G stable under the operations

A 7→ A−1, (A,B) 7→ AB and A 7→ A.
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Proposition

The left-coarse structure EL on a topological group G is generated by
entourages of the form

EA = {(x , y)
∣∣ x−1y ∈ A},

where A ∈ OB.

Though our theory is applicable to all topological groups, given the topic
of the conference, we shall mainly focus on automorphism groups or, more
generally, on Polish, that is, separable and completely metrisable
topological groups.
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By the mechanics of the Birkhoff–Kakutani metrisation theorem, we have
the following description of the relatively (OB) sets.

Proposition

A subset A of a Polish group G is relatively (OB) if and only if, for every
identity neighbourhood V , there are a finite set F ⊆ G and k > 1 so that

A ⊆ (FV )k .

• For example, the relatively (OB) subsets of a countable discrete group
are simply the finite sets.

• More generally, in a locally compact σ-compact group, they are the
relatively compact subsets.

• Similarly, in the underlying additive group (X ,+) of a Banach space
(X , ‖ · ‖), they are the norm bounded subsets.
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Metrisability

As with the topology and left-uniformity on a topological group,
metrisability of the left-coarse structure is not automatic.

Here a coarse space (X , E) is metrisable if there is a metric d on X so that
E = Ed .

Theorem

The following conditions are equivalent for a Polish group G .

1 The left-coarse structure EL is metrisable,

2 there is a compatible left-invariant metric d on G so that EL = Ed ,

3 G is locally (OB), i.e., there is a relatively (OB) identity
neighbourhood V ⊆ G .
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In case d is a continuous left-invariant écart inducing the coarse structure
on G , that is, EL = Ed , we say that d is coarsely proper.

Thus, d is coarsely proper if and only if the finite d-diameter subsets of G
are simply the relatively (OB) sets.

Alternatively, we may quasiorder the continuous left-invariant écarts on G
by

∂ ≪ d ⇔ ∃ρ : R+ → R+ so that ∂(x , y) 6 ρ
(
d(x , y)

)
⇔ id : (G , d)→ (G , ∂) is bornologous.

The coarsely proper écarts are then the maximal elements in this ordering.

The previous theorem can be seen as an extension of a result due to S.
Kakutani and K. Kodaira stating that every locally compact σ-compact
group carries a continuous left-invariant proper écart, i.e., so that balls are
compact.
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A canonical and, in some sense, the only example of a non-locally (OB)
Polish group is an infinite product of groups without property (OB).

For example, ∏
n∈N

Z.

Indeed, by a result of B. de Mendonça Braga, every Polish group
isomorphically and coarsely embeds into∏

n∈N
Aff(G),

where Aff(G) is the group of affine isometries of the Gurarii Banach space,
which is coarsely equivalent to G.
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Quasimetric spaces

The previous definitions and results identifies a canonical coarse geometry
of every topological group G , that for locally (OB) Polish groups is given
by a coarsely proper écart.

However, often an even stronger canonical geometry can be detected, i.e.,
a geometry distinguishing finer features of the groups.

Definition

A map φ : (M, dM)→ (N, dN) between pseudometric spaces is said to be a
quasi-isometric embedding if there are constants K and C so that

1

K
· dM(x , y)− C 6 dN(φx , φy) 6 K · dM(x , y) + C .

Moreover, φ is a quasi-isometry if in addition φ[M] is cobounded in N,
that is, supy∈N dN(y , φ[M]) <∞.
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Example: Finitely generated groups

Consider a finitely generated group Γ and fix a finite symmetric generating
set S ⊆ Γ.

We may define a length function on Γ by letting

`S(x) = min(k
∣∣ ∃s1, . . . , sk ∈ S : x = s1 · · · sk).

From this we define a left-invariant metric on Γ, called the word metric, by

ρS(x , y) = `S(x−1y).

The fundamental observation underlying geometric group theory is then
that given any two finite symmetric generating sets S ,S ′ ⊆ Γ, the word
metrics ρS and ρS ′ are quasi-isometric, i.e.,

id : (Γ, ρS)→ (Γ, ρS ′) is a quasi-isometry.
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Quasimetric structure

To generalise the example of finitely generated groups, we refine the
quasiordering ≪ of continuous left-invariant écarts as follows.

∂ � d ⇔ ∃K ,C ∂ 6 K · d + C .

The maximal elements in this ordering (provided they exist) are called
maximal écarts on G .

Since � refines ≪, every maximal écart is automatically coarsely proper.

Also, any two maximal écarts are necessarily quasi-isometric and thus
provide a canonical and well-defined quasimetric structure on G .

Here a quasimetric space is simply a set with a quasi-isometric equivalence
class of écarts.
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maximal écarts on G .
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Proposition

The following are equivalent for a continuous left-invariant écart d on a
topological group G .

1 d is maximal,

2 there is a relatively (OB) subset A ⊆ G algebraically generating G so
that d and ρA are quasi-isometric.

Theorem

A Polish group G admits a maximal écart if and only if G is (OB)
generated, that is, there is a relatively (OB) subset A ⊆ G algebraically
generating G .

Our study therefore reduces to investigating Polish groups with the word
metric ρA induced by some/any relatively (OB) generating set A ⊆ G ..
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Examples

The word metric ρS of a finite symmetric generating set S of a discrete
group Γ is maximal and thus identifies the quasimetric structure of Γ
viewed as a topological group.

For example, the free non-abelian group F2 on two generators a, b gives
rise to the quasimetric space

• •

•

•

•

•

•
a−1

bba−1 ba

1

b−1

a

aba−1b

a−1b−1 ab−1

b−1a−1 b−1a

b−2

b2

a2a−2
• •

• •

• •

•

••

•
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Let F denote the normal subgroup of S∞ consisting of all finitely
supported permutations.

Viewing F as a countable discrete group, the action S∞ y F by
conjugation is continuous.

Also, as S∞ has property (OB), a simple calculation shows that the
semidirect product

S∞ n F

is quasi-isometric to F equipped with the word metric

ρ{transpositions}.

Christian Rosendal Coarse geometry of topological groups Durham, July 2015 22 / 25



Let F denote the normal subgroup of S∞ consisting of all finitely
supported permutations.

Viewing F as a countable discrete group, the action S∞ y F by
conjugation is continuous.

Also, as S∞ has property (OB), a simple calculation shows that the
semidirect product

S∞ n F

is quasi-isometric to F equipped with the word metric

ρ{transpositions}.

Christian Rosendal Coarse geometry of topological groups Durham, July 2015 22 / 25



Let F denote the normal subgroup of S∞ consisting of all finitely
supported permutations.

Viewing F as a countable discrete group, the action S∞ y F by
conjugation is continuous.

Also, as S∞ has property (OB), a simple calculation shows that the
semidirect product

S∞ n F

is quasi-isometric to F equipped with the word metric

ρ{transpositions}.

Christian Rosendal Coarse geometry of topological groups Durham, July 2015 22 / 25



Similarly, every compactly generated locally compact group admits a
continuous left-invariant écart quasi-isometric to the word metric of a
compact generating set.

Proposition

Any continuous left-invariant geodesic écart is maximal.

Thus, the norm-metric d‖·‖ on a Banach space (X , ‖ · ‖) is maximal.

Thus, the topological group (X ,+) is quasi-isometric to the Banach space
(X , ‖ · ‖).

From these examples we see that the theory presented is a conservative
extension of geometric group theory for finitely or compactly generated
groups and of the geometric non-linear analysis of Banach spaces.

Christian Rosendal Coarse geometry of topological groups Durham, July 2015 23 / 25



Similarly, every compactly generated locally compact group admits a
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Homeomorphism groups

Let M be a compact manifold and V = {Vi}ki=1 an open covering of M.

By fundamental work of Edwards and Kirby, there is an identity
neighbourhood U in Homeo(M) so that every element h ∈ U can be
written as h = g1 · · · gk , where

supp(gi ) ⊆ Vi .

We may thus define the corresponding fragmentation norm on the identity
component Homeo0(M) of isotopically trivial homeomorphisms by letting

`V(h) = min(m
∣∣ h = g1 · · · gm & supp(gi ) ⊆ Vji for some ji ).

From this, we obtain a left-invariant metric by

ρV(g , f ) = `V(g−1f ).
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Proposition (K. Mann & C.R.)

For all covers V of a compact manifold M by embedded open balls, the
metric ρV is quasi-isometric to a maximal metric on Homeo0(M).

We should mention that, in the case of compact surfaces M, E. Militon in
previous work has been able to explicitly describe this maximal metric as
the maximal displacement metric on the universal cover M̃.

Theorem

For all n > 1, Homeo0(Sn) is quasi-isometric to a point.

Theorem (K. Mann and C.R.)

Let M be a compact manifold of dimension > 2 so that π1(M) contains
an element of infinite order. Then there is a quasi-isometric isomorphic
embedding of the Banach space C ([0, 1]) into Homeo0(M).
In particular, every separable metric space admits a quasi-isometric
embedding into Homeo0(M).
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