Large scale geometry of automorphism groups

Christian Rosendal, University of Illinois at Chicago

Permutation groups and transformation semigroups, Durham, July 2015

Second lecture: Geometry of automorphism groups

Applications to model theory

The goal of our second lecture is to apply the machinery developed for general topological groups to the special case of non-Archimedean Polish groups.

Applications to model theory

The goal of our second lecture is to apply the machinery developed for general topological groups to the special case of non-Archimedean Polish groups.

Here the non-Archimedean Polish groups are simply those isomorphic to closed subgroups of S_{∞} or equivalently to automorphism groups

of countable first-order structures M.

Applications to model theory

The goal of our second lecture is to apply the machinery developed for general topological groups to the special case of non-Archimedean Polish groups.

Here the non-Archimedean Polish groups are simply those isomorphic to closed subgroups of S_{∞} or equivalently to automorphism groups

of countable first-order structures M.

The topology on $\operatorname{Aut}(\mathbf{M})$ is always that obtained by declaring pointwise stabilisers

$$V_{\overline{a}} = \{ g \in \operatorname{Aut}(\mathbf{M}) \mid g(\overline{a}) = \overline{a} \}$$

of finite tuples \overline{a} in M to be open.



Given an automorphism group $\operatorname{Aut}(\mathbf{M})$, we wish to find a canonical generating set $S \subseteq \operatorname{Aut}(\mathbf{M})$ and then to compute the corresponding word metric ρ_S on $\operatorname{Aut}(\mathbf{M})$.

Given an automorphism group $\operatorname{Aut}(\mathbf{M})$, we wish to find a canonical generating set $S \subseteq \operatorname{Aut}(\mathbf{M})$ and then to compute the corresponding word metric ρ_S on $\operatorname{Aut}(\mathbf{M})$.

Canonical here means that S should be relatively (OB) in Aut(M),

Given an automorphism group $\operatorname{Aut}(\mathbf{M})$, we wish to find a canonical generating set $S \subseteq \operatorname{Aut}(\mathbf{M})$ and then to compute the corresponding word metric ρ_S on $\operatorname{Aut}(\mathbf{M})$.

Canonical here means that S should be relatively (OB) in $\operatorname{Aut}(\mathbf{M})$, i.e., that, for every identity neighbourhood $V \ni 1$, there is a finite set F and a $k \geqslant 1$ with

$$S \subseteq (FV)^k$$
.

Given an automorphism group $\operatorname{Aut}(\mathbf{M})$, we wish to find a canonical generating set $S \subseteq \operatorname{Aut}(\mathbf{M})$ and then to compute the corresponding word metric ρ_S on $\operatorname{Aut}(\mathbf{M})$.

Canonical here means that S should be relatively (OB) in $\operatorname{Aut}(\mathbf{M})$, i.e., that, for every identity neighbourhood $V \ni 1$, there is a finite set F and a $k \geqslant 1$ with

$$S \subseteq (FV)^k$$
.

Provided this holds, then, up to quasi-isometry,

 $ho_{\mathcal{S}}$ is independent of the choice of \mathcal{S}

so defines an isomorphic invariant of the group, the quasi-isometry type.

That is, for all finite tuples \overline{a} and \overline{b} in M,

$$\mathcal{O}(\overline{a}) = \mathcal{O}(\overline{b}) \;\; \Leftrightarrow \;\; \operatorname{tp}^{\boldsymbol{\mathsf{M}}}(\overline{a}) = \operatorname{tp}^{\boldsymbol{\mathsf{M}}}(\overline{b}),$$

where $\mathcal{O}(\bar{a})$ denotes the orbit of \bar{a} under the action of $\operatorname{Aut}(\mathbf{M})$ on $\mathbf{M}^{|\bar{a}|}$.

That is, for all finite tuples \bar{a} and \bar{b} in M,

$$\mathcal{O}(\overline{a}) = \mathcal{O}(\overline{b}) \Leftrightarrow \operatorname{tp}^{\mathbf{M}}(\overline{a}) = \operatorname{tp}^{\mathbf{M}}(\overline{b}),$$

where $\mathcal{O}(\bar{a})$ denotes the orbit of \bar{a} under the action of $\operatorname{Aut}(\mathbf{M})$ on $\mathbf{M}^{|\bar{a}|}$.

Some of the tasks avaiting us are then

That is, for all finite tuples \bar{a} and \bar{b} in M,

$$\mathcal{O}(\overline{a}) = \mathcal{O}(\overline{b}) \Leftrightarrow \operatorname{tp}^{\mathbf{M}}(\overline{a}) = \operatorname{tp}^{\mathbf{M}}(\overline{b}),$$

where $\mathcal{O}(\bar{a})$ denotes the orbit of \bar{a} under the action of $\operatorname{Aut}(\mathbf{M})$ on $\mathbf{M}^{|\bar{a}|}$.

Some of the tasks avaiting us are then

 to develop criteria in terms of M for when Aut(M) is locally (OB) or (OB) generated,

That is, for all finite tuples \bar{a} and \bar{b} in M,

$$\mathcal{O}(\overline{a}) = \mathcal{O}(\overline{b}) \Leftrightarrow \operatorname{tp}^{\mathbf{M}}(\overline{a}) = \operatorname{tp}^{\mathbf{M}}(\overline{b}),$$

where $\mathcal{O}(\bar{a})$ denotes the orbit of \bar{a} under the action of $\operatorname{Aut}(\mathbf{M})$ on $\mathbf{M}^{|\bar{a}|}$.

Some of the tasks avaiting us are then

- to develop criteria in terms of M for when Aut(M) is locally (OB) or (OB) generated,
- ② similarly, provide realisations of and tools for analysing the large scale geometry of Aut(M),

That is, for all finite tuples \bar{a} and \bar{b} in M,

$$\mathcal{O}(\overline{a}) = \mathcal{O}(\overline{b}) \Leftrightarrow \operatorname{tp}^{\mathbf{M}}(\overline{a}) = \operatorname{tp}^{\mathbf{M}}(\overline{b}),$$

where $\mathcal{O}(\overline{a})$ denotes the orbit of \overline{a} under the action of $\operatorname{Aut}(\mathbf{M})$ on $\mathbf{M}^{|\overline{a}|}$.

Some of the tasks avaiting us are then

- to develop criteria in terms of M for when Aut(M) is locally (OB) or (OB) generated,
- ${f 2}$ similarly, provide realisations of and tools for analysing the large scale geometry of ${
 m Aut}({f M}),$
- \odot show how the geometry of $\mathrm{Aut}(\mathbf{M})$ interacts with the algebraic and dynamical structure of the group and with the structure \mathbf{M} .

A basic organisational tool will be that of orbital graphs functioning as a replacement for the Cayley graphs of finitely generated groups.

A basic organisational tool will be that of orbital graphs functioning as a replacement for the Cayley graphs of finitely generated groups.

So assume \mathbf{M} is a countable ω -homogeneous structure, \overline{a} is a finite tuple in \mathbf{M} and \mathcal{S} is a finite collection of parameter-free complete types on \mathbf{M} .

A basic organisational tool will be that of orbital graphs functioning as a replacement for the Cayley graphs of finitely generated groups.

So assume \mathbf{M} is a countable ω -homogeneous structure, \overline{a} is a finite tuple in \mathbf{M} and \mathcal{S} is a finite collection of parameter-free complete types on \mathbf{M} .

Without loss of generality, we may assume that $\mathcal S$ consists of types of the form $p=\operatorname{tp}^{\mathsf{M}}(\overline{b},\overline{c})$, where

$$\operatorname{tp}^{\mathsf{M}}(\overline{a}) = \operatorname{tp}^{\mathsf{M}}(\overline{b}) = \operatorname{tp}^{\mathsf{M}}(\overline{c}).$$

A basic organisational tool will be that of orbital graphs functioning as a replacement for the Cayley graphs of finitely generated groups.

So assume \mathbf{M} is a countable ω -homogeneous structure, \overline{a} is a finite tuple in \mathbf{M} and \mathcal{S} is a finite collection of parameter-free complete types on \mathbf{M} .

Without loss of generality, we may assume that $\mathcal S$ consists of types of the form $p=\operatorname{tp}^{\mathsf{M}}(\overline{b},\overline{c})$, where

$$\operatorname{tp}^{\mathsf{M}}(\overline{a}) = \operatorname{tp}^{\mathsf{M}}(\overline{b}) = \operatorname{tp}^{\mathsf{M}}(\overline{c}).$$

We define a graph $X_{\overline{a},S}$ on the set $\mathcal{O}(\overline{a})$ of realisations of $\operatorname{tp}^{\mathbf{M}}(\overline{a})$ in \mathbf{M} by connecting distinct $\overline{b}, \overline{c} \in \mathcal{O}(\overline{a})$ by an edge if and only if

$$\operatorname{tp}^{\boldsymbol{\mathsf{M}}}(\overline{b},\overline{c}) \in \mathcal{S} \quad \text{or} \quad \operatorname{tp}^{\boldsymbol{\mathsf{M}}}(\overline{c},\overline{b}) \in \mathcal{S}.$$

A basic organisational tool will be that of orbital graphs functioning as a replacement for the Cayley graphs of finitely generated groups.

So assume \mathbf{M} is a countable ω -homogeneous structure, \overline{a} is a finite tuple in \mathbf{M} and \mathcal{S} is a finite collection of parameter-free complete types on \mathbf{M} .

Without loss of generality, we may assume that $\mathcal S$ consists of types of the form $p=\operatorname{tp}^{\mathsf{M}}(\overline{b},\overline{c})$, where

$$\operatorname{tp}^{\mathsf{M}}(\overline{a}) = \operatorname{tp}^{\mathsf{M}}(\overline{b}) = \operatorname{tp}^{\mathsf{M}}(\overline{c}).$$

We define a graph $X_{\overline{a},S}$ on the set $\mathcal{O}(\overline{a})$ of realisations of $\operatorname{tp}^{\mathbf{M}}(\overline{a})$ in \mathbf{M} by connecting distinct $\overline{b}, \overline{c} \in \mathcal{O}(\overline{a})$ by an edge if and only if

$$\operatorname{tp}^{\mathsf{M}}(\overline{b}, \overline{c}) \in \mathcal{S} \quad \text{or} \quad \operatorname{tp}^{\mathsf{M}}(\overline{c}, \overline{b}) \in \mathcal{S}.$$

$$\operatorname{tp}^{\mathsf{M}}(g\overline{b},g\overline{c})=\operatorname{tp}^{\mathsf{M}}(\overline{b},\overline{c})$$

for all tuples \overline{b} , \overline{c} and automorphisms $g \in \operatorname{Aut}(\mathbf{M})$, the diagonal action of $\operatorname{Aut}(\mathbf{M})$ on $\mathcal{O}(\overline{a})$ is an action by automorphisms on the graph $\mathbf{X}_{\overline{a},\mathcal{S}}$.

$$\operatorname{tp}^{\mathsf{M}}(g\overline{b},g\overline{c})=\operatorname{tp}^{\mathsf{M}}(\overline{b},\overline{c})$$

for all tuples \overline{b} , \overline{c} and automorphisms $g \in \operatorname{Aut}(\mathbf{M})$, the diagonal action of $\operatorname{Aut}(\mathbf{M})$ on $\mathcal{O}(\overline{a})$ is an action by automorphisms on the graph $\mathbf{X}_{\overline{a},\mathcal{S}}$.

Moreover, since $\mathcal{O}(\overline{a})$ is a single orbit, the action

$$\operatorname{Aut}(\mathsf{M}) \curvearrowright \mathsf{X}_{\overline{\mathsf{a}},\mathcal{S}}$$

is vertex transitive.

$$\operatorname{tp}^{\boldsymbol{\mathsf{M}}}(g\overline{b},g\overline{c})=\operatorname{tp}^{\boldsymbol{\mathsf{M}}}(\overline{b},\overline{c})$$

for all tuples \overline{b} , \overline{c} and automorphisms $g \in \operatorname{Aut}(\mathbf{M})$, the diagonal action of $\operatorname{Aut}(\mathbf{M})$ on $\mathcal{O}(\overline{a})$ is an action by automorphisms on the graph $\mathbf{X}_{\overline{a},\mathcal{S}}$.

Moreover, since $\mathcal{O}(\overline{a})$ is a single orbit, the action

$$\operatorname{Aut}(\mathsf{M}) \curvearrowright \mathsf{X}_{\overline{a},\mathcal{S}}$$

is vertex transitive.

Also, we let $\rho_{\overline{a},S}$ be the corresponding path-metric on $X_{\overline{a},S}$.

$$\operatorname{tp}^{\mathsf{M}}(g\overline{b},g\overline{c}) = \operatorname{tp}^{\mathsf{M}}(\overline{b},\overline{c})$$

for all tuples \overline{b} , \overline{c} and automorphisms $g \in \operatorname{Aut}(\mathbf{M})$, the diagonal action of $\operatorname{Aut}(\mathbf{M})$ on $\mathcal{O}(\overline{a})$ is an action by automorphisms on the graph $\mathbf{X}_{\overline{a},\mathcal{S}}$.

Moreover, since $\mathcal{O}(\overline{a})$ is a single orbit, the action

$$\operatorname{Aut}(\mathsf{M}) \curvearrowright \mathsf{X}_{\overline{a},\mathcal{S}}$$

is vertex transitive.

Also, we let $\rho_{\bar{a},S}$ be the corresponding path-metric on $\mathbf{X}_{\bar{a},S}$.

By stipulation, we have that $\rho_{\overline{a},S}(\overline{b},\overline{c})=\infty$ if and only if \overline{b} and \overline{c} lie in distinct connected components of $\rho_{\overline{a},S}$.

$$\operatorname{tp}^{\boldsymbol{\mathsf{M}}}(g\overline{b},g\overline{c})=\operatorname{tp}^{\boldsymbol{\mathsf{M}}}(\overline{b},\overline{c})$$

for all tuples \overline{b} , \overline{c} and automorphisms $g \in \operatorname{Aut}(\mathbf{M})$, the diagonal action of $\operatorname{Aut}(\mathbf{M})$ on $\mathcal{O}(\overline{a})$ is an action by automorphisms on the graph $\mathbf{X}_{\overline{a},\mathcal{S}}$.

Moreover, since $\mathcal{O}(\overline{a})$ is a single orbit, the action

$$\operatorname{Aut}(\mathsf{M}) \curvearrowright \mathsf{X}_{\overline{a},\mathcal{S}}$$

is vertex transitive.

Also, we let $\rho_{\bar{a},S}$ be the corresponding path-metric on $\mathbf{X}_{\bar{a},S}$.

By stipulation, we have that $\rho_{\overline{a},S}(\overline{b},\overline{c})=\infty$ if and only if \overline{b} and \overline{c} lie in distinct connected components of $\rho_{\overline{a},S}$.

We thus have a transitive isometric action $\operatorname{Aut}(\mathbf{M}) \curvearrowright (\mathbf{X}_{\overline{a},\mathcal{S}}, \rho_{\overline{a},\mathcal{S}})$.

Let ${\bf M}$ be a countable ω -homogeneous structure.

Then Aut(M) is (OB) generated if and only if there is a finite tuple \bar{a} in M satisfying the following two requirements.

Let ${\bf M}$ be a countable ω -homogeneous structure.

Then $\operatorname{Aut}(\mathbf{M})$ is (OB) generated if and only if there is a finite tuple \overline{a} in \mathbf{M} satisfying the following two requirements.

• There is a finite set $\mathcal R$ of parameter-free types so that $\mathbf X_{\overline a,\mathcal R}$ is connected,

Let M be a countable ω -homogeneous structure.

Then $\operatorname{Aut}(\mathbf{M})$ is (OB) generated if and only if there is a finite tuple \overline{a} in \mathbf{M} satisfying the following two requirements.

- There is a finite set $\mathcal R$ of parameter-free types so that $\mathbf X_{\overline a,\mathcal R}$ is connected, and
- ② for every tuple \overline{b} extending \overline{a} , there is a finite set $\mathcal S$ of parameter-free types so that

$$\{\overline{c} \in \mathcal{O}(\overline{b}) \mid \overline{c} \text{ extends } \overline{a}\}$$

has finite diameter in the graph $\mathbf{X}_{\overline{b},\mathcal{S}}$.

Let M be a countable ω -homogeneous structure.

Then $\operatorname{Aut}(\mathbf{M})$ is (OB) generated if and only if there is a finite tuple \overline{a} in \mathbf{M} satisfying the following two requirements.

- There is a finite set $\mathcal R$ of parameter-free types so that $\mathbf X_{\overline a,\mathcal R}$ is connected, and
- ② for every tuple \overline{b} extending \overline{a} , there is a finite set $\mathcal S$ of parameter-free types so that

$$\{\overline{c} \in \mathcal{O}(\overline{b}) \mid \overline{c} \text{ extends } \overline{a}\}$$

has finite diameter in the graph $\mathbf{X}_{\overline{b},\mathcal{S}}$.

Condition (2), which in itself is equivalent to the pointwise stabiliser $V_{\overline{a}}$ being relatively (OB) in $\operatorname{Aut}(\mathbf{M})$, may require some amount of work to verify.

While the previous result characterises when $\mathrm{Aut}(\mathbf{M})$ is locally (OB) or even (OB) generated, the next result computes the actual quasi-isometry type.

While the previous result characterises when $\operatorname{Aut}(\mathbf{M})$ is locally (OB) or even (OB) generated, the next result computes the actual quasi-isometry type.

Theorem (Milnor-Schwarz Theorem)

For \overline{a} and $\mathcal R$ as above, the map

$$g \in \operatorname{Aut}(\mathbf{M}) \mapsto g \cdot \overline{a} \in \mathbf{X}_{\overline{a},\mathcal{R}}$$

is a quasi-isometry between $Aut(\mathbf{M})$ and $\mathbf{X}_{\bar{a},\mathcal{R}}$.

As an application of this, let \boldsymbol{T} denote the \aleph_0 -regular unrooted tree.

As an application of this, let T denote the \aleph_0 -regular unrooted tree.

Since **T** is vertex transitive, if we let a be any vertex, then $\mathcal{O}(a) = \operatorname{Vert} \mathbf{T}$.

As an application of this, let T denote the \aleph_0 -regular unrooted tree.

Since **T** is vertex transitive, if we let a be any vertex, then $\mathcal{O}(a) = \operatorname{Vert} \mathbf{T}$.

Moreover, one may then verify that Condition (2) is satisfied.

As an application of this, let T denote the \aleph_0 -regular unrooted tree.

Since **T** is vertex transitive, if we let a be any vertex, then $\mathcal{O}(a) = \operatorname{Vert} \mathbf{T}$.

Moreover, one may then verify that Condition (2) is satisfied.

Secondly, let $\mathcal{R} = \{E\}$ consist of the single type which is the edge relation E. Then, since $\mathbf{X}_{a,\mathcal{R}} = \mathbf{T}$ is connected, Condition (1) is also verified.

As an application of this, let T denote the \aleph_0 -regular unrooted tree.

Since **T** is vertex transitive, if we let a be any vertex, then $\mathcal{O}(a) = \operatorname{Vert} \mathbf{T}$.

Moreover, one may then verify that Condition (2) is satisfied.

Secondly, let $\mathcal{R} = \{E\}$ consist of the single type which is the edge relation E. Then, since $\mathbf{X}_{a,\mathcal{R}} = \mathbf{T}$ is connected, Condition (1) is also verified.

By the Milnor-Švarc Theorem, we see that the map

$$g \in \operatorname{Aut}(\mathsf{T}) \mapsto g(a) \in \mathsf{T}$$

is a quasi-isometry between $\operatorname{Aut}(T)$ and $X_{a,\mathcal{R}} = T$.

Reconstruction results common to this area often states that the structure \mathbf{M} can be fully recovered or be recovered up to bi-interpretability from $\mathrm{Aut}(\mathbf{M})$ as a topological or even abstract group.

Reconstruction results common to this area often states that the structure \mathbf{M} can be fully recovered or be recovered up to bi-interpretability from $\mathrm{Aut}(\mathbf{M})$ as a topological or even abstract group.

However, the initial data given, namely $\mathrm{Aut}(\mathbf{M})$ as an abstract group, is an incredibly detailed piece of information.

Reconstruction results common to this area often states that the structure \mathbf{M} can be fully recovered or be recovered up to bi-interpretability from $\mathrm{Aut}(\mathbf{M})$ as a topological or even abstract group.

However, the initial data given, namely $\mathrm{Aut}(\mathbf{M})$ as an abstract group, is an incredibly detailed piece of information.

Instead the result here says that T is recoverable up to quasi-isometry from much coarser topological-algebraic information about $\operatorname{Aut}(T)$, namely the quasi-isometry type of a word metric ρ_S with respect to some relatively (OB) generating set S.

The verification that $\operatorname{Aut}(\mathbf{M})$ is locally (OB) often relies on identifying an appropriate independence relation \bigcup_A between finite subsets of \mathbf{M} relative to a fixed finite subset $A \subseteq \mathbf{M}$ or tuple \overline{a} in \mathbf{M} .

The verification that $\operatorname{Aut}(\mathbf{M})$ is locally (OB) often relies on identifying an appropriate independence relation \bigcup_A between finite subsets of \mathbf{M} relative to a fixed finite subset $A \subseteq \mathbf{M}$ or tuple \overline{a} in \mathbf{M} .

Definition

Let \mathbf{M} be a countable structure and $A \subseteq \mathbf{M}$ a finite subset. An orbital A-independence relation on \mathbf{M} is a binary relation \bigcup_A defined between finite subsets of \mathbf{M}

The verification that $\operatorname{Aut}(\mathbf{M})$ is locally (OB) often relies on identifying an appropriate independence relation \bigcup_A between finite subsets of \mathbf{M} relative to a fixed finite subset $A \subseteq \mathbf{M}$ or tuple \overline{a} in \mathbf{M} .

Definition

Let M be a countable structure and $A \subseteq M$ a finite subset. An orbital A-independence relation on M is a binary relation \bigcup_A defined between finite subsets of M so that, for all finite $B, C, D \subseteq M$,

(i) (symmetry) $B \downarrow_A C \Leftrightarrow C \downarrow_A B$,

The verification that $\operatorname{Aut}(\mathbf{M})$ is locally (OB) often relies on identifying an appropriate independence relation \bigcup_A between finite subsets of \mathbf{M} relative to a fixed finite subset $A \subseteq \mathbf{M}$ or tuple \overline{a} in \mathbf{M} .

Definition

Let M be a countable structure and $A \subseteq M$ a finite subset. An orbital A-independence relation on M is a binary relation \bigcup_A defined between finite subsets of M so that, for all finite $B, C, D \subseteq M$,

- (i) (symmetry) $B \downarrow_A C \Leftrightarrow C \downarrow_A B$,
- (ii) (monotonicity) $B \downarrow_A C \& D \subseteq C \Rightarrow B \downarrow_A D$,

The verification that $\operatorname{Aut}(\mathbf{M})$ is locally (OB) often relies on identifying an appropriate independence relation \bigcup_A between finite subsets of \mathbf{M} relative to a fixed finite subset $A \subseteq \mathbf{M}$ or tuple \overline{a} in \mathbf{M} .

Definition

Let M be a countable structure and $A \subseteq M$ a finite subset. An orbital A-independence relation on M is a binary relation \bigcup_A defined between finite subsets of M so that, for all finite $B, C, D \subseteq M$,

- (i) (symmetry) $B \downarrow_A C \Leftrightarrow C \downarrow_A B$,
- (ii) (monotonicity) $B \downarrow_A C \& D \subseteq C \Rightarrow B \downarrow_A D$,
- (iii) (existence) there is $f \in V_A$ so that $fB \downarrow_A C$,

The verification that $\operatorname{Aut}(\mathbf{M})$ is locally (OB) often relies on identifying an appropriate independence relation \bigcup_A between finite subsets of \mathbf{M} relative to a fixed finite subset $A \subseteq \mathbf{M}$ or tuple \overline{a} in \mathbf{M} .

Definition

Let M be a countable structure and $A \subseteq M$ a finite subset. An orbital A-independence relation on M is a binary relation \bigcup_A defined between finite subsets of M so that, for all finite $B, C, D \subseteq M$,

- (i) (symmetry) $B \downarrow_A C \Leftrightarrow C \downarrow_A B$,
- (ii) (monotonicity) $B \downarrow_A C \& D \subseteq C \Rightarrow B \downarrow_A D$,
- (iii) (existence) there is $f \in V_A$ so that $fB \downarrow_A C$,
- (iv) (stationarity) if $B \downarrow_A C$ and $g \in V_A$ satisfies $gB \downarrow_A C$, then $g \in V_C V_B$,

The verification that $\operatorname{Aut}(\mathbf{M})$ is locally (OB) often relies on identifying an appropriate independence relation \bigcup_A between finite subsets of \mathbf{M} relative to a fixed finite subset $A \subseteq \mathbf{M}$ or tuple \overline{a} in \mathbf{M} .

Definition

Let \mathbf{M} be a countable structure and $A \subseteq \mathbf{M}$ a finite subset. An orbital A-independence relation on \mathbf{M} is a binary relation \bigcup_A defined between finite subsets of \mathbf{M} so that, for all finite $B, C, D \subseteq \mathbf{M}$,

- (i) (symmetry) $B \downarrow_A C \Leftrightarrow C \downarrow_A B$,
- (ii) (monotonicity) $B \downarrow_A C \& D \subseteq C \Rightarrow B \downarrow_A D$,
- (iii) (existence) there is $f \in V_A$ so that $fB \downarrow_A C$,
- (iv) (stationarity) if $B \downarrow_A C$ and $g \in V_A$ satisfies $gB \downarrow_A C$, then $g \in V_C V_B$, i.e., there is some $f \in V_C$ agreeing pointwise with g on B.

(iii) For all \overline{a} and B, there is \overline{b} with

$$\operatorname{tp}^{\mathbf{M}}(\overline{b}/A) = \operatorname{tp}^{\mathbf{M}}(\overline{a}/A)$$
 and $\overline{b} \underset{A}{\bigcup} B$.

(iii) For all \overline{a} and B, there is \overline{b} with

$$\operatorname{tp}^{\mathbf{M}}(\overline{b}/A) = \operatorname{tp}^{\mathbf{M}}(\overline{a}/A)$$
 and $\overline{b} \underset{A}{\bigcup} B$.

(iv) For all \overline{a} , \overline{b} and B,

$$\overline{a} \underset{A}{\downarrow} B$$
 & $\overline{b} \underset{A}{\downarrow} B$ & $\operatorname{tp}^{\mathbf{M}}(\overline{a}/A) = \operatorname{tp}^{\mathbf{M}}(\overline{b}/A)$
 $\Rightarrow \operatorname{tp}^{\mathbf{M}}(\overline{a}/B) = \operatorname{tp}^{\mathbf{M}}(\overline{b}/B).$

(iii) For all \overline{a} and B, there is \overline{b} with

$$\operatorname{tp}^{\mathbf{M}}(\overline{b}/A) = \operatorname{tp}^{\mathbf{M}}(\overline{a}/A)$$
 and $\overline{b} \underset{A}{\bigcup} B$.

(iv) For all \overline{a} , \overline{b} and B,

$$\overline{a} \underset{A}{\downarrow} B$$
 & $\overline{b} \underset{A}{\downarrow} B$ & $\operatorname{tp}^{\mathbf{M}}(\overline{a}/A) = \operatorname{tp}^{\mathbf{M}}(\overline{b}/A)$
 $\Rightarrow \operatorname{tp}^{\mathbf{M}}(\overline{a}/B) = \operatorname{tp}^{\mathbf{M}}(\overline{b}/B).$

Independence notions similar the those above have recently been studied by K. Tent and M. Ziegler in connection with questions of simplicity of automorphism groups.

Suppose **M** is a countable structure, $A \subseteq \mathbf{M}$ a finite subset and \bigcup_A an orbital A-independence relation. Then the pointwise stabiliser subgroup V_A has property (OB) (relative to itself).

Suppose **M** is a countable structure, $A \subseteq \mathbf{M}$ a finite subset and \bigcup_A an orbital A-independence relation. Then the pointwise stabiliser subgroup V_A has property (OB) (relative to itself).

In fact, for every identity neighbourhood $W\subseteq V_A$, there is $f\in V_A$ so that

$$V_A = W \cdot f \cdot W \cdot f^{-1} \cdot W.$$

Suppose **M** is a countable structure, $A \subseteq \mathbf{M}$ a finite subset and \bigcup_A an orbital A-independence relation. Then the pointwise stabiliser subgroup V_A has property (OB) (relative to itself).

In fact, for every identity neighbourhood $W\subseteq V_A$, there is $f\in V_A$ so that

$$V_A = W \cdot f \cdot W \cdot f^{-1} \cdot W.$$

Thus, if $A = \emptyset$, the automorphism group $\mathrm{Aut}(\mathbf{M}) = V_{\emptyset}$ is quasi-isometric to a point

Suppose **M** is a countable structure, $A \subseteq \mathbf{M}$ a finite subset and \bigcup_A an orbital A-independence relation. Then the pointwise stabiliser subgroup V_A has property (OB) (relative to itself).

In fact, for every identity neighbourhood $W\subseteq V_A$, there is $f\in V_A$ so that

$$V_A = W \cdot f \cdot W \cdot f^{-1} \cdot W.$$

Thus, if $A = \emptyset$, the automorphism group $\operatorname{Aut}(\mathbf{M}) = V_{\emptyset}$ is quasi-isometric to a point and, if $A \neq \emptyset$, $\operatorname{Aut}(\mathbf{M})$ is locally (OB).

Functorial amalgamations

Among other examples, the independence relations studied by Tent and Ziegler are shown to arrise from canonical amalgamation schemes in Fraïssé classes.

Functorial amalgamations

Among other examples, the independence relations studied by Tent and Ziegler are shown to arrise from canonical amalgamation schemes in Fraïssé classes.

For our purposes, we require a stronger scheme.

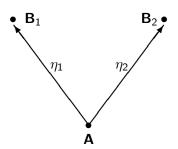
Functorial amalgamations

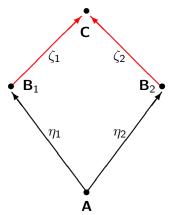
Among other examples, the independence relations studied by Tent and Ziegler are shown to arrise from canonical amalgamation schemes in Fraïssé classes.

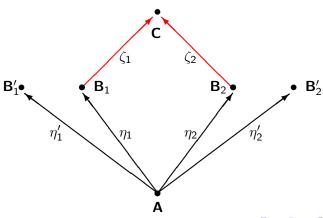
For our purposes, we require a stronger scheme.

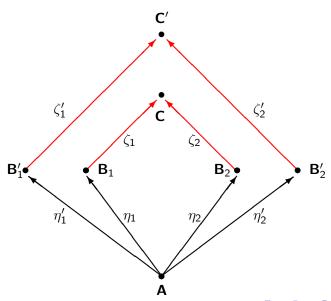
Definition

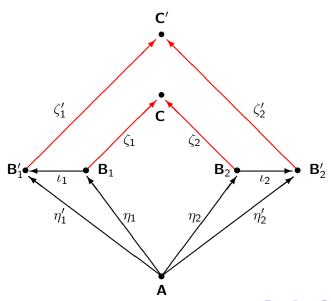
Given an Fraissé class $\mathcal K$ with limit $\mathbf K$ and a finite substructure $\mathbf A\subseteq \mathbf K$, we say that $\mathcal K$ satisfies functorial amalgamation over $\mathbf A$ if there is a way of choosing the amalgamations over $\mathbf A$ in the class $\mathcal K$ to be functorial with respect to embeddings.

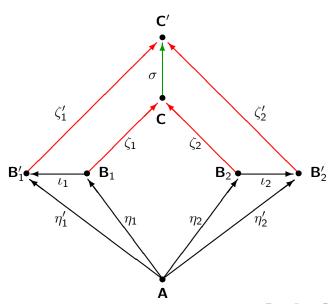












Consider the Fraissé class $\mathcal{M}_{\mathbb{Q}}$ of finite metric spaces with rational distances whose limit is the rational Urysohn metric space \mathbb{QU} .

Consider the Fraissé class $\mathcal{M}_{\mathbb{Q}}$ of finite metric spaces with rational distances whose limit is the rational Urysohn metric space \mathbb{QU} .

Lemma

 $\mathcal{M}_{\mathbb{Q}}$ admits a functorial amalgamation over a single point a.

Consider the Fraissé class $\mathcal{M}_{\mathbb{Q}}$ of finite metric spaces with rational distances whose limit is the rational Urysohn metric space \mathbb{QU} .

Lemma

 $\mathcal{M}_{\mathbb{Q}}$ admits a functorial amalgamation over a single point a.

That is, let B and C be two finite metric spaces with only a single point a in common.

Consider the Fraïssé class $\mathcal{M}_{\mathbb{Q}}$ of finite metric spaces with rational distances whose limit is the rational Urysohn metric space \mathbb{QU} .

Lemma

 $\mathcal{M}_{\mathbb{Q}}$ admits a functorial amalgamation over a single point a.

That is, let B and C be two finite metric spaces with only a single point a in common.

The free amalgam of B and C over a is the union $B \cup C$ with

$$d(b,c): = d(b,a) + d(a,c)$$

for all $b \in B \setminus \{a\}$ and $c \in C \setminus \{a\}$.

Consider the Fraïssé class $\mathcal{M}_{\mathbb{Q}}$ of finite metric spaces with rational distances whose limit is the rational Urysohn metric space \mathbb{QU} .

Lemma

 $\mathcal{M}_{\mathbb{Q}}$ admits a functorial amalgamation over a single point a.

That is, let B and C be two finite metric spaces with only a single point a in common.

The free amalgam of B and C over a is the union $B \cup C$ with

$$d(b,c): = d(b,a) + d(a,c)$$

for all $b \in B \setminus \{a\}$ and $c \in C \setminus \{a\}$.

An important fact here is that, unless we bound the diameters of the metric spaces in question, there is no functorial amalgamation of the empty set.

Given a Fraïssé class $\mathcal K$ with limit $\mathbf K$ and a functorial amalgamation scheme over some finite $\mathbf A\subseteq \mathbf K$, we obtain an orbital $\mathbf A$ -independence relation $\bigcup_{\mathbf A}$ on $\mathbf K$ by setting

 $B \underset{\Delta}{\bigcup} C \quad \Leftrightarrow \quad B \ \& \ C \ \text{are functorially amalgamated over} \ A$

Given a Fraïssé class $\mathcal K$ with limit $\mathbf K$ and a functorial amalgamation scheme over some finite $\mathbf A\subseteq \mathbf K$, we obtain an orbital $\mathbf A$ -independence relation $\bigcup_{\mathbf A}$ on $\mathbf K$ by setting

 $\mathbf{B} \underset{\mathbf{A}}{\bigcup} \mathbf{C} \Leftrightarrow \mathbf{B} \& \mathbf{C}$ are functorially amalgamated over \mathbf{A}

Theorem

Suppose K is a Fraïssé class with limit K and assume that A is a finite substructure of K so that K admits a functorial amalgamation over A.

Given a Fraïssé class $\mathcal K$ with limit $\mathbf K$ and a functorial amalgamation scheme over some finite $\mathbf A\subseteq \mathbf K$, we obtain an orbital $\mathbf A$ -independence relation $\bigcup_{\mathbf A}$ on $\mathbf K$ by setting

 $\mathbf{B} \underset{\mathbf{A}}{\bigcup} \mathbf{C} \Leftrightarrow \mathbf{B} \& \mathbf{C}$ are functorially amalgamated over \mathbf{A}

Theorem

Suppose $\mathcal K$ is a Fraïssé class with limit $\mathbf K$ and assume that $\mathbf A$ is a finite substructure of $\mathbf K$ so that $\mathcal K$ admits a functorial amalgamation over $\mathbf A$. Then $V_{\mathbf A}$ has property (OB) and thus $\mathrm{Aut}(\mathbf K)$ is locally (OB).

To show that the automorphism group $\mathrm{Isom}(\mathbb{QU})$ is (OB) generated and to compute the quasi-isometry type, we seek a finite set $\mathcal R$ of parameter-free complete types, so that the graph

$$\mathbf{X}_{a,\mathcal{R}}$$

with vertex set $\mathbb{QU} = \mathcal{O}(a)$ is connected.

To show that the automorphism group $\mathrm{Isom}(\mathbb{QU})$ is (OB) generated and to compute the quasi-isometry type, we seek a finite set $\mathcal R$ of parameter-free complete types, so that the graph

$$\mathbf{X}_{a,\mathcal{R}}$$

with vertex set $\mathbb{QU} = \mathcal{O}(a)$ is connected.

For this, set $\mathcal{R} = \{d(x,y) = 1\}$ and note that any two points $x,y \in \mathbb{QU}$ can be connected by a path in $\mathbf{X}_{a,\mathcal{R}}$ of length

at most [d(x,y)] + 1, but no less than d(x,y).

To show that the automorphism group $\mathrm{Isom}(\mathbb{QU})$ is (OB) generated and to compute the quasi-isometry type, we seek a finite set $\mathcal R$ of parameter-free complete types, so that the graph

$$\mathbf{X}_{a,\mathcal{R}}$$

with vertex set $\mathbb{QU} = \mathcal{O}(a)$ is connected.

For this, set $\mathcal{R} = \{d(x,y) = 1\}$ and note that any two points $x,y \in \mathbb{QU}$ can be connected by a path in $\mathbf{X}_{a,\mathcal{R}}$ of length

at most $\lceil d(x,y) \rceil + 1$, but no less than d(x,y).

Therefore, $\mathbf{X}_{a,\mathcal{R}}$ is quasi-isometric to $\mathbb{Q}\mathbb{U}$ and we conclude that the map

$$g \in \text{Isom}(\mathbb{QU}) \mapsto g(a) \in \mathbb{QU}$$

is a quasi-isometry.

In many familiar cases, though we are able to identify the large scale geometry of a topological group, it turns out that this is trivial.

In many familiar cases, though we are able to identify the large scale geometry of a topological group, it turns out that this is trivial.

Theorem (P. Cameron)

Let **M** be an \aleph_0 -categorical countable structure.

Then Aut(M) is quasi-isometric to a point.

In many familiar cases, though we are able to identify the large scale geometry of a topological group, it turns out that this is trivial.

Theorem (P. Cameron)

Let **M** be an \aleph_0 -categorical countable structure.

Then $Aut(\mathbf{M})$ is quasi-isometric to a point.

Similarly, using forking calculus and the associated independence relation, we may show the same conclusion for saturated ω -stable structures.

In many familiar cases, though we are able to identify the large scale geometry of a topological group, it turns out that this is trivial.

Theorem (P. Cameron)

Let **M** be an \aleph_0 -categorical countable structure.

Then $Aut(\mathbf{M})$ is quasi-isometric to a point.

Similarly, using forking calculus and the associated independence relation, we may show the same conclusion for saturated ω -stable structures.

Theorem

Let **M** be a saturated countable model of an ω -stable theory. Then $\operatorname{Aut}(\mathbf{M})$ is quasi-isometric to a point.

Tame geometry from model theoretical considerations

Recall that a structure **M** is atomic if every complete type is isolated.

Tame geometry from model theoretical considerations

Recall that a structure M is atomic if every complete type is isolated.

It follows that, if \mathcal{R} is a finite collection of types, then, for every n, the relation on \overline{b} and \overline{c} ,

$$\rho_{\overline{a},\mathcal{R}}(\overline{b},\overline{c})\leqslant n,$$

is definable in M.

Tame geometry from model theoretical considerations

Recall that a structure M is atomic if every complete type is isolated.

It follows that, if \mathcal{R} is a finite collection of types, then, for every n, the relation on \overline{b} and \overline{c} ,

$$\rho_{\overline{a},\mathcal{R}}(\overline{b},\overline{c})\leqslant n,$$

is definable in M.

Definition (J.-L. Krivine and B. Maurey)

A metric d on a set X is said to be stable if, for all d-bounded sequences (x_n) and (y_m) in X, we have

$$\lim_{n\to\infty}\lim_{m\to\infty}d(x_n,y_m)=\lim_{m\to\infty}\lim_{n\to\infty}d(x_n,y_m),$$

whenever both limits exist.

Let T be a complete theory of a countable language $\mathcal L$ and let κ be an infinite cardinal number.

Let T be a complete theory of a countable language $\mathcal L$ and let κ be an infinite cardinal number.

• We say that T is κ -stable if, for all models $\mathbf{M} \models T$ and subsets $B \subseteq \mathbf{M}$ with $|B| \leqslant \kappa$, we have $|S_n^{\mathbf{M}}(B)| \leqslant \kappa$.

Let T be a complete theory of a countable language $\mathcal L$ and let κ be an infinite cardinal number.

- We say that T is κ -stable if, for all models $\mathbf{M} \models T$ and subsets $B \subseteq \mathbf{M}$ with $|B| \leqslant \kappa$, we have $|S_n^{\mathbf{M}}(B)| \leqslant \kappa$.
- Also, T is stable if it is κ -stable for some infinite cardinal κ .

Let T be a complete theory of a countable language $\mathcal L$ and let κ be an infinite cardinal number.

- We say that T is κ -stable if, for all models $\mathbf{M} \models T$ and subsets $B \subseteq \mathbf{M}$ with $|B| \leqslant \kappa$, we have $|S_n^{\mathbf{M}}(B)| \leqslant \kappa$.
- Also, T is stable if it is κ -stable for some infinite cardinal κ .

The stability of the underlying structure is similarly reflected in the large scale geometry.

Let T be a complete theory of a countable language $\mathcal L$ and let κ be an infinite cardinal number.

- We say that T is κ -stable if, for all models $\mathbf{M} \models T$ and subsets $B \subseteq \mathbf{M}$ with $|B| \leqslant \kappa$, we have $|S_n^{\mathbf{M}}(B)| \leqslant \kappa$.
- Also, T is stable if it is κ -stable for some infinite cardinal κ .

The stability of the underlying structure is similarly reflected in the large scale geometry.

Theorem

Suppose M is a countable atomic model of a stable theory T.

Let T be a complete theory of a countable language $\mathcal L$ and let κ be an infinite cardinal number.

- We say that T is κ -stable if, for all models $\mathbf{M} \models T$ and subsets $B \subseteq \mathbf{M}$ with $|B| \leqslant \kappa$, we have $|S_n^{\mathbf{M}}(B)| \leqslant \kappa$.
- Also, T is stable if it is κ -stable for some infinite cardinal κ .

The stability of the underlying structure is similarly reflected in the large scale geometry.

Theorem

Suppose M is a countable atomic model of a stable theory T.

• If Aut(M) is locally (OB), it admits a coarsely proper stable metric,

Let T be a complete theory of a countable language $\mathcal L$ and let κ be an infinite cardinal number.

- We say that T is κ -stable if, for all models $\mathbf{M} \models T$ and subsets $B \subseteq \mathbf{M}$ with $|B| \leqslant \kappa$, we have $|S_n^{\mathbf{M}}(B)| \leqslant \kappa$.
- Also, T is stable if it is κ -stable for some infinite cardinal κ .

The stability of the underlying structure is similarly reflected in the large scale geometry.

Theorem

Suppose M is a countable atomic model of a stable theory T.

- If Aut(M) is locally (OB), it admits a coarsely proper stable metric,
- ② if Aut(M) is (OB) generated, it admits a maximal stable metric.

Noting the independence relations present in models of stable theories, one could be hopeful that the assumption that $\operatorname{Aut}(\mathbf{M})$ be locally (OB) would be superfluous.

Noting the independence relations present in models of stable theories, one could be hopeful that the assumption that $\mathrm{Aut}(\mathbf{M})$ be locally (OB) would be superfluous.

However, this is not so.

Theorem (J. Zielinski)

There is a countable atomic model M of an ω -stable theory so that $\mathrm{Aut}(M)$ is not locally (OB).