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The goal of this last lecture is to introduce a number of tools for studying
and gauging the geometry of automorphism groups via embeddings into
and representations on Banach spaces.

One reason for studying embeddings of metric spaces into Banach spaces
is that these latter have an additional linear structure which gives rise to
notions of curvature (or convexity), smoothness and a host of other
geometric moduli allowing us to quantify and qualify the geometry of the
space.

Similarly, linear and affine representations of our groups provides a link to
study harmonic-analytic and dynamical features of these.

Cf. earlier work of T. Tsankov on unitary representations of oligomorphic
groups.

Christian Rosendal Equivariant geometry Durham, July 2015 3 / 24



The goal of this last lecture is to introduce a number of tools for studying
and gauging the geometry of automorphism groups via embeddings into
and representations on Banach spaces.

One reason for studying embeddings of metric spaces into Banach spaces
is that these latter have an additional linear structure which gives rise to
notions of curvature (or convexity), smoothness and a host of other
geometric moduli allowing us to quantify and qualify the geometry of the
space.

Similarly, linear and affine representations of our groups provides a link to
study harmonic-analytic and dynamical features of these.

Cf. earlier work of T. Tsankov on unitary representations of oligomorphic
groups.

Christian Rosendal Equivariant geometry Durham, July 2015 3 / 24



The goal of this last lecture is to introduce a number of tools for studying
and gauging the geometry of automorphism groups via embeddings into
and representations on Banach spaces.

One reason for studying embeddings of metric spaces into Banach spaces
is that these latter have an additional linear structure which gives rise to
notions of curvature (or convexity), smoothness and a host of other
geometric moduli allowing us to quantify and qualify the geometry of the
space.

Similarly, linear and affine representations of our groups provides a link to
study harmonic-analytic and dynamical features of these.

Cf. earlier work of T. Tsankov on unitary representations of oligomorphic
groups.

Christian Rosendal Equivariant geometry Durham, July 2015 3 / 24



The goal of this last lecture is to introduce a number of tools for studying
and gauging the geometry of automorphism groups via embeddings into
and representations on Banach spaces.

One reason for studying embeddings of metric spaces into Banach spaces
is that these latter have an additional linear structure which gives rise to
notions of curvature (or convexity), smoothness and a host of other
geometric moduli allowing us to quantify and qualify the geometry of the
space.

Similarly, linear and affine representations of our groups provides a link to
study harmonic-analytic and dynamical features of these.

Cf. earlier work of T. Tsankov on unitary representations of oligomorphic
groups.

Christian Rosendal Equivariant geometry Durham, July 2015 3 / 24



Linear and affine representations

Let E be a Banach space and G a topological group. A continuous
isometric linear representation of G on E is a continuous action

π : G y E

by linear isometries on E .

Alternatively, π may be viewed as a continuous homomorphism

π : G → Isom(E )

into the group Isom(E ) of linear isometries of E , equipped with the strong
operator topology, that is, the topology of pointwise convergence on E .
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By a classical result of Mazur and Ulam, every surjective isometry
A : E → E of a Banach space is affine, that is, of the form

A(ξ) = T (ξ) + η0

for some linear isometry T and vector η0 ∈ E .

It follows that, if α : G y E is an action by isometries, we may decompose
it into an isometric linear representation

π : G → Isom(E )

and a cocycle
b : G → E .

I.e., for g ∈ G and ξ ∈ E ,

α(g)ξ = π(g)ξ + b(g).
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In general, given π, for α(g)ξ = π(g)ξ + b(g) to define an action, b must
satisfy the cocycle equation

b(gf ) = π(g)b(f ) + b(g)

for all g , f ∈ G .

Also, as b(g) = α(g)0 and α is an isometric action,

‖b(f )− b(g)‖ = ‖α(f )0− α(g)0‖ = ‖α(g−1f )0− 0‖ = ‖b(g−1f )‖.

Thus, if α and thus also b are continuous, then b is both uniformly
continuous and bornologous.

Definition

The action α : G y E is coarsely proper if b : G → E is a coarse
embedding.
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Given a topological group G and a class C of Banach spaces, e.g., the
class of Hilbert spaces or reflexive spaces, we have three possibilities.

1 G has a coarsely proper continuous affine isometric action α : G y E
on some E ∈ C,

2 G has a fixed point free continuous affine isometric action α : G y E
on some E ∈ C, but no coarsely proper such action,

3 every continuous affine isometric action α : G y E on an E ∈ C has a
fixed point.

Since option (1) in particular implies that G coarsely embeds into some
E ∈ C, it may be viewed as a strong harmonic-analytic and geometric
compatibility between G and C, while (3) is a strong incompatibility.

Question

When can we turn a coarse embedding into a cocycle?
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Amenability

Definition

A topological group G is amenable if every continuous affine action
α : G y K on a compact convex subset K of a locally convex topological
vector space has a fixed point.

In the specific case of interest to us here, namely automorphism groups, J.
Moore has provided an equivalent reformulation of amenability in terms of
convex Ramsey theory.

However, for concrete examples, there is often some more explicit and
specific reason for the groups to be amenable bipassing Moore’s criterion.

For example, being abelian, solvable, compact, etc.
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The Haagerup property

Definition

A topological group G is said to have the Haagerup property if G admits a
coarsely proper continuous affine isometric action α : G y H on a Hilbert
space H.

Examples

Finitely generated free groups [U. Haagerup],

locally compact amenable groups [Bekka, Chérix and Valette]

In the context of countable or locally compact groups, the Haagerup
property is often viewed as a strong non-rigidity property.

For general Polish groups, we may also view it as a regularity property,
since it allows for an efficient representation of G on the most regular
Banach space H.
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Haagerup’s construction for free groups quite easily transfers to show that
also Aut(T) has the Haagerup property.

For amenable groups, we instead have the following equivalence extending
earlier work of Aharoni, Maurey and Mityagin on the uniform classification
of Banach spaces.

Theorem

The following conditions are equivalent for an amenable Polish group G ,

1 G coarsely embeds into a Hilbert space,

2 G has the Haagerup property.

A geometric particuliarity of H used here is that a Polish group G coarsely
embeds into H if and only if it has a uniformly continuous coarse
embedding into H.

This relies on results on the extension of Hölder continuous Hilbert valued
functions and was exploited earlier by B. Johnson and L. Randrianarivony.
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Observe that, if α : G y H is a non-trivial affine isometric action, the
either the linear part

π : G → U(H)

is a non-trivial unitary representation of G or the cocycle

b : G → H

is a non-trivial homomorphism.

Indeed, if π ≡ Id, then

b(gf ) = π(g)b(f ) + b(g) = b(g) + b(f ).

Composing b with an appropriate linear functional on H, we obtain a
non-trivial homomorphism into C.
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Corollary

Suppose G is an amenable Polish group, not quasi-isometric to a point
and coarsely embeddable into H.

Then G has a non-trivial unitary representation.

The first example of a Polish group G with no non-trivial unitary
representations is due to Christensen and Herer and since then several
other examples have been found, many of them amenable.

The above result then shows that provided G is amenable and has
non-trivial coarse geometry, this analytical incompatibility with H must be
reflected in a coarse geometric incompatibility with H.
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Fixed points on reflexive spaces

At a recent visit to N. Monod we isolated a stronger incompatibility.

Definition

A map φ : (X , d)→ (M, ∂) between metric spaces is said to be solvent if
there are constants rn so that

rn 6 d(x , y) 6 rn + n ⇒ ∂
(
φ(x), φ(y)

)
> n.

N. Kalton has shown that c0 is not coarsely embeddable into a reflexive
Banach space, but, in fact, his proof along with work of Bretagnolle,
Dacunha-Castelle and Krivine reveals a stronger result.

Theorem (Kalton)

Let E be either reflexive or E = L1([0, 1]).
Then every bornologous map φ : c0 → E is insolvent.
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there are constants rn so that
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(
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)
> n.

N. Kalton has shown that c0 is not coarsely embeddable into a reflexive
Banach space, but, in fact, his proof along with work of Bretagnolle,
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Though c0 does not isometrically embed into QU, it does embed with very
little distortion.

Corollary

Let E be either reflexive or E = L1([0, 1]).
Then every bornologous map φ : QU→ E is insolvent.

Paring this with our knowledge of the geometry of Isom(QU), we can now
obtain analytical information from purely geometric data.

Theorem

Every continuous affine isometric action of Isom(QU) on a reflexive
Banach space or on L1([0, 1]) has a fixed point.
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Sketch of Proof:

Consider the case when α : Isom(QU) y E is a continuous affine isometric
action on a reflexive Banach space E with linear part π and cocycle b.

We will show that, if α has no fixed point, then there is a bornologous
solvent map φ : QU→ E , which is absurd.

Recall that, if x0 ∈ QU is fixed, then the pointwise stabiliser

V = {g ∈ Isom(QU)
∣∣ g(x0) = x0}

has property (OB), while the map

ψ : g ∈ Isom(QU) 7→ g(x0) ∈ QU

is a quasi-isometry.

This means that the isometric action α : V y E has bounded orbits and
thus a fixed point by a result of C. Ryll-Nardzewski.

After conjugating by a translation, we may assume that b ≡ 0 on V .
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Observe that, if g , f ∈ Isom(QU) are two isometries with

y = g(x0) = f (x0),

then f ∈ gV , i.e., f = gh for some h ∈ V , and so

b(f ) = b(gh) = π(g)b(h) + b(g) = b(g).

It follows that we may define φ : QU→ E unambigously by

φ(y) = b(g) for some/any g so that ψ(g) = g(x0) = y .

Since this is the composition of the bornologous maps ψ−1 and b, also φ
is bornologous.

Similarly, if d(y , x0) = d(z , x0) and y = g(x0), while z = f (x0), then
f ∈ VgV , whence

‖φ(y)‖ = ‖b(g)‖ = ‖b(f )‖ = ‖φ(z)‖.
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More generally,

d(y , z) = d(v ,w) ⇒ ‖φ(y)− φ(z)‖ = ‖φ(v)− φ(w)‖.

So φ : QU→ E is a bornologous metric transform of QU.

And, if the cocycle b in unbounded on Isom(QU), then φ is solvent, which
is impossible.

It follows that b is bounded and thus that α : Isom(QU) y E has a fixed
point.

Q.E.D.

In contradistinction to this, we have

Theorem (Brown–Guentner, Haagerup–Przybyszewska)

Every locally compact Polish group has a coarsely proper continuous affine
isometric action on a reflexive space.
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Another take on amenability

Definition

A topological group G is said to be approximately compact if there is a
countable chain K0 6 K1 6 . . . 6 G of compact subgroups whose union⋃

n Kn is dense in G .

E.g., the unitary subgroup U(M) of an approximately finite-dimensional
von Neumann algebra M is approximately compact (P. de la Harpe).
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In the context of automorphism groups, approximate compactness can be
usefully reformulated.

Proposition (A.S. Kechris & C.R.)

Let K be a Fräıssé class of finite structures with limit K.

Then Aut(K) is approximately compact if and only if K has the Hrushovski
property, i.e., for every finite substructure A ⊆M and all partial
automorphisms φ1, . . . , φn of A, there is a larger finite substructure B with

A ⊆ B ⊆M

and full automorphisms ψ1, . . . , ψn of B extending φ1, . . . , φn respectively.
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Whereas a locally compact group G is amenable if and only if it admits a
Følner sequence, that is, a sequence F1,F2 . . . ⊆ G so that

lim
n

∣∣Fn M gFn
∣∣∣∣Fn∣∣ = 0

for all g ∈ G , there is no similar characterisation of general amenable
groups.

Definition

A Polish group G is said to be Følner amenable if either

1 G is approximately compact, or

2 there is a continuous homomorphism φ : H → G from a locally
compact second countable amenable group H so that G = φ[H].
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Theorem

Let G be a Følner amenable Polish group admitting a uniformly
continuous coarse embedding into a Banach space E .

Then G admits a coarsely proper continuous affine isometric action on a
Banach space V that is finitely representable in L2(E ).

Earlier results of this type due to Naor–Peres and Pestov were known for
discrete groups.

The sort of properties of E preserved under the passage E 7→ L2(E ) and
under finite representability are local in nature.

E.g., the property of being super-reflexive, that is, having a uniformly
convex renorming (Enflo).
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Suppose now that
σ : G → E

is a coarse embedding of a non-Archimedean Polish group G into a
Banach space E .

Then the coarse structure on G is metrisable and so G is locally (OB).

It follows that there is a relatively (OB) open subgroup V 6 G .

Redefining σ to be constant on each left coset gV , we obtain a uniformly
continuous coarse embedding

σ̃ : G → E .
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Corollary

Let G be a Følner amenable non-Archimedean Polish group coarsely
embeddable into a super-reflexive space.

Then G admits a coarsely proper continuous affine isometric action on a
super-reflexive space.

Here is an application in a completely different direction.

Corollary

Let X be a Banach space uniformly embeddable into the unit ball BE of a
super-reflexive Banach space E . Then X contains some `p, 1 6 p <∞.
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Reflexive spaces

The last case to consider are reflexive spaces.

Theorem

Suppose a Polish group G carries a continuous left-invariant coarsely
proper stable écart. Then G admits a coarsely proper continuous affine
isometric action on a reflexive Banach space.

From a result mentioned yesterday, we get

Corollary

Let A be a countable atomic model of a stable theory T and assume that
Aut(A) is locally (OB).
Then Aut(A) admits a coarsely proper continuous affine isometric action
on a reflexive Banach space.
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