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PALATINATE PURPLE

The colour scheme of this presentation is based on the colour
PALATINATE PURPLE which — as you probably know — is the
cornerstone of Durham University’s official corporate colour palette.
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GRAPH HOMOMORPHISMS

A (graph) homomorphism from a graph X to a graph Y is a function

ϕ : V(X)→ V(Y)

such that
xy ∈ E(X)⇒ ϕ(x)ϕ(y) ∈ E(Y).

C7 → C5
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HOMOMORPHISMS AND COLOURINGS

A homomorphism from X to a clique Kq is a q-colouring of X.

P→ K3

The chromatic number χ(X) of X is the smallest q such that

X → Kq.
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FRACTIONAL COLOURINGS

A fractional colouring of X is a real-valued function

f : I(X)→ R

where I(X) is the set of independent (stable) sets of X, with the
property that for every vertex v,∑

I:v∈I

f (I) ≥ 1.

The fractional chromatic number of X is χ∗(X) = inff
∑

f (I).
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THE 5-CYCLE

1
2

A fractional colouring of
C5 with weight 5/2

.
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FRACTIONAL COLOURING AND HOMOMORPHISMS

The fractional chromatic number of a graph X is a rational number
and equal to the minimum value of v/r such that

X → K(v, r)

where K(v, r) is the Kneser graph whose vertices are all the r-subsets
of a v-set and where two vertices are adjacent if they are disjoint.

Many other variants of graph colouring can be expressed as the
existence of homomorphisms to some family of graphs.
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COMPLEXITY

Finding homomorphisms is theoretically difficult.

Y -COLOURING

INSTANCE: A graph X
QUESTION: Is there a homomorphism X → Y .

Hell & Nešetřil showed that this problem is NP-complete for any
non-bipartite graph Y .

(This is a strong – but unsurprising – result.)
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ENDOMORPHISMS

An endomorphism of X is a homomorphism from X to itself.

Q3 → Q3

Under composition of mappings, the set of all endomorphisms of X
forms the endomorphism monoid End(X).

As automorphisms are clearly endomorphisms, we have

Aut(X) ⊆ End(X).
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COMPUTING

Given a graph X, how can we find Aut(X) and/or End(X)?

Finding Aut(X) is of unknown theoretical complexity, but in
practice is easy.

The software nauty/Traces by McKay/Piperno is spectacularly
good — recently I found the automorphism group of an arc-transitive
10-regular graph with 76422528 vertices in under an hour.

Finding End(X) is theoretically intractable, and in practice is
difficult.

There are graphs with as few as 45 vertices that we cannot do in a
reasonable time.

“A week’s programming can sometimes save an hour’s thought!"
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SYNCHRONISING GROUPS

From Wolfram’s earlier talk —

If G ≤ Sym(Ω) and f ∈ T(Ω) and S = 〈G, f 〉 then

G synchronises f if S contains a constant function.

G is a synchronising group if G synchronises every
transformation f ∈ T(Ω)\Sym(Ω).

We know that a synchronising group must be primitive.
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PRIMITIVE BUT NOT SYNCHRONISING

Not all primitive groups are synchronising:

The Cartesian product X = K4 � K4 has primitive automorphism
group G = Sym(4) o Sym(2), a 4-clique, and a 4-colouring.

As the colouring map f is an endomorphism, so is every element of
〈G, f 〉, and therefore G does not synchronise f .
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THE GRAPH CONNECTION

The converse is also true.

A primitive group G is synchronising if and only if

χ(X) > ω(X)

for every non-trivial G-invariant graph X.
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VERTEX-PRIMITIVE GRAPHS

If G is a primitive group acting on Ω, then the orbits of G on Ω× Ω
are called the orbitals of G.

A digraph on Ω is G-invariant if and only if its arc set is a union of
orbitals.

Undirected graphs arise provided every orbital containing, say (v,w),
is “paired-up” with the orbital containing (w, v) (which is often itself).

So if G has k orbital pairs, then there are 2k − 2 graphs to examine.
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GOOD NEWS AND BAD NEWS

GOOD NEWS

For any specific primitive group G of reasonable size, this gives an
implementable algorithm1 for determining whether it is
synchronising.

BAD NEWS

For families of primitive groups, the existence of graphs with suitable
cliques and colourings is equivalent to well-known difficult problems
in, for example, finite geometry.

1with some more or less significant caveats
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ALMOST SYNCHRONISING

χ-colourings of vertex-transitive graphs with ω = χ are uniform
transformations — each colour class has the same size.

Perhaps uniform transformations are the only reason that some
primitive groups are not synchronising?

DEFINITION A primitive group is almost synchronising if it
synchronises every non-uniform transformation.

CONJECTURE Primitive groups are almost synchronising
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THE LANDSCAPE

Transitive Groups

Synchronising Groups

Almost Synchronising Groups

Primitive Groups

The transitive group landscape (not to scale) — the conjecture is that
is empty.
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THE GRAPH CONNECTION, AGAIN

The arguments about groups, graphs and non-synchronised
transformations carry over essentially unchanged:

PROPOSITION

The primitive group G fails to synchronise the transformation f if and
only if there is a non-trivial G-invariant graph X such that
χ(X) = ω(X) and

f ∈ End(X).

Thus the question involves determining (elements of) the
endomorphism monoid of a graph.
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ARAÚJO & CAMERON

Araújo & Cameron made progress at both ends of the
“rank-spectrum” — primitive groups of degree n synchronise all
non-uniform transformations of ranks 3, 4 and n− 2.
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THE TUTTE-COXETER GRAPH

The Tutte-Coxeter graph — the incidence graph of the unique
GQ(2, 2) — is a cubic 30-vertex graph of girth 8.

The chords of the non-ruled quadric in PG(3, 3), Can. J. Math, 10 (1958), 481–483. (Tutte)

The chords of the non-ruled quadric in PG(3, 3), Can. J. Math, 10 (1958), 484–488. (Coxeter)
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A COUNTEREXAMPLE

The line graph of Tutte-Coxeter is a 45-vertex quartic graph, which is
3-colourable, thus has 3 colour classes each of size 15.

However, as well as this – necessarily uniform – endomorphism onto
a triangle, it also has a non-uniform endomorphism onto a “butterfly”
(aka “bowtie”).

15

15

15

15

10

10

5

5

Thus, the conjecture takes on water at rank 5....
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IN A PICTURE
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MORE LIKE THIS?

The Biggs-Smith graph (BS) is a cubic 102-vertex distance-regular
graph with automorphism group PSL(2, 17) acting primitively on its
edges.

Image from Wikipedia
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ANOTHER BUTTERFLY . . .

Letting L denote the line-graph of BS, we have

L is vertex-primitive

Every closed neighbourhood of L is a butterfly

L has an endomorphism of kernel type (6, 6, 45, 45, 51)
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. . . BUT NO MORE

Weiss2 showed that the only edge-primitive cubic graphs are

The complete bipartite graph K3,3,

The Heawood graph (incidence graph of PG(2, 2)),

The Tutte-Coxeter graph,

The Biggs-Smith graph.

As a vertex-primitive graph of degree 4 with closed neighbourhood
equal to a butterfly must be the line graph of one of these graphs, we
are done.

2Kantenprimitive Graphen vom Grad drei, JCT-B, 1973
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COMPUTER SEARCHING

Therefore to conduct a systematic search we need:

Some primitive groups

Thanks to Colva Roney-Dougal, these are available up to degree
4095 (way more than we need) in MAGMA.

Some vertex-primitive graphs stabilised by these groups

This is a few lines of code in either MAGMA or GAP.

Some endomorphisms of these graphs

This is a few lines of code in James Mitchell’s packages in GAP.

Other people — many of whom are here — have also contributed to these
software tools, packages and libraries
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FINDING ENDOMORPHISMS — MINION

MINION is a freely available constraint satisfaction problem (CSP)
solver developed at St Andrews.

If a problem can be expressed as a CSP, then MINION is often
extremely effective: here is the code for a specific 45-vertex graph.

MINION 3

**VARIABLES**
DISCRETE v[45] {0..44}

The only variable is the 45-element array v to hold the endomorphism
in image form.
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THE TABLE

A list of 2-tuples, one for each arc of the graph (i.e. two per edge) is
created and called gr (for graph) to be referred to later.

**TUPLELIST**
gr 180 2
1 0
0 1
2 0
...
...
41 44
43 42
42 43
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THE CONSTRAINTS

**CONSTRAINTS**
eq(v[0],0)
lighttable([v[0],v[1]],gr)
lighttable([v[0],v[2]],gr)
...
lighttable([v[41],v[44]],gr)
lighttable([v[42],v[43]],gr)

**EOF**

The eq constraint sets the image of vertex 0 to be 0.

The important constraints — one for each edge have the following
form:

lighttable([v[41],v[44]],gr)

says that the tuple [v[44],v[45]]must be in the tuple-list gr.
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FINDING ENDOMORPHISMS — GAP

With recent developments MINION has mostly been eclipsed by GAP
software from St Andrews.

gap> d := Digraph([
[59,64,77,148],
[63,71,112,136],
...
[13,46,68,78],
[14,62,70,131]]);
<digraph with 45 vertices, 180 edges>
gap>
gap> gens := GeneratorsOfEndomorphismMonoid(d);;
gap> Size(gens);
331

The generators are calculated in a fraction of a second.
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THE SEMIGROUP

gap> s := SemigroupByGenerators(gens);
<transformation monoid on 45 pts with 330 generators>
gap> Size(s);
105120
gap> time;
376
gap>
gap> k := KernelOfTransformation(Random(s),45);;
gap> List(k,i->Size(i));
[ 10, 5, 15, 10, 5 ]

This graph has 25920 non-uniform endomorphisms of rank 7, and
51840 of rank 5.
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SEARCH RESULTS

Systematic search confirms that the linegraph of the Tutte-Coxeter
graph is indeed the smallest example.
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COLLECTING BUTTERFLIES

Partial searches — just on the lower degree graphs with more than 45
vertices — unearthed a number of other examples:

A Cayley graph of Z6
2 with a rank 6 endomorphism whose image

is a “wide body” butterfly

This example generalises to an infinite family, all of rank 6

Two 495 vertex graphs arising from two primitive
representations of M12.
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NON-SYNCHRONISING RANKS

For a fixed degree n, say that a rank r is non-synchronising if there is
some primitive group of degree n that fails to synchronise some
transformation of degree n and rank r.

Peter Cameron asked whether (conjectured that?) the number of
non-synchronising ranks is always small, say O(log n).

This can be shown to be false by a construction based on the
Cartesian product of graphs.

K2 � K2
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TRANSITIVITY

Let X be a vertex-primitive graph with χ(X) = ω(X) = k, so

V(X) = C1 ∪ . . . ∪ Ck

where each Ci is an independent set.

Then X � X is also a vertex-primitive graph and there is a
homomorphism

X � X → Kk � Kk

with kernel classes Ci × Cj.

If there were a homomorphism ϕ : Kk � Kk → X then by transitivity

X � X → Kk � Kk
ϕ−−→ X → X � X.
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WHAT’S THE POINT?

We hope to find endomorphisms of X � X (a big graph), by
examining homomorphisms from Kk � Kk to X (small graphs).

So, what will we use for X first?

For maximum confusion, we’ll take X = Kk � Kk!
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HOMOMORPHISMS TO THE COMPLEMENT
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This gives a endomorphism of (K4 � K4) � (K4 � K4) of rank 6 with
kernel type (32, 32, 32, 32, 64, 64)

.
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THE RULES
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OVERLAPPING LATIN SQUARES

So any two Latin squares of order k will suffice — the rank of the
resulting homomorphism is just the number of distinct pairs.

THEOREM3 There are two r-orthogonal Latin squares of order k if
and only if r ∈ {k, k2} or k + 2 ≤ r ≤ k2 − 2, except for

k = 2 and r = 4;

k = 3 and r ∈ {5, 6, 7};
k = 4 and r ∈ {7, 10, 11, 13, 14};
k = 5 and r ∈ {8, 9, 20, 22, 23};
k = 6 and r ∈ {33, 36}.

So there are vertex-primitive graphs with k4 vertices with
endomorphisms of about k2 different ranks.

3Belyavskaya, Colbourn & Zhu, Zhu & Zhang
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OTHER APPROACHES

We could try fixing the degree d and increasing the size — this leads
to characterising vertex-primitive graphs with an orbital of size d.

Aut(Γ) Aut(Γ)v s |V(Γ)| Notes
Z4

2 o Sym(5) Sym(5) 2 16 Clebsch
P`L(2, 9) AGL(1, 5)× Z2 2 36 Sylvester

PGL(2, 11) D10 1 66
Sym(9) Sym(4)× Sym(5) 3 126 Odd(5)
Suz(8) AGL(1, 5) 2 1 456
J3 o 2 A`L(2, 4) 4 17 442

Th Sym(5) 2 756 216 199 065 600

PSL(2, p) Alt(5) 2 p3−p
120 p ≡ ±1,±9 (mod 40)

PSL(2, p2) Alt(5) 2 p6−p2

120 p ≡ ±3 (mod 10)

P˚L(2, p2) Sym(5) 2 p6−p2

120 p ≡ ±3 (mod 10)

PSp(6, p) Sym(5) 2 p9(p6−1)(p4−1)(p2−1)
240 p ≡ ±1 (mod 8)

PCSp(6, p) Sym(5) 2 p9(p6−1)(p4−1)(p2−1)
120 p ≡ ±3 (mod 8), p ≥ 11

This table, for d = 5 is from uncompleted work by Fawcett, Giudici,
Li, Praeger, Royle & Verret.
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CONCLUSION

In summary,

Primitive groups synchronise low- and high-rank
transformations.

The almost-synchronising conjecture is false . . .

. . . and there are lots of non-synchronising ranks,

but the full story is still not known.
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