Topological clones

Michael Pinsker

Technische Universität Wien / Univerzita Karlova v Praze
Funded by Austrian Science Fund (FWF) grant P27600

LMS-EPSRC Durham Symposium
Permutation Groups and Transformation Semigroups
July 2015

Outline

Outline

I: Algebras, function clones, abstract clones, Birkhoff's theorem

Outline

I: Algebras, function clones, abstract clones, Birkhoff's theorem
II: Topological clones, Topological Birkhoff

Outline

I: Algebras, function clones, abstract clones, Birkhoff's theorem
II: Topological clones, Topological Birkhoff
III: Reconstruction

Outline

I: Algebras, function clones, abstract clones, Birkhoff's theorem
II: Topological clones, Topological Birkhoff
III: Reconstruction
IV: pp interpretations

Outline

I: Algebras, function clones, abstract clones, Birkhoff's theorem
II: Topological clones, Topological Birkhoff
III: Reconstruction
IV: pp interpretations
V: Constraint Satisfaction Problems

Outline

I: Algebras, function clones, abstract clones, Birkhoff's theorem
II: Topological clones, Topological Birkhoff
III: Reconstruction
IV: pp interpretations
V: Constraint Satisfaction Problems

VI: Projective clone homomorphisms

Outline

I: Algebras, function clones, abstract clones, Birkhoff's theorem
II: Topological clones, Topological Birkhoff
III: Reconstruction
IV: pp interpretations
V: Constraint Satisfaction Problems

VI: Projective clone homomorphisms
VII: Topological clones revisited

Outline

I: Algebras, function clones, abstract clones, Birkhoff's theorem
II: Topological clones, Topological Birkhoff
III: Reconstruction
IV: pp interpretations
V: Constraint Satisfaction Problems

VI: Projective clone homomorphisms
VII: Topological clones revisited
VIII: Discussion \& Open Problems

I: Abstract clones

Algebras, function clones

Let $\mathfrak{A}=\left(A ;\left(f_{i}\right)_{i \in \tau}\right)$ be an algebra with signature τ.

Algebras, function clones

Let $\mathfrak{A}=\left(A ;\left(f_{i}\right)_{i \in \tau}\right)$ be an algebra with signature τ.
Every abstract τ-term t induces a term function $t^{\mathfrak{2}}$ on A.

Algebras, function clones

Let $\mathfrak{A}=\left(A ;\left(f_{i}\right)_{i \in \tau}\right)$ be an algebra with signature τ.
Every abstract τ-term t induces a term function $t^{\mathfrak{2}}$ on A.
$\operatorname{Clo}(\mathfrak{A})$ ("clone of \mathfrak{A} ") is the set of its term functions.

Algebras, function clones

Let $\mathfrak{A}=\left(A ;\left(f_{i}\right)_{i \in \tau}\right)$ be an algebra with signature τ.
Every abstract τ-term t induces a term function $t^{\mathfrak{A}}$ on A.
$\operatorname{Clo(} \mathfrak{A})$ ("clone of \mathfrak{A} ") is the set of its term functions.
$\operatorname{Clo}(\mathfrak{A})$ is a function clone:
■ closed under composition: $f\left(g_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{m}\right)\right)$;
■ contains projections $\pi_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{i}$.

Algebras, function clones

Let $\mathfrak{A}=\left(A ;\left(f_{i}\right)_{i \in \tau}\right)$ be an algebra with signature τ.
Every abstract τ-term t induces a term function t^{24} on A.
$\operatorname{Clo}(\mathfrak{A})$ ("clone of \mathfrak{A} ") is the set of its term functions.
$\mathrm{Clo}(\mathfrak{A})$ is a function clone:

- closed under composition: $f\left(g_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{m}\right)\right)$;
- contains projections $\pi_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{i}$.

Many properties of an algebra depend only on its function clone: e.g. homomorphic images, subalgebras.

Algebras, function clones

Let $\mathfrak{A}=\left(A ;\left(f_{i}\right)_{i \in \tau}\right)$ be an algebra with signature τ.
Every abstract τ-term t induces a term function t^{24} on A.
$\operatorname{Clo}(\mathfrak{A})$ ("clone of \mathfrak{A} ") is the set of its term functions.
$\mathrm{Clo}(\mathfrak{A})$ is a function clone:

- closed under composition: $f\left(g_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{m}\right)\right)$;
- contains projections $\pi_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{i}$.

Many properties of an algebra depend only on its function clone: e.g. homomorphic images, subalgebras.

Here: algebras up to "clone equivalence".

Abstract clones, clone homomorphisms

Abstract clones, clone homomorphisms

Function clones carry algebraic structure via equations.

Abstract clones, clone homomorphisms

Function clones carry algebraic structure via equations.
Can model this structure via multi-sorted algebra:
■ one sort for each arity;
■ composition functions;
■ projections are distinguished elements (constants).

Abstract clones, clone homomorphisms

Function clones carry algebraic structure via equations.
Can model this structure via multi-sorted algebra:

- one sort for each arity;
- composition functions;
- projections are distinguished elements (constants).

Let \mathcal{C}, \mathcal{D} be function clones. $\xi: \mathcal{C} \rightarrow \mathcal{D}$ clone homomorphism if

Abstract clones, clone homomorphisms

Function clones carry algebraic structure via equations.
Can model this structure via multi-sorted algebra:

- one sort for each arity;
- composition functions;
- projections are distinguished elements (constants).

Let \mathcal{C}, \mathcal{D} be function clones. $\xi: \mathcal{C} \rightarrow \mathcal{D}$ clone homomorphism if

- preserves arities;
- sends each projection π_{i}^{n} in \mathcal{C} to same projection in \mathcal{D};
- commutes with composition:
$\xi\left(f\left(g_{1}, \ldots, g_{n}\right)\right)=\xi(f)\left(\xi\left(g_{1}\right), \ldots, \xi\left(g_{n}\right)\right)$.

Abstract clones, clone homomorphisms

Function clones carry algebraic structure via equations.
Can model this structure via multi-sorted algebra:

- one sort for each arity;
- composition functions;
- projections are distinguished elements (constants).

Let \mathcal{C}, \mathcal{D} be function clones. $\xi: \mathcal{C} \rightarrow \mathcal{D}$ clone homomorphism if

- preserves arities;
- sends each projection π_{i}^{n} in \mathcal{C} to same projection in \mathcal{D};
- commutes with composition:

$$
\xi\left(f\left(g_{1}, \ldots, g_{n}\right)\right)=\xi(f)\left(\xi\left(g_{1}\right), \ldots, \xi\left(g_{n}\right)\right) .
$$

Write $\mathcal{C} \rightarrow \mathcal{D}$ if there exists a clone homomorphism from \mathcal{C} into \mathcal{D}.

Birkhoff's theorem

Birkhoff's theorem

For an algebra \mathfrak{A} :

Birkhoff's theorem

For an algebra \mathfrak{A} :
■ $H(\mathfrak{A}) \ldots$. homomorphic images / factor algebras of \mathfrak{A}
■ $\mathrm{S}(\mathfrak{A}) \ldots$ subalgebras of \mathfrak{A}

- $P^{\text {fin }}(\mathfrak{A}) \ldots$ finite powers of \mathfrak{A}

■ $\mathrm{P}(\mathfrak{A}) \ldots$ powers of \mathfrak{A}

Birkhoff's theorem

For an algebra \mathfrak{A} :
■ $H(\mathfrak{A}) \ldots$. homomorphic images / factor algebras of \mathfrak{A}
■ $\mathrm{S}(\mathfrak{A}) \ldots$ subalgebras of \mathfrak{A}

- $P^{\text {fin }}(\mathfrak{A}) \ldots$ finite powers of \mathfrak{A}
- $\mathrm{P}(\mathfrak{A}) \ldots$ powers of \mathfrak{A}

Similarly for function clone \mathcal{C} : it acts on congruence classes, invariant subsets, powers of its domain.

Birkhoff's theorem

For an algebra \mathfrak{A} :
■ $H(\mathfrak{A}) \ldots$. homomorphic images / factor algebras of \mathfrak{A}
■ $\mathrm{S}(\mathfrak{A}) \ldots$ subalgebras of \mathfrak{A}

- $P^{\text {fin }}(\mathfrak{A}) \ldots$ finite powers of \mathfrak{A}
- $\mathrm{P}(\mathfrak{A}) \ldots$ powers of \mathfrak{A}

Similarly for function clone \mathcal{C} : it acts on congruence classes, invariant subsets, powers of its domain. Write $\mathrm{H}(\mathrm{C}), \mathrm{S}(\mathrm{C}), \mathrm{P}(\mathrm{C})$.

Birkhoff's theorem

For an algebra \mathfrak{A} :
■ $\mathrm{H}(\mathfrak{A}) \ldots$ homomorphic images / factor algebras of \mathfrak{A}
■ $\mathrm{S}(\mathfrak{A}) \ldots$. . subalgebras of \mathfrak{A}

- $\mathrm{P}^{\text {fin }}(\mathfrak{A}) \ldots$ finite powers of \mathfrak{A}
- $\mathrm{P}(\mathfrak{A}) \ldots$ powers of \mathfrak{A}

Similarly for function clone \mathcal{C} : it acts on congruence classes, invariant subsets, powers of its domain. Write $\mathrm{H}(\mathrm{C}), \mathrm{S}(\mathrm{C}), \mathrm{P}(\mathrm{C})$.

Theorem (Birkhoff 1935)

Birkhoff's theorem

For an algebra \mathfrak{A} :
■ $\mathrm{H}(\mathfrak{A}) \ldots$ homomorphic images / factor algebras of \mathfrak{A}
■ $S(\mathfrak{A}) \ldots$ subalgebras of \mathfrak{A}

- $P^{\text {fin }}(\mathfrak{A}) \ldots$ finite powers of \mathfrak{A}
- $\mathrm{P}(\mathfrak{A}) \ldots$ powers of \mathfrak{A}

Similarly for function clone \mathcal{C} : it acts on congruence classes, invariant subsets, powers of its domain. Write $\mathrm{H}(\mathrm{C}), \mathrm{S}(\mathrm{C}), \mathrm{P}(\mathrm{C})$.

Theorem (Birkhoff 1935)

Let \mathcal{C}, \mathcal{D} be function clones. TFAE:

Birkhoff's theorem

For an algebra \mathfrak{A} :
■ $\mathrm{H}(\mathfrak{A}) \ldots$ homomorphic images / factor algebras of \mathfrak{A}
■ $S(\mathfrak{A}) \ldots$ subalgebras of \mathfrak{A}

- $P^{\text {fin }}(\mathfrak{A}) \ldots$ finite powers of \mathfrak{A}

■ $\mathrm{P}(\mathfrak{A}) \ldots$ powers of \mathfrak{A}
Similarly for function clone \mathcal{C} : it acts on congruence classes, invariant subsets, powers of its domain. Write $\mathrm{H}(\mathrm{C}), \mathrm{S}(\mathrm{C}), \mathrm{P}(\mathrm{C})$.

Theorem (Birkhoff 1935)

Let \mathcal{C}, \mathcal{D} be function clones. TFAE:
■ $\mathcal{D} \in \operatorname{HSP}(\mathcal{C})$;

Birkhoff's theorem

For an algebra \mathfrak{A} :
■ $\mathrm{H}(\mathfrak{A}) \ldots$ homomorphic images / factor algebras of \mathfrak{A}
■ $\mathrm{S}(\mathfrak{A}) \ldots$ subalgebras of \mathfrak{A}

- $P^{\text {fin }}(\mathfrak{A}) \ldots$ finite powers of \mathfrak{A}

■ $\mathrm{P}(\mathfrak{A}) \ldots$ powers of \mathfrak{A}
Similarly for function clone \mathcal{C} : it acts on congruence classes, invariant subsets, powers of its domain. Write $\mathrm{H}(\mathcal{C}), \mathrm{S}(\mathrm{C}), \mathrm{P}(\mathcal{C})$.

Theorem (Birkhoff 1935)

Let \mathcal{C}, \mathcal{D} be function clones. TFAE:

- $\mathcal{D} \in \operatorname{HSP}(\mathbb{C})$;

■ D can be obtained from \mathcal{C} applying H, S, P finitely often;

Birkhoff's theorem

For an algebra \mathfrak{A} :
■ $\mathrm{H}(\mathfrak{A}) \ldots$. . homomorphic images / factor algebras of \mathfrak{A}
■ $\mathrm{S}(\mathfrak{A}) \ldots$ subalgebras of \mathfrak{A}

- $P^{\text {fin }}(\mathfrak{A}) \ldots$ finite powers of \mathfrak{A}

■ $\mathrm{P}(\mathfrak{A}) \ldots$ powers of \mathfrak{A}
Similarly for function clone \mathcal{C} : it acts on congruence classes, invariant subsets, powers of its domain. Write $\mathrm{H}(\mathrm{C}), \mathrm{S}(\mathrm{C}), \mathrm{P}(\mathrm{C})$.

Theorem (Birkhoff 1935)

Let \mathcal{C}, \mathcal{D} be function clones. TFAE:

- $\mathcal{D} \in \operatorname{HSP}(\mathbb{C})$;
- D can be obtained from \mathcal{C} applying $\mathrm{H}, \mathrm{S}, \mathrm{P}$ finitely often;

■ $\mathcal{C} \rightarrow \mathcal{D}$ surjectively.

Birkhoff II: Finite powers

Birkhoff II: Finite powers

Theorem (Birkhoff 1935)
Let C, \mathcal{D} be function clones on a finite domain. TFAE:

Birkhoff II: Finite powers

Theorem (Birkhoff 1935)
Let \mathcal{C}, \mathcal{D} be function clones on a finite domain. TFAE:

- $\mathcal{D} \in \operatorname{HSP}^{\text {fin }}(\mathcal{C})$;

Birkhoff II: Finite powers

Theorem (Birkhoff 1935)
Let $\mathfrak{C}, \mathcal{D}$ be function clones on a finite domain. TFAE:

- $\mathcal{D} \in \operatorname{HSP}^{\mathrm{fin}}(\mathcal{C})$;
- D can be obtained from \mathcal{C} applying $\mathrm{H}, \mathrm{S}, \mathrm{P}^{\text {fin }}$ finitely often;

Birkhoff II: Finite powers

Theorem (Birkhoff 1935)
Let $\mathfrak{C}, \mathcal{D}$ be function clones on a finite domain. TFAE:

- $\mathcal{D} \in \operatorname{HSP}^{\mathrm{fin}}(\mathcal{C})$;

■ D can be obtained from \mathcal{C} applying $\mathrm{H}, \mathrm{S}, \mathrm{P}^{\text {fin }}$ finitely often;
$■ \mathcal{C} \rightarrow \mathcal{D}$ surjectively.

Birkhoff II: Finite powers

Theorem (Birkhoff 1935)

Let $\mathfrak{C}, \mathcal{D}$ be function clones on a finite domain. TFAE:

- $\mathcal{D} \in \operatorname{HSP}^{\mathrm{fin}}(\mathcal{C})$;
- D can be obtained from \mathcal{C} applying $\mathrm{H}, \mathrm{S}, \mathrm{P}^{\text {fin }}$ finitely often;

■ $\mathcal{C} \rightarrow \mathcal{D}$ surjectively.

> What about HSPfin of infinite function clones?

Analogy with groups and monoids

Permutation group	Abstract group
Transformation monoid	Abstract monoid
Function clone	Abstract clone

II: Topological clones

Pointwise convergence

Pointwise convergence

Functions clones carry also topological structure:
Pointwise convergence on functions $f: D^{n} \rightarrow D$.

Pointwise convergence

Functions clones carry also topological structure:
Pointwise convergence on functions $f: D^{n} \rightarrow D$.
$\left(f_{i}\right)_{i \in \omega}$ converges to f iff $f(\bar{c})=f_{i}(\bar{c})$ eventually, for every $\bar{c} \in D^{n}$.

Pointwise convergence

Functions clones carry also topological structure:
Pointwise convergence on functions $f: D^{n} \rightarrow D$.
$\left(f_{i}\right)_{i \in \omega}$ converges to f iff $f(\bar{c})=f_{i}(\bar{c})$ eventually, for every $\bar{c} \in D^{n}$.

Equivalently: $D \ldots$ discrete; $D^{D^{n}}$ product topology.

Pointwise convergence

Functions clones carry also topological structure:
Pointwise convergence on functions $f: D^{n} \rightarrow D$.
$\left(f_{i}\right)_{i \in \omega}$ converges to f iff $f(\bar{c})=f_{i}(\bar{c})$ eventually, for every $\bar{c} \in D^{n}$.
Equivalently: $D . .$. discrete; $D^{D^{n}}$ product topology.
Set of all finitary functions $\bigcup_{n} D^{D^{n}} \ldots$ sum space.
Function clones: subspace.

Pointwise convergence

Functions clones carry also topological structure:
Pointwise convergence on functions $f: D^{n} \rightarrow D$.
$\left(f_{i}\right)_{i \in \omega}$ converges to f iff $f(\bar{c})=f_{i}(\bar{c})$ eventually, for every $\bar{c} \in D^{n}$.

Equivalently: $D \ldots$ discrete; $D^{D^{n}}$ product topology.

Set of all finitary functions $\bigcup_{n} D^{D^{n}} \ldots$ sum space.
Function clones: subspace.

If D countable: $\bigcup_{n} D^{D^{n}}$ is homeomorphic to the Baire space $\mathbb{N}^{\mathbb{N}}$.

Pointwise convergence

Functions clones carry also topological structure:
Pointwise convergence on functions $f: D^{n} \rightarrow D$.
$\left(f_{i}\right)_{i \in \omega}$ converges to f iff $f(\bar{c})=f_{i}(\bar{c})$ eventually, for every $\bar{c} \in D^{n}$.
Equivalently: $D . .$. discrete; $D^{D^{n}}$ product topology.
Set of all finitary functions $\bigcup_{n} D^{D^{n}} \ldots$ sum space.
Function clones: subspace.
If D countable: $\bigcup_{n} D^{D^{n}}$ is homeomorphic to the Baire space $\mathbb{N}^{\mathbb{N}}$. Complete metric separable (=Polish) space.

Pointwise convergence

Functions clones carry also topological structure:
Pointwise convergence on functions $f: D^{n} \rightarrow D$.
$\left(f_{i}\right)_{i \in \omega}$ converges to f iff $f(\bar{c})=f_{i}(\bar{c})$ eventually, for every $\bar{c} \in D^{n}$.
Equivalently: D. . . discrete; $D^{D^{n}}$ product topology.
Set of all finitary functions $\bigcup_{n} D^{D^{n}} \ldots$ sum space.
Function clones: subspace.
If D countable: $U_{n} D^{D^{n}}$ is homeomorphic to the Baire space $\mathbb{N}^{\mathbb{N}}$. Complete metric separable (=Polish) space.

Remark: For finite function clones: topology discrete.

Topological clones

Topological clones

Definition

A topological clone is an abstract clone + topology such that composition is continuous.

Topological clones

Definition

A topological clone is an abstract clone + topology such that composition is continuous.

Structure preserving mappings: continuous clone homomorphisms.

Topological clones

Definition

A topological clone is an abstract clone + topology such that composition is continuous.

Structure preserving mappings: continuous clone homomorphisms.

Permutation group	Topological group	Abstract group
Transformation monoid	Topological monoid	Abstract monoid
Function clone	Topological clone	Abstract clone

Topological Birkhoff

Topological Birkhoff

Theorem (Variant of "Topological Birkhoff", Bodirsky + MP 2011)

Let $\mathfrak{C}, \mathcal{D}$ be function clones on an at most countable domain, where \mathcal{D} is finitely generated. TFAE:

Topological Birkhoff

Theorem (Variant of "Topological Birkhoff", Bodirsky + MP 2011)

Let $\mathfrak{C}, \mathcal{D}$ be function clones on an at most countable domain, where \mathcal{D} is finitely generated. TFAE:

- $\mathcal{D} \in \operatorname{HSP}^{\text {fin }}(\mathcal{C})$;

Topological Birkhoff

Theorem (Variant of "Topological Birkhoff", Bodirsky + MP 2011)

Let $\mathfrak{C}, \mathcal{D}$ be function clones on an at most countable domain, where \mathcal{D} is finitely generated. TFAE:

- $\mathcal{D} \in \operatorname{HSP}^{\text {fin }}(\mathcal{C})$;
- \mathcal{D} can be obtained from \mathcal{C} applying $\mathrm{H}, \mathrm{S}, \mathrm{P}^{\text {fin }}$ finitely often;

Topological Birkhoff

Theorem (Variant of "Topological Birkhoff", Bodirsky + MP 2011)

Let $\mathfrak{C}, \mathcal{D}$ be function clones on an at most countable domain, where \mathcal{D} is finitely generated. TFAE:

- $\mathcal{D} \in \operatorname{HSP}^{\text {fin }}(\mathcal{C})$;
- \mathcal{D} can be obtained from \mathcal{C} applying $\mathrm{H}, \mathrm{S}, \mathrm{P}^{\text {fin }}$ finitely often;

■ $\mathrm{C} \rightarrow \mathcal{D}$ surjectively + uniformly continuously.

III: Reconstruction

Reconstruction

Reconstruction

For many (?) closed function clones \mathcal{C}, the algebraic structure determines the topological structure.

Reconstruction

For many (?) closed function clones \mathcal{C}, the algebraic structure determines the topological structure.

Every isomorphism between \mathcal{C} and another closed function clone \mathcal{D} is a homeomorphism ("reconstruction").

Reconstruction

For many (?) closed function clones \mathcal{C}, the algebraic structure determines the topological structure.

Every isomorphism between \mathcal{C} and another closed function clone \mathcal{D} is a homeomorphism ("reconstruction").

First examples

Reconstruction

For many (?) closed function clones \mathcal{C}, the algebraic structure determines the topological structure.

Every isomorphism between \mathcal{C} and another closed function clone \mathcal{D} is a homeomorphism ("reconstruction").

First examples

- Clone of all functions on ω.

Reconstruction

For many (?) closed function clones \mathfrak{C}, the algebraic structure determines the topological structure.

Every isomorphism between \mathcal{C} and another closed function clone \mathcal{D} is a homeomorphism ("reconstruction").

First examples

- Clone of all functions on ω.
- polymorphism clone of the random graph.

Reconstruction

For many (?) closed function clones \mathfrak{C}, the algebraic structure determines the topological structure.

Every isomorphism between \mathcal{C} and another closed function clone \mathcal{D} is a homeomorphism ("reconstruction").

First examples

- Clone of all functions on ω.
- polymorphism clone of the random graph.

Reconstruction fever!

Reconstruction

For many (?) closed function clones \mathfrak{C}, the algebraic structure determines the topological structure.

Every isomorphism between \mathcal{C} and another closed function clone \mathcal{D} is a homeomorphism ("reconstruction").

First examples

- Clone of all functions on ω.
- polymorphism clone of the random graph.

Reconstruction fever!

- John Truss
- Edith Vargas-Garcia
- Christian Pech

Non-Reconstruction

Non-Reconstruction

Impossible to construct non-continuous homomorphism between closed permutation groups on ω in $\mathrm{ZF}+\mathrm{DC}$ (need full AC).

Non-Reconstruction

Impossible to construct non-continuous homomorphism between closed permutation groups on ω in $\mathrm{ZF}+\mathrm{DC}$ (need full AC).

Michael Kompatscher, Tuesday 12:10, in ZFC:

Non-Reconstruction

Impossible to construct non-continuous homomorphism between closed permutation groups on ω in $\mathrm{ZF}+\mathrm{DC}$ (need full AC).

Michael Kompatscher, Tuesday 12:10, in ZFC:

Two polymorphism clones of countable ω-categorical structures which are isomorphic, but not topologically.
(Bodirsky + Evans + Kompatscher + MP 2015)

IV: pp interpretations

Polymorphism clones

Polymorphism clones

Let $\Gamma=\left(A ;\left(R_{i}\right)_{i \in \tau}\right)$ be a relational structure.

Polymorphism clones

Let $\Gamma=\left(A ;\left(R_{i}\right)_{i \in \tau}\right)$ be a relational structure.
$\operatorname{Pol}(\Gamma) \ldots$ set of all homomorphisms $f: \Gamma^{n} \rightarrow \Gamma$, where $1 \leq n<\omega$.

Polymorphism clones

Let $\Gamma=\left(A ;\left(R_{i}\right)_{i \in \tau}\right)$ be a relational structure.
$\operatorname{Pol}(\Gamma) \ldots$ set of all homomorphisms $f: \Gamma^{n} \rightarrow \Gamma$, where $1 \leq n<\omega$.
So $f\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Pol}(\Gamma)$ iff $f\left(r_{1}, \ldots, r_{n}\right) \in R$ for all $r_{1}, \ldots, r_{n} \in R$ and all relations R of Γ.

Polymorphism clones

Let $\Gamma=\left(A ;\left(R_{i}\right)_{i \in \tau}\right)$ be a relational structure.
$\operatorname{Pol}(\Gamma) \ldots$ set of all homomorphisms $f: \Gamma^{n} \rightarrow \Gamma$, where $1 \leq n<\omega$.
So $f\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Pol}(\Gamma)$ iff $f\left(r_{1}, \ldots, r_{n}\right) \in R$ for all $r_{1}, \ldots, r_{n} \in R$ and all relations R of Γ.

Elements of $\operatorname{Pol}(\Gamma)$ are called polymorphisms of Γ.

Polymorphism clones

Let $\Gamma=\left(A ;\left(R_{i}\right)_{i \in \tau}\right)$ be a relational structure.
$\operatorname{Pol}(\Gamma) \ldots$ set of all homomorphisms $f: \Gamma^{n} \rightarrow \Gamma$, where $1 \leq n<\omega$.
So $f\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Pol}(\Gamma)$ iff $f\left(r_{1}, \ldots, r_{n}\right) \in R$ for all $r_{1}, \ldots, r_{n} \in R$ and all relations R of Γ.

Elements of $\operatorname{Pol}(\Gamma)$ are called polymorphisms of Γ.
$\operatorname{Pol}(\Gamma)$ is a function clone:

- closed under composition
- contains projections.

Polymorphism clones

Let $\Gamma=\left(A ;\left(R_{i}\right)_{i \in \tau}\right)$ be a relational structure.
$\operatorname{Pol}(\Gamma) \ldots$ set of all homomorphisms $f: \Gamma^{n} \rightarrow \Gamma$, where $1 \leq n<\omega$.
So $f\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Pol}(\Gamma)$ iff $f\left(r_{1}, \ldots, r_{n}\right) \in R$ for all $r_{1}, \ldots, r_{n} \in R$ and all relations R of Γ.

Elements of $\operatorname{Pol}(\Gamma)$ are called polymorphisms of Γ.
$\mathrm{Pol}(\Gamma)$ is a function clone:

- closed under composition
- contains projections.

Observe: $\operatorname{Pol}(\Gamma) \supseteq \operatorname{End}(\Gamma) \supseteq \operatorname{Aut}(\Gamma)$.

Closed polymorphism clones

Automorphism group	Perm. group	Top. gr.	Abstr. gr.
Endomorphism monoid	Transf. monoid	Top. mon.	Abstr. mon.
Polymorphism clone	Function clone	Top. clone	Abstr. clone

Closed polymorphism clones

Automorphism group	Perm. group	Top. gr.	Abstr. gr.
Endomorphism monoid	Transf. monoid	Top. mon.	Abstr. mon.
Polymorphism clone	Function clone	Top. clone	Abstr. clone

The closed function clones are precisely the polymorphism clones of structures.

Closed polymorphism clones

Automorphism group	Perm. group	Top. gr.	Abstr. gr.
Endomorphism monoid	Transf. monoid	Top. mon.	Abstr. mon.
Polymorphism clone	Function clone	Top. clone	Abstr. clone

The closed function clones are precisely the polymorphism clones of structures.

Let Γ, Δ be relational structures.

Closed polymorphism clones

Automorphism group	Perm. group	Top. gr.	Abstr. gr.
Endomorphism monoid	Transf. monoid	Top. mon.	Abstr. mon.
Polymorphism clone	Function clone	Top. clone	Abstr. clone

The closed function clones are precisely the polymorphism clones of structures.

Let Γ, Δ be relational structures.
What does $\operatorname{Pol}(\Delta) \in \operatorname{HSP}^{\text {fin }}(\operatorname{Pol}(\Gamma))$ imply for Γ, Δ ?

Primitive positive (pp) interpretations

Primitive positive (pp) interpretations

A formula is primitive positive (pp) iff it is of the form

$$
\exists x_{1} \cdots \exists x_{n} \psi_{1} \wedge \cdots \wedge \psi_{m}
$$

where ψ_{i} are atomic.

Primitive positive (pp) interpretations

A formula is primitive positive (pp) iff it is of the form

$$
\exists x_{1} \cdots \exists x_{n} \psi_{1} \wedge \cdots \wedge \psi_{m}
$$

where ψ_{i} are atomic.
Theorem (Bulatov + Jeavons + Krokhin 2000; Bodirsky + MP 2011)
Let Γ, Δ be countable ω-categorical or finite relational structures. TFAE:

Primitive positive (pp) interpretations

A formula is primitive positive (pp) iff it is of the form

$$
\exists x_{1} \cdots \exists x_{n} \psi_{1} \wedge \cdots \wedge \psi_{m}
$$

where ψ_{i} are atomic.
Theorem (Bulatov + Jeavons + Krokhin 2000; Bodirsky + MP 2011)
Let Γ, Δ be countable ω-categorical or finite relational structures. TFAE:

- $\operatorname{Pol}(\Delta)$ contains a clone in $\operatorname{HSP}^{\text {fin }}(\operatorname{Pol}(\Gamma))$;

Primitive positive (pp) interpretations

A formula is primitive positive (pp) iff it is of the form

$$
\exists x_{1} \cdots \exists x_{n} \psi_{1} \wedge \cdots \wedge \psi_{m},
$$

where ψ_{i} are atomic.
Theorem (Bulatov + Jeavons + Krokhin 2000; Bodirsky + MP 2011)
Let Γ, Δ be countable ω-categorical or finite relational structures. TFAE:

- $\operatorname{Pol}(\Delta)$ contains a clone in $\mathrm{HSP}{ }^{\text {fin }}(\operatorname{Pol}(\Gamma))$;
- Δ has a pp interpretation in Γ :
it is a pp-definable homomorphic image
of a pp-definable subuniverse of a finite power of a structure which is pp-definable in Γ.

Primitive positive (pp) interpretations

A formula is primitive positive (pp) iff it is of the form

$$
\exists x_{1} \cdots \exists x_{n} \psi_{1} \wedge \cdots \wedge \psi_{m},
$$

where ψ_{i} are atomic.
Theorem (Bulatov + Jeavons + Krokhin 2000; Bodirsky + MP 2011)
Let Γ, Δ be countable ω-categorical or finite relational structures. TFAE:

- $\operatorname{Pol}(\Delta)$ contains a clone in $\mathrm{HSP}{ }^{\text {fin }}(\operatorname{Pol}(\Gamma))$;
- Δ has a pp interpretation in Γ :
it is a pp-definable homomorphic image
of a pp-definable subuniverse
of a finite power
of a structure which is pp-definable in Γ.
(There is a partial mapping from some Γ^{n} onto Δ such that the preimage of every relation of Δ is $p p$-definable in Γ.)

pp interpretations and topological clones

pp interpretations and topological clones

Theorem (Bodirsky + MP 2011)
Let Γ be countable ω-categorical or finite, and Δ be finite. TFAE:
■ $\operatorname{Pol}(\Gamma) \rightarrow \operatorname{Pol}(\Delta)$ continuously;

- Δ has a pp interpretation in Γ.

pp interpretations and topological clones

Theorem (Bodirsky + MP 2011)
Let Γ be countable ω-categorical or finite, and Δ be finite. TFAE:
■ $\operatorname{Pol}(\Gamma) \rightarrow \operatorname{Pol}(\Delta)$ continuously;

- Δ has a pp interpretation in Γ.

Proof: ...

pp interpretations and topological clones

Theorem (Bodirsky + MP 2011)
Let Γ be countable ω-categorical or finite, and Δ be finite. TFAE:

- $\operatorname{Pol}(\Gamma) \rightarrow \operatorname{Pol}(\Delta)$ continuously;
- Δ has a pp interpretation in Γ.

Proof: ...

Remark: Continuity \Longrightarrow uniform continuity since Γ is ω-categorical.

pp interpretations and topological clones

Theorem (Bodirsky + MP 2011)
Let Γ be countable ω-categorical or finite, and Δ be finite. TFAE:

- $\operatorname{Pol}(\Gamma) \rightarrow \operatorname{Pol}(\Delta)$ continuously;
- Δ has a pp interpretation in Γ.

Proof: ...

Remark: Continuity \Longrightarrow uniform continuity since Γ is ω-categorical. Remark: For ω-categorical Δ :

pp interpretations and topological clones

Theorem (Bodirsky + MP 2011)
Let Γ be countable ω-categorical or finite, and Δ be finite. TFAE:
■ $\operatorname{Pol}(\Gamma) \rightarrow \operatorname{Pol}(\Delta)$ continuously;

- Δ has a pp interpretation in Γ.

Proof: ...

Remark: Continuity \Longrightarrow uniform continuity since Γ is ω-categorical.
Remark: For ω-categorical Δ : have to require that $\xi[\operatorname{Pol}(\Gamma)]$ is dense in the polymorphism clone of an ω-categorical structure.

pp interpretations and topological clones

Theorem (Bodirsky + MP 2011)
Let Γ be countable ω-categorical or finite, and Δ be finite. TFAE:

- $\operatorname{Pol}(\Gamma) \rightarrow \operatorname{Pol}(\Delta)$ continuously;
- Δ has a pp interpretation in Γ.

Proof: ...

Remark: Continuity \Longrightarrow uniform continuity since Γ is ω-categorical.
Remark: For ω-categorical Δ : have to require that $\xi[\operatorname{Pol}(\Gamma)]$ is dense in the polymorphism clone of an ω-categorical structure.

Theorem (Bodirsky + MP 2011)
Let Γ, Δ be countable ω-categorical or finite. TFAE:
■ $\operatorname{Pol}(\Gamma)$ and $\operatorname{Pol}(\Delta)$ are topologically isomorphic;
■ 「 and Δ are pp biinterpretable.

The projection clone

The projection clone

Let 1 be the clone of projections on a 2-element set.

The projection clone

Let 1 be the clone of projections on a 2-element set.
Fact: It is the polymorphism clone of the structure

$$
\Pi:=(\{0,1\} ;\{(0,0,1),(0,1,0),(1,0,0)\})
$$

The projection clone

Let 1 be the clone of projections on a 2-element set.
Fact: It is the polymorphism clone of the structure

$$
\Pi:=(\{0,1\} ;\{(0,0,1),(0,1,0),(1,0,0)\})
$$

Corollary

Let Γ be countable ω-categorical or finite. TFAE:

The projection clone

Let 1 be the clone of projections on a 2-element set.
Fact: It is the polymorphism clone of the structure

$$
\Pi:=(\{0,1\} ;\{(0,0,1),(0,1,0),(1,0,0)\})
$$

Corollary

Let Γ be countable ω-categorical or finite. TFAE:
■ $\operatorname{Pol}(\Gamma) \rightarrow 1$ continuously;

The projection clone

Let 1 be the clone of projections on a 2-element set.
Fact: It is the polymorphism clone of the structure

$$
\Pi:=(\{0,1\} ;\{(0,0,1),(0,1,0),(1,0,0)\})
$$

Corollary

Let Γ be countable ω-categorical or finite. TFAE:
■ $\operatorname{Pol}(\Gamma) \rightarrow 1$ continuously;
■ П has a pp interpretation in Γ;

The projection clone

Let 1 be the clone of projections on a 2-element set.
Fact: It is the polymorphism clone of the structure

$$
\Pi:=(\{0,1\} ;\{(0,0,1),(0,1,0),(1,0,0)\})
$$

Corollary

Let Γ be countable ω-categorical or finite. TFAE:
■ $\operatorname{Pol}(\Gamma) \rightarrow 1$ continuously;
■ П has a pp interpretation in Γ;

- All finite structures have a pp interpretation in Г.

C			4		3		2	8			9				B	B
7						A				6			4			
	E		8	D				F		5	2		C	7		
			0		7				B		D		6		E	E
4				9							E		1			
	6		2							0		5			3	3
	0	B	1	4		2			9				E			
	9	5			A	B	C	6			7					
	C		B		6		F	A	2		5			0	4	4
A		2			5	D	0			c	8	3	B		1	
		0	F	B								D		2		
5			3		8				1		0	9	F			
3	8			5		6	E	0		F				9		
		C		F		1						B		E		
0							8				6	7			D	-
		4		A	D		7		E		C	2			5	

V: Constraint Satisfaction Problems

Constraint Satisfaction Problems (CSPs)

Constraint Satisfaction Problems (CSPs)

Let Γ be a structure in a finite relational language.

Constraint Satisfaction Problems (CSPs)

Let Γ be a structure in a finite relational language.

Definition

$\operatorname{CSP}(\Gamma)$ is the decision problem:

Constraint Satisfaction Problems (CSPs)

Let Γ be a structure in a finite relational language.

Definition

$\operatorname{CSP}(\Gamma)$ is the decision problem:
INPUT: variables x_{1}, \ldots, x_{n} and atomic statements about them.

Constraint Satisfaction Problems (CSPs)

Let Γ be a structure in a finite relational language.

Definition

$\operatorname{CSP}(\Gamma)$ is the decision problem:
INPUT: variables x_{1}, \ldots, x_{n} and atomic statements about them. QUESTION: is there a satisfying assignment $h:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow \Gamma$?

Constraint Satisfaction Problems (CSPs)

Let Γ be a structure in a finite relational language.

Definition

$\operatorname{CSP}(\Gamma)$ is the decision problem:
INPUT: variables x_{1}, \ldots, x_{n} and atomic statements about them. QUESTION: is there a satisfying assignment $h:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow \Gamma$?

「 is called the template of the CSP.

Constraint Satisfaction Problems (CSPs)

Let Γ be a structure in a finite relational language.

Definition

$\operatorname{CSP}(\Gamma)$ is the decision problem:
INPUT: variables x_{1}, \ldots, x_{n} and atomic statements about them. QUESTION: is there a satisfying assignment $h:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow \Gamma$?

「 is called the template of the CSP.
Can see input as conjunction of atomic formulas.

Constraint Satisfaction Problems (CSPs)

Let Γ be a structure in a finite relational language.

Definition

CSP $()$ is the decision problem:
INPUT: variables x_{1}, \ldots, x_{n} and atomic statements about them.
QUESTION: is there a satisfying assignment $h:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow \Gamma ?$

「 is called the template of the CSP.
Can see input as conjunction of atomic formulas.
Or can see it as pp sentence (existentially quantified conjunction).

Constraint Satisfaction Problems (CSPs)

Let Γ be a structure in a finite relational language.

Definition

$\operatorname{CSP}(\Gamma)$ is the decision problem:
INPUT: variables x_{1}, \ldots, x_{n} and atomic statements about them.
QUESTION: is there a satisfying assignment $h:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow \Gamma$?
Γ is called the template of the CSP.
Can see input as conjunction of atomic formulas.
Or can see it as pp sentence (existentially quantified conjunction).
Irrelevant whether Γ is finite or infinite. But language finite.

Examples

Examples

Diophantine

Input: A finite system of equations using $=,+, \cdot, 1$
Question: Is there a solution in \mathbb{Z} ?

Examples

Diophantine

Input: A finite system of equations using $=,+, \cdot, 1$
Question: Is there a solution in \mathbb{Z} ?
Is CSP: template $(\mathbb{Z} ; 1,+, \cdot,=)$

Examples

Diophantine

Input: A finite system of equations using $=,+, \cdot, 1$
Question: Is there a solution in \mathbb{Z} ?
Is CSP: template $(\mathbb{Z} ; 1,+, \cdot,=)$

n-colorability

Input: A finite undirected graph
Question: Is it n-colorable?

Examples

Diophantine

Input: A finite system of equations using $=,+, \cdot, 1$
Question: Is there a solution in \mathbb{Z} ?
Is CSP: template $(\mathbb{Z} ; 1,+, \cdot,=)$

n-colorability

Input: A finite undirected graph
Question: Is it n-colorable?
Is a CSP: template clique of size n

Examples

Examples

Positive 1-in-3-SAT

Input: A finite set of triples of variables
Question: Can one assign Boolean values to the variables so that every triple contains exactly one 1 ?

Examples

Positive 1-in-3-SAT

Input: A finite set of triples of variables
Question: Can one assign Boolean values to the variables so that every triple contains exactly one 1 ?
Is CSP: template $(\{0,1\} ;\{(0,0,1),(0,1,0),(1,0,0)\})$

Examples

Positive 1-in-3-SAT

Input: A finite set of triples of variables
Question: Can one assign Boolean values to the variables so that every triple contains exactly one 1 ?
Is CSP: template $(\{0,1\} ;\{(0,0,1),(0,1,0),(1,0,0)\})$

Betweenness

Input: A finite set of triples of variables
Question: Is there a linear order on the variables such that for each triple (x, y, z) either $x<y<z$ or $z<y<x$?

Examples

Positive 1-in-3-SAT

Input: A finite set of triples of variables
Question: Can one assign Boolean values to the variables so that every triple contains exactly one 1 ?
Is CSP: template $(\{0,1\} ;\{(0,0,1),(0,1,0),(1,0,0)\})$

Betweenness

Input: A finite set of triples of variables
Question: Is there a linear order on the variables such that for each triple (x, y, z) either $x<y<z$ or $z<y<x$?
Is CSP: template $(\mathbb{Q} ;\{(x, y, z) \mid(x<y<z) \vee(z<y<x)\})$

CSPs and pp interpretations

CSPs and pp interpretations

Observation

If Δ has a pp interpretation in Γ, then $\operatorname{CSP}(\Delta)$ is polynomial-time reducible to $\operatorname{CSP}(\Gamma)$.

CSPs and pp interpretations

Observation

If Δ has a pp interpretation in Γ, then $\operatorname{CSP}(\Delta)$ is polynomial-time reducible to $\operatorname{CSP}(\Gamma)$.

Structure Π with polymorphism clone 1:

$$
\Pi=(\{0,1\} ;\{(0,0,1),(0,1,0),(1,0,0)\})
$$

CSPs and pp interpretations

Observation

If Δ has a pp interpretation in Γ, then $\operatorname{CSP}(\Delta)$ is polynomial-time reducible to $\operatorname{CSP}(\Gamma)$.

Structure Π with polymorphism clone 1:

$$
\Pi=(\{0,1\} ;\{(0,0,1),(0,1,0),(1,0,0)\})
$$

$\operatorname{CSP}(\Pi)$ is positive 1 -in-3-SAT. NP-complete.

CSPs and pp interpretations

Observation

If Δ has a pp interpretation in Γ, then $\operatorname{CSP}(\Delta)$ is polynomial-time reducible to $\operatorname{CSP}(\Gamma)$.

Structure Π with polymorphism clone 1:

$$
\Pi=(\{0,1\} ;\{(0,0,1),(0,1,0),(1,0,0)\})
$$

$\operatorname{CSP}(\Pi)$ is positive 1 -in-3-SAT. NP-complete.

Corollary

Let Γ be finite or countable ω-categorical. If $\mathrm{Pol}(\Gamma) \rightarrow \mathbf{1}$ continuously, then $\operatorname{CSP}(\Gamma)$ is NP -hard.

Finite tractability conjecture

Finite tractability conjecture

Observation (Bulatov + Krokhin + Jeavons 2000)
For every finite structure Γ there is a finite structure $\mathfrak{C}(\Gamma)$ such that

Finite tractability conjecture

Observation (Bulatov + Krokhin + Jeavons 2000)

For every finite structure Γ there is a finite structure $\mathfrak{C}(\Gamma)$ such that
■ $f(x, \ldots, x)=x$ for all polymorphisms of $\mathfrak{C}(\Gamma)$

Finite tractability conjecture

Observation (Bulatov + Krokhin + Jeavons 2000)

For every finite structure Γ there is a finite structure $\mathfrak{C}(\Gamma)$ such that
■ $f(x, \ldots, x)=x$ for all polymorphisms of $\mathfrak{C}(\Gamma)$

- $\operatorname{CSP}(\mathfrak{C}(\Gamma))$ is polynomial-time equivalent to $\operatorname{CSP}(\Gamma)$.

Finite tractability conjecture

Observation (Bulatov + Krokhin + Jeavons 2000)

For every finite structure Γ there is a finite structure $\mathfrak{C}(\Gamma)$ such that
■ $f(x, \ldots, x)=x$ for all polymorphisms of $\mathfrak{C}(\Gamma)$
$\square \operatorname{CSP}(\mathfrak{C}(\Gamma))$ is polynomial-time equivalent to $\operatorname{CSP}(\Gamma)$.
$\mathfrak{C}(\Gamma)$ is called the idempotent core of Γ.
In a sense unique.

Finite tractability conjecture

Observation (Bulatov + Krokhin + Jeavons 2000)
For every finite structure Γ there is a finite structure $\mathfrak{C}(\Gamma)$ such that
■ $f(x, \ldots, x)=x$ for all polymorphisms of $\mathfrak{C}(\Gamma)$

- $\operatorname{CSP}(\mathfrak{C}(\Gamma))$ is polynomial-time equivalent to $\operatorname{CSP}(\Gamma)$.
$\mathfrak{C}(\Gamma)$ is called the idempotent core of Γ. In a sense unique.

Conjecture (Feder + Vardi 1993; Bulatov + Jeavons + Krokhin 2000)
Let Γ be finite. Then:

Finite tractability conjecture

Observation (Bulatov + Krokhin + Jeavons 2000)
For every finite structure Γ there is a finite structure $\mathfrak{C}(\Gamma)$ such that
■ $f(x, \ldots, x)=x$ for all polymorphisms of $\mathfrak{C}(\Gamma)$

- $\operatorname{CSP}(\mathfrak{C}(\Gamma))$ is polynomial-time equivalent to $\operatorname{CSP}(\Gamma)$.
$\mathfrak{C}(\Gamma)$ is called the idempotent core of Γ. In a sense unique.

Conjecture (Feder + Vardi 1993; Bulatov + Jeavons + Krokhin 2000)
Let Γ be finite. Then:

- $\operatorname{Pol}(\mathfrak{C}(\Gamma)) \rightarrow \mathbf{1}$ (and $\operatorname{CSP}(\Gamma)$ is NP-complete), or

Finite tractability conjecture

Observation (Bulatov + Krokhin + Jeavons 2000)
For every finite structure Γ there is a finite structure $\mathfrak{C}(\Gamma)$ such that
■ $f(x, \ldots, x)=x$ for all polymorphisms of $\mathfrak{C}(\Gamma)$

- $\operatorname{CSP}(\mathfrak{C}(\Gamma))$ is polynomial-time equivalent to $\operatorname{CSP}(\Gamma)$.
$\mathfrak{C}(\Gamma)$ is called the idempotent core of Γ. In a sense unique.

Conjecture (Feder + Vardi 1993; Bulatov + Jeavons + Krokhin 2000)
Let Γ be finite. Then:

- $\operatorname{Pol}(\mathbb{C}(\Gamma)) \rightarrow \mathbf{1}$ (and CSP (Γ) is NP-complete), or

■ $\operatorname{CSP}(\Gamma)$ is polynomial-time solvable.

Finite tractability conjecture

Observation (Bulatov + Krokhin + Jeavons 2000)
For every finite structure Γ there is a finite structure $\mathfrak{C}(\Gamma)$ such that
■ $f(x, \ldots, x)=x$ for all polymorphisms of $\mathfrak{C}(\Gamma)$

- $\operatorname{CSP}(\mathfrak{C}(\Gamma))$ is polynomial-time equivalent to $\operatorname{CSP}(\Gamma)$.
$\mathfrak{C}(\Gamma)$ is called the idempotent core of Γ. In a sense unique.

Conjecture (Feder + Vardi 1993; Bulatov + Jeavons + Krokhin 2000)
Let Γ be finite. Then:

- $\operatorname{Pol}(\mathbb{C}(\Gamma)) \rightarrow \mathbf{1}$ (and CSP (Γ) is NP-complete), or
- $\operatorname{CSP}(\Gamma)$ is polynomial-time solvable.

What does this mean for $\operatorname{Pol}(\Gamma) ?$

Infinite tractability conjecture

Infinite tractability conjecture

For every ω-categorical structure Γ there is an ω-categorical structure $\mathfrak{C}(\Gamma)$ ("model-complete core of Γ ") such that

Infinite tractability conjecture

For every ω-categorical structure Γ there is an ω-categorical structure $\mathfrak{C}(\Gamma)$ ("model-complete core of Г") such that

■ the automorphisms of $\mathfrak{C}(\Gamma)$ are dense in its endomorphisms

Infinite tractability conjecture

For every ω-categorical structure Γ there is an ω-categorical structure $\mathfrak{C}(\Gamma)$ ("model-complete core of Γ ") such that

■ the automorphisms of $\mathfrak{C}(\Gamma)$ are dense in its endomorphisms
■ $\operatorname{CSP}(\mathfrak{C}(\Gamma))$ is polynomial-time equivalent to $\operatorname{CSP}(\Gamma)$.

Infinite tractability conjecture

For every ω-categorical structure Γ there is an ω-categorical structure $\mathfrak{C}(\Gamma)$ ("model-complete core of Γ ") such that

■ the automorphisms of $\mathfrak{C}(\Gamma)$ are dense in its endomorphisms

- CSP $(\mathfrak{C}(\Gamma))$ is polynomial-time equivalent to $\operatorname{CSP}(\Gamma)$.

If \bar{c} is a finite tuple of elements of $\mathfrak{C}(\Gamma)$, then the CSP of the expansion $(\mathfrak{C}(\Gamma), \bar{c})$ is polynomial-time equivalent to the CSP of $\mathfrak{C}(\Gamma)$ (and of Γ).

Infinite tractability conjecture

For every ω-categorical structure Γ there is an ω-categorical structure $\mathfrak{C}(\Gamma)$ ("model-complete core of Γ ") such that

■ the automorphisms of $\mathfrak{C}(\Gamma)$ are dense in its endomorphisms

- CSP $(\mathfrak{C}(\Gamma))$ is polynomial-time equivalent to $\operatorname{CSP}(\Gamma)$.

If \bar{c} is a finite tuple of elements of $\mathfrak{C}(\Gamma)$, then the CSP of the expansion $(\mathfrak{C}(\Gamma), \bar{c})$ is polynomial-time equivalent to the CSP of $\mathfrak{C}(\Gamma)$ (and of Γ). Hence $f(x, \ldots, x)=x$ in the finite case.

Infinite tractability conjecture

For every ω-categorical structure Γ there is an ω-categorical structure $\mathfrak{C}(\Gamma)$ ("model-complete core of Г") such that
\square the automorphisms of $\mathfrak{C}(\Gamma)$ are dense in its endomorphisms
■ $\operatorname{CSP}(\mathfrak{C}(\Gamma))$ is polynomial-time equivalent to $\operatorname{CSP}(\Gamma)$.
If \bar{c} is a finite tuple of elements of $\mathfrak{C}(\Gamma)$, then the CSP of the expansion $(\mathfrak{C}(\Gamma), \bar{c})$ is polynomial-time equivalent to the CSP of $\mathfrak{C}(\Gamma)$ (and of Γ). Hence $f(x, \ldots, x)=x$ in the finite case.

Conjecture (Bodirsky + MP)

Let Γ be first-order definable in a countable finitely bounded homogeneous structure (implies ω-categorical). Then:

Infinite tractability conjecture

For every ω-categorical structure Γ there is an ω-categorical structure $\mathfrak{C}(\Gamma)$ ("model-complete core of Г") such that
\square the automorphisms of $\mathfrak{C}(\Gamma)$ are dense in its endomorphisms
■ $\operatorname{CSP}(\mathfrak{C}(\Gamma))$ is polynomial-time equivalent to $\operatorname{CSP}(\Gamma)$.
If \bar{c} is a finite tuple of elements of $\mathfrak{C}(\Gamma)$, then the CSP of the expansion $(\mathfrak{C}(\Gamma), \bar{c})$ is polynomial-time equivalent to the CSP of $\mathfrak{C}(\Gamma)$ (and of Γ). Hence $f(x, \ldots, x)=x$ in the finite case.

Conjecture (Bodirsky + MP)

Let Γ be first-order definable in a countable finitely bounded homogeneous structure (implies ω-categorical). Then:

- there exists a finite tuple \bar{c} such that $\operatorname{Pol}(\mathfrak{C}(\Gamma), \bar{c}) \rightarrow \mathbf{1}$ continuously (and $\operatorname{CSP}(\Gamma)$ is NP-complete), or

Infinite tractability conjecture

For every ω-categorical structure Γ there is an ω-categorical structure $\mathfrak{C}(\Gamma)$ ("model-complete core of Г") such that
\square the automorphisms of $\mathfrak{C}(\Gamma)$ are dense in its endomorphisms

- $\operatorname{CSP}(\mathbb{C}(\Gamma))$ is polynomial-time equivalent to $\operatorname{CSP}(\Gamma)$.

If \bar{c} is a finite tuple of elements of $\mathfrak{C}(\Gamma)$, then the CSP of the expansion ($\mathfrak{C}(\Gamma), \bar{c})$ is polynomial-time equivalent to the CSP of $\mathfrak{C}(\Gamma)$ (and of Γ). Hence $f(x, \ldots, x)=x$ in the finite case.

Conjecture (Bodirsky + MP)

Let Γ be first-order definable in a countable finitely bounded homogeneous structure (implies ω-categorical). Then:

- there exists a finite tuple \bar{c} such that $\operatorname{Pol}(\mathfrak{C}(\Gamma), \bar{c}) \rightarrow \mathbf{1}$ continuously (and CSP (Γ) is NP-complete), or
- $\operatorname{CSP}(\Gamma)$ is polynomial-time solvable.

Outline

Outline

I: Algebras, function clones, abstract clones, Birkhoff's theorem
II: Topological clones, Topological Birkhoff
III: Reconstruction
IV: pp interpretations
V: Constraint Satisfaction Problems

Outline

I: Algebras, function clones, abstract clones, Birkhoff's theorem
II: Topological clones, Topological Birkhoff
III: Reconstruction
IV: pp interpretations
V: Constraint Satisfaction Problems

VI: Projective clone homomorphisms
VII: Topological clones revisited
VIII: Discussion \& Open Problems

Topological clones

Michael Pinsker

Technische Universität Wien / Univerzita Karlova v Praze
 Funded by Austrian Science Fund (FWF) grant P27600

LMS-EPSRC Durham Symposium
Permutation Groups and Transformation Semigroups
July 2015

Outline

Outline

I: Algebras, function clones, abstract clones, Birkhoff's theorem
II: Topological clones, Topological Birkhoff
III: Reconstruction
IV: pp interpretations
V: Constraint Satisfaction Problems

Outline

I: Algebras, function clones, abstract clones, Birkhoff's theorem
II: Topological clones, Topological Birkhoff
III: Reconstruction
IV: pp interpretations
V: Constraint Satisfaction Problems

VI: Projective clone homomorphisms
VII: Topological clones revisited
VIII: Discussion \& Open Problems

Summary of Part I

Summary of Part I

- Function clones appear as term clones of algebras and as polymorphism clones of structures.

Summary of Part I

- Function clones appear as term clones of algebras and as polymorphism clones of structures.
■ Whether or not $\mathcal{D} \in \operatorname{HSP}(\mathcal{C})$ can be seen from the abstract clone structure.

Summary of Part I

- Function clones appear as term clones of algebras and as polymorphism clones of structures.
■ Whether or not $\mathcal{D} \in \operatorname{HSP}(\mathcal{C})$ can be seen from the abstract clone structure.
- Whether or not $\mathcal{D} \in \operatorname{HSP}^{f i n}(\mathcal{C})$ can be seen from the topological clone structure.

Summary of Part I

- Function clones appear as term clones of algebras and as polymorphism clones of structures.
■ Whether or not $\mathcal{D} \in \operatorname{HSP}(\mathcal{C})$ can be seen from the abstract clone structure.
■ Whether or not $\mathcal{D} \in \operatorname{HSP}^{\mathrm{fin}}(\mathcal{C})$ can be seen from the topological clone structure.
■ Whether or not Δ is pp interpretable in Γ can be seen from the topological clone structure of $\operatorname{Pol}(\Delta), \operatorname{Pol}(\Gamma)$.

Summary of Part I

■ Function clones appear as term clones of algebras and as polymorphism clones of structures.
■ Whether or not $\mathcal{D} \in \operatorname{HSP}(\mathcal{C})$ can be seen from the abstract clone structure.
■ Whether or not $\mathcal{D} \in \operatorname{HSP}^{\mathrm{fin}}(\mathcal{C})$ can be seen from the topological clone structure.
■ Whether or not Δ is pp interpretable in Γ can be seen from the topological clone structure of $\operatorname{Pol}(\Delta), \operatorname{Pol}(\Gamma)$.
■ Every structure defines a CSP: truth of pp-sentences.

Summary of Part I

■ Function clones appear as term clones of algebras and as polymorphism clones of structures.
■ Whether or not $\mathcal{D} \in \operatorname{HSP}(\mathcal{C})$ can be seen from the abstract clone structure.
■ Whether or not $\mathcal{D} \in \operatorname{HSP}^{\text {fin }}(\mathcal{C})$ can be seen from the topological clone structure.
■ Whether or not Δ is pp interpretable in Γ can be seen from the topological clone structure of $\operatorname{Pol}(\Delta), \operatorname{Pol}(\Gamma)$.

- Every structure defines a CSP: truth of pp-sentences.

■ pp interpretations are CSP reductions.

Summary of Part I

■ Function clones appear as term clones of algebras and as polymorphism clones of structures.
■ Whether or not $\mathcal{D} \in \operatorname{HSP}(\mathcal{C})$ can be seen from the abstract clone structure.
■ Whether or not $\mathcal{D} \in \operatorname{HSP}^{\text {fin }}(\mathcal{C})$ can be seen from the topological clone structure.
■ Whether or not Δ is pp interpretable in Γ can be seen from the topological clone structure of $\operatorname{Pol}(\Delta), \operatorname{Pol}(\Gamma)$.
■ Every structure defines a CSP: truth of pp-sentences.
■ pp interpretations are CSP reductions.
■ For ω-categorical $\Gamma: \operatorname{Pol}(\Gamma) \rightarrow \mathbf{1}$ continuously iff all finite structures have a pp interpretation in Γ.

Summary of Part I

■ Function clones appear as term clones of algebras and as polymorphism clones of structures.
■ Whether or not $\mathcal{D} \in \operatorname{HSP}(\mathcal{C})$ can be seen from the abstract clone structure.
■ Whether or not $\mathcal{D} \in \operatorname{HSP}^{\text {fin }}(\mathcal{C})$ can be seen from the topological clone structure.
■ Whether or not Δ is pp interpretable in Γ can be seen from the topological clone structure of $\operatorname{Pol}(\Delta), \operatorname{Pol}(\Gamma)$.

- Every structure defines a CSP: truth of pp-sentences.

■ pp interpretations are CSP reductions.
■ For ω-categorical $\Gamma: \operatorname{Pol}(\Gamma) \rightarrow \mathbf{1}$ continuously iff all finite structures have a pp interpretation in Γ.
■ Dichotomy conjecture: $\operatorname{Pol}(\mathfrak{C}(\Gamma), \bar{c}) \rightarrow \mathbf{1}$ is only reason for hardness.

V: Projective clone homomorphisms

Projective clone homomorphisms

Definition

A projective clone homomorphism is a clone homomorphism from a clone to the projection clone 1.

Projective clone homomorphisms

Definition

A projective clone homomorphism is a clone homomorphism from a clone to the projection clone 1.

If $\mathrm{C} \rightarrow \mathbf{1}$, then $\mathbf{1} \in \mathrm{HSP}(\mathrm{C})$.

Projective clone homomorphisms

Definition

A projective clone homomorphism is a clone homomorphism from a clone to the projection clone 1.

If $\mathrm{C} \rightarrow \mathbf{1}$, then $\mathbf{1} \in \operatorname{HSP}(\mathrm{C})$.
If $\mathcal{C} \rightarrow \mathbf{1}$ uniformly continuously, then $\mathbf{1} \in \operatorname{HSP}^{\text {fin }}(\mathcal{C})$.

Projective clone homomorphisms

Definition

A projective clone homomorphism is a clone homomorphism from a clone to the projection clone 1.

If $\mathrm{C} \rightarrow \mathbf{1}$, then $\mathbf{1} \in \operatorname{HSP}(\mathrm{C})$.
If $\mathcal{C} \rightarrow \mathbf{1}$ uniformly continuously, then $\mathbf{1} \in \operatorname{HSP}^{\text {fin }}(\mathcal{C})$.
For ω-categorical Γ :
If $\mathrm{Pol}(\Gamma) \rightarrow \mathbf{1}$ (uniformly) continuously, then $\operatorname{CSP}(\Gamma)$ is NP-hard.

Projective clone homomorphisms

Definition

A projective clone homomorphism is a clone homomorphism from a clone to the projection clone 1.

If $\mathcal{C} \rightarrow \mathbf{1}$, then $\mathbf{1} \in \operatorname{HSP}(\mathcal{C})$.
If $\mathcal{C} \rightarrow \mathbf{1}$ uniformly continuously, then $\mathbf{1} \in \operatorname{HSP}^{\text {fin }}(\mathcal{C})$.
For ω-categorical Γ :
If $\mathrm{Pol}(\Gamma) \rightarrow \mathbf{1}$ (uniformly) continuously, then $\operatorname{CSP}(\Gamma)$ is NP-hard.

Open problem

Is there a function clone with a projective clone homomorphism, but not a continuous one?

Betweenness

Betweenness

$$
\Gamma:=\left(\mathbb{Q} ;\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x<y<z \vee z<y<x\right\}\right)
$$

Betweenness

$$
\Gamma:=\left(\mathbb{Q} ;\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x<y<z \vee z<y<x\right\}\right)
$$

$\operatorname{CSP}(\Gamma)$ is the Betweenness problem.

Betweenness

$\Gamma:=\left(\mathbb{Q} ;\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x<y<z \vee z<y<x\right\}\right)$
$\operatorname{CSP}(\Gamma)$ is the Betweenness problem.
Let $f \in \operatorname{Pol}(\Gamma)$ of arity k.

Betweenness

$$
\Gamma:=\left(\mathbb{Q} ;\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x<y<z \vee z<y<x\right\}\right)
$$

$\operatorname{CSP}(\Gamma)$ is the Betweenness problem.
Let $f \in \operatorname{Pol}(\Gamma)$ of arity k.
There is a unique $i \in\{1, \ldots, k\}$ such that:

Betweenness

$$
\Gamma:=\left(\mathbb{Q} ;\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x<y<z \vee z<y<x\right\}\right)
$$

$\operatorname{CSP}(\Gamma)$ is the Betweenness problem.
Let $f \in \operatorname{Pol}(\Gamma)$ of arity k.
There is a unique $i \in\{1, \ldots, k\}$ such that:
■ $\forall x, y \in \Gamma^{k}: x_{i}<y_{i} \Rightarrow f(x)<f(y)$, or

Betweenness

$$
\Gamma:=\left(\mathbb{Q} ;\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x<y<z \vee z<y<x\right\}\right)
$$

$\operatorname{CSP}(\Gamma)$ is the Betweenness problem.
Let $f \in \operatorname{Pol}(\Gamma)$ of arity k.
There is a unique $i \in\{1, \ldots, k\}$ such that:
■ $\forall x, y \in \Gamma^{k}: x_{i}<y_{i} \Rightarrow f(x)<f(y)$, or

- $\forall x, y \in \Gamma^{k}: x_{i}<y_{i} \Rightarrow f(x)>f(y)$.

Betweenness

$$
\Gamma:=\left(\mathbb{Q} ;\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x<y<z \vee z<y<x\right\}\right)
$$

$\operatorname{CSP}(\Gamma)$ is the Betweenness problem.
Let $f \in \operatorname{Pol}(\Gamma)$ of arity k.
There is a unique $i \in\{1, \ldots, k\}$ such that:
■ $\forall x, y \in \Gamma^{k}: x_{i}<y_{i} \Rightarrow f(x)<f(y)$, or

- $\forall x, y \in \Gamma^{k}: x_{i}<y_{i} \Rightarrow f(x)>f(y)$.

Set $\xi(f)$ to be the i-th k-ary projection π_{i}^{k} in $\mathbf{1}$.

Betweenness

$$
\Gamma:=\left(\mathbb{Q} ;\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x<y<z \vee z<y<x\right\}\right)
$$

$\operatorname{CSP}(\Gamma)$ is the Betweenness problem.
Let $f \in \operatorname{Pol}(\Gamma)$ of arity k.
There is a unique $i \in\{1, \ldots, k\}$ such that:
■ $\forall x, y \in \Gamma^{k}: x_{i}<y_{i} \Rightarrow f(x)<f(y)$, or

- $\forall x, y \in \Gamma^{k}: x_{i}<y_{i} \Rightarrow f(x)>f(y)$.

Set $\xi(f)$ to be the i-th k-ary projection π_{i}^{k} in $\mathbf{1}$.
Straightforward: $\xi: \operatorname{Pol}(\Gamma) \rightarrow \mathbf{1}$ is continuous homomorphism.

Betweenness

$$
\Gamma:=\left(\mathbb{Q} ;\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x<y<z \vee z<y<x\right\}\right)
$$

$\operatorname{CSP}(\Gamma)$ is the Betweenness problem.
Let $f \in \operatorname{Pol}(\Gamma)$ of arity k.
There is a unique $i \in\{1, \ldots, k\}$ such that:

- $\forall x, y \in \Gamma^{k}: x_{i}<y_{i} \Rightarrow f(x)<f(y)$, or

■ $\forall x, y \in \Gamma^{k}: x_{i}<y_{i} \Rightarrow f(x)>f(y)$.
Set $\xi(f)$ to be the i-th k-ary projection π_{i}^{k} in $\mathbf{1}$.
Straightforward: $\xi: \operatorname{Pol}(\Gamma) \rightarrow \mathbf{1}$ is continuous homomorphism.
So the Betweenness problem is NP-hard.

A discontinuous example

A discontinuous example

Consider the signature $\tau=\left(R_{n}\right)_{n \geq 1}$, where R_{n} is $2 n$-ary.

A discontinuous example

Consider the signature $\tau=\left(R_{n}\right)_{n \geq 1}$, where R_{n} is $2 n$-ary.
Consider the class of finite τ-structures such that R_{n} is an equivalence relation with two classes on the n-tuples with distinct entries.

A discontinuous example

Consider the signature $\tau=\left(R_{n}\right)_{n \geq 1}$, where R_{n} is $2 n$-ary.
Consider the class of finite τ-structures such that R_{n} is an equivalence relation with two classes on the n-tuples with distinct entries.
Let $\Delta=\left(D ;\left(R_{n}\right)_{n \geq 1}\right)$ be its Fraïssé-limit.

A discontinuous example

Consider the signature $\tau=\left(R_{n}\right)_{n \geq 1}$, where R_{n} is $2 n$-ary.
Consider the class of finite τ-structures such that R_{n} is an equivalence relation with two classes on the n-tuples with distinct entries.
Let $\Delta=\left(D ;\left(R_{n}\right)_{n \geq 1}\right)$ be its Fraïssé-limit.

$$
S_{n}:=\left\{(\bar{x}, \bar{y}, \bar{z}) \in D^{3 n} \mid \neg\left(R_{n}(\bar{x}, \bar{y}) \wedge R_{n}(\bar{y}, \bar{z}) \wedge R_{n}(\bar{z}, \bar{x})\right)\right\}
$$

A discontinuous example

Consider the signature $\tau=\left(R_{n}\right)_{n \geq 1}$, where R_{n} is $2 n$-ary.
Consider the class of finite τ-structures such that R_{n} is an equivalence relation with two classes on the n-tuples with distinct entries.
Let $\Delta=\left(D ;\left(R_{n}\right)_{n \geq 1}\right)$ be its Fraïssé-limit.

$$
S_{n}:=\left\{(\bar{x}, \bar{y}, \bar{z}) \in D^{3 n} \mid \neg\left(R_{n}(\bar{x}, \bar{y}) \wedge R_{n}(\bar{y}, \bar{z}) \wedge R_{n}(\bar{z}, \bar{x})\right)\right\}
$$

Let $\Gamma=\left(D ;\left(R_{n}\right)_{n \geq 1},\left(S_{n}\right)_{n \geq 1}\right)$.

A discontinuous example

Consider the signature $\tau=\left(R_{n}\right)_{n \geq 1}$, where R_{n} is $2 n$-ary.
Consider the class of finite τ-structures such that R_{n} is an equivalence relation with two classes on the n-tuples with distinct entries.
Let $\Delta=\left(D ;\left(R_{n}\right)_{n \geq 1}\right)$ be its Fraïssé-limit.

$$
S_{n}:=\left\{(\bar{x}, \bar{y}, \bar{z}) \in D^{3 n} \mid \neg\left(R_{n}(\bar{x}, \bar{y}) \wedge R_{n}(\bar{y}, \bar{z}) \wedge R_{n}(\bar{z}, \bar{x})\right)\right\}
$$

Let $\Gamma=\left(D ;\left(R_{n}\right)_{n \geq 1},\left(S_{n}\right)_{n \geq 1}\right)$.
Pol (Γ) acts on classes of R_{n} via clone homomorphism ξ_{n}.

A discontinuous example

Consider the signature $\tau=\left(R_{n}\right)_{n \geq 1}$, where R_{n} is $2 n$-ary.
Consider the class of finite τ-structures such that R_{n} is an equivalence relation with two classes on the n-tuples with distinct entries.
Let $\Delta=\left(D ;\left(R_{n}\right)_{n \geq 1}\right)$ be its Fraïssé-limit.

$$
S_{n}:=\left\{(\bar{x}, \bar{y}, \bar{z}) \in D^{3 n} \mid \neg\left(R_{n}(\bar{x}, \bar{y}) \wedge R_{n}(\bar{y}, \bar{z}) \wedge R_{n}(\bar{z}, \bar{x})\right)\right\}
$$

Let $\Gamma=\left(D ;\left(R_{n}\right)_{n \geq 1},\left(S_{n}\right)_{n \geq 1}\right)$.
$\operatorname{Pol}(\Gamma)$ acts on classes of R_{n} via clone homomorphism ξ_{n}.
$\xi_{n}[\mathrm{Pol}(\Gamma)]$ preserves the relation $\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\}$.

A discontinuous example

Consider the signature $\tau=\left(R_{n}\right)_{n \geq 1}$, where R_{n} is $2 n$-ary.
Consider the class of finite τ-structures such that R_{n} is an equivalence relation with two classes on the n-tuples with distinct entries.
Let $\Delta=\left(D ;\left(R_{n}\right)_{n \geq 1}\right)$ be its Fraïssé-limit.

$$
S_{n}:=\left\{(\bar{x}, \bar{y}, \bar{z}) \in D^{3 n} \mid \neg\left(R_{n}(\bar{x}, \bar{y}) \wedge R_{n}(\bar{y}, \bar{z}) \wedge R_{n}(\bar{z}, \bar{x})\right)\right\}
$$

Let $\Gamma=\left(D ;\left(R_{n}\right)_{n \geq 1},\left(S_{n}\right)_{n \geq 1}\right)$.
$\operatorname{Pol}(\Gamma)$ acts on classes of R_{n} via clone homomorphism ξ_{n}.
$\xi_{n}[\operatorname{Pol}(\Gamma)]$ preserves the relation $\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\}$.
Each $\xi_{n}(f)$ depends on only one variable.

A discontinuous example

Consider the signature $\tau=\left(R_{n}\right)_{n \geq 1}$, where R_{n} is $2 n$-ary.
Consider the class of finite τ-structures such that R_{n} is an equivalence relation with two classes on the n-tuples with distinct entries.
Let $\Delta=\left(D ;\left(R_{n}\right)_{n \geq 1}\right)$ be its Fraïssé-limit.

$$
S_{n}:=\left\{(\bar{x}, \bar{y}, \bar{z}) \in D^{3 n} \mid \neg\left(R_{n}(\bar{x}, \bar{y}) \wedge R_{n}(\bar{y}, \bar{z}) \wedge R_{n}(\bar{z}, \bar{x})\right)\right\}
$$

Let $\Gamma=\left(D ;\left(R_{n}\right)_{n \geq 1},\left(S_{n}\right)_{n \geq 1}\right)$.
$\operatorname{Pol}(\Gamma)$ acts on classes of R_{n} via clone homomorphism ξ_{n}.
$\xi_{n}[\operatorname{Pol}(\Gamma)]$ preserves the relation $\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\}$.
Each $\xi_{n}(f)$ depends on only one variable.
Let U be an ultrafilter on ω. We define $\xi_{U}: \operatorname{Pol}(\Gamma) \rightarrow \mathbf{1}$.

A discontinuous example

Consider the signature $\tau=\left(R_{n}\right)_{n \geq 1}$, where R_{n} is $2 n$-ary.
Consider the class of finite τ-structures such that R_{n} is an equivalence relation with two classes on the n-tuples with distinct entries.
Let $\Delta=\left(D ;\left(R_{n}\right)_{n \geq 1}\right)$ be its Fraïssé-limit.

$$
S_{n}:=\left\{(\bar{x}, \bar{y}, \bar{z}) \in D^{3 n} \mid \neg\left(R_{n}(\bar{x}, \bar{y}) \wedge R_{n}(\bar{y}, \bar{z}) \wedge R_{n}(\bar{z}, \bar{x})\right)\right\}
$$

Let $\Gamma=\left(D ;\left(R_{n}\right)_{n \geq 1},\left(S_{n}\right)_{n \geq 1}\right)$.
$\operatorname{Pol}(\Gamma)$ acts on classes of R_{n} via clone homomorphism ξ_{n}.
$\xi_{n}[\operatorname{Pol}(\Gamma)]$ preserves the relation $\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\}$.
Each $\xi_{n}(f)$ depends on only one variable.
Let U be an ultrafilter on ω. We define $\xi_{U}: \operatorname{Pol}(\Gamma) \rightarrow \mathbf{1}$.
Let $f \in \operatorname{Pol}(\Gamma)$ be k-ary.

A discontinuous example

Consider the signature $\tau=\left(R_{n}\right)_{n \geq 1}$, where R_{n} is $2 n$-ary.
Consider the class of finite τ-structures such that R_{n} is an equivalence relation with two classes on the n-tuples with distinct entries.
Let $\Delta=\left(D ;\left(R_{n}\right)_{n \geq 1}\right)$ be its Fraïssé-limit.

$$
S_{n}:=\left\{(\bar{x}, \bar{y}, \bar{z}) \in D^{3 n} \mid \neg\left(R_{n}(\bar{x}, \bar{y}) \wedge R_{n}(\bar{y}, \bar{z}) \wedge R_{n}(\bar{z}, \bar{x})\right)\right\}
$$

Let $\Gamma=\left(D ;\left(R_{n}\right)_{n \geq 1},\left(S_{n}\right)_{n \geq 1}\right)$.
$\operatorname{Pol}(\Gamma)$ acts on classes of R_{n} via clone homomorphism ξ_{n}.
$\xi_{n}[\mathrm{Pol}(\Gamma)]$ preserves the relation $\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\}$.
Each $\xi_{n}(f)$ depends on only one variable.
Let U be an ultrafilter on ω. We define $\xi_{U}: \operatorname{Pol}(\Gamma) \rightarrow \mathbf{1}$.
Let $f \in \operatorname{Pol}(\Gamma)$ be k-ary.
Let ξ_{U} map f to π_{i}^{k} iff $\xi_{n}(f)$ depends on i-th variable for U-many $n \geq 1$.

A discontinuous example

Consider the signature $\tau=\left(R_{n}\right)_{n \geq 1}$, where R_{n} is $2 n$-ary.
Consider the class of finite τ-structures such that R_{n} is an equivalence relation with two classes on the n-tuples with distinct entries.
Let $\Delta=\left(D ;\left(R_{n}\right)_{n \geq 1}\right)$ be its Fraïssé-limit.

$$
S_{n}:=\left\{(\bar{x}, \bar{y}, \bar{z}) \in D^{3 n} \mid \neg\left(R_{n}(\bar{x}, \bar{y}) \wedge R_{n}(\bar{y}, \bar{z}) \wedge R_{n}(\bar{z}, \bar{x})\right)\right\}
$$

Let $\Gamma=\left(D ;\left(R_{n}\right)_{n \geq 1},\left(S_{n}\right)_{n \geq 1}\right)$.
$\operatorname{Pol}(\Gamma)$ acts on classes of R_{n} via clone homomorphism ξ_{n}.
$\xi_{n}[\mathrm{Pol}(\Gamma)]$ preserves the relation $\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\}$.
Each $\xi_{n}(f)$ depends on only one variable.
Let U be an ultrafilter on ω. We define $\xi_{U}: \operatorname{Pol}(\Gamma) \rightarrow \mathbf{1}$.
Let $f \in \operatorname{Pol}(\Gamma)$ be k-ary.
Let ξ_{U} map f to π_{i}^{k} iff $\xi_{n}(f)$ depends on i-th variable for U-many $n \geq 1$.
Continuous iff U is principal.

Example with constants

Example with constants

Over $(\mathbb{Q} ;<)$, let Γ be the structure with the ternary relation defined by

$$
(x=z<y) \vee(x=y<z)
$$

Example with constants

Over $(\mathbb{Q} ;<)$, let Γ be the structure with the ternary relation defined by

$$
(x=z<y) \vee(x=y<z)
$$

$\operatorname{Pol}(\Gamma)$ consists of monotone functions such that ...

Example with constants

Over $(\mathbb{Q} ;<)$, let Γ be the structure with the ternary relation defined by

$$
(x=z<y) \vee(x=y<z)
$$

$\operatorname{Pol}(\Gamma)$ consists of monotone functions such that ...

$$
\operatorname{Pol}(\Gamma) \nrightarrow 1 .
$$

Example with constants

Over $(\mathbb{Q} ;<)$, let Γ be the structure with the ternary relation defined by

$$
(x=z<y) \vee(x=y<z)
$$

$\operatorname{Pol}(\Gamma)$ consists of monotone functions such that ...
$\operatorname{Pol}(\Gamma) \nrightarrow 1$.
But $\operatorname{Pol}(\Gamma, 0) \rightarrow \mathbf{1}$ continuously.

VII: Topological clones revisited

Homomorphic equivalence

Homomorphic equivalence

Let Γ, Δ be structures, same signature. Γ, Δ homomorphically equivalent if $\Gamma \rightarrow \Delta$ and $\Delta \rightarrow \Gamma$.

Homomorphic equivalence

Let Γ, Δ be structures, same signature.
Γ, Δ homomorphically equivalent if $\Gamma \rightarrow \Delta$ and $\Delta \rightarrow \Gamma$.
Observation. In that case, $\operatorname{CSP}(\Gamma)=\operatorname{CSP}(\Delta)$.

Homomorphic equivalence

Let Γ, Δ be structures, same signature.
Γ, Δ homomorphically equivalent if $\Gamma \rightarrow \Delta$ and $\Delta \rightarrow \Gamma$.
Observation. In that case, $\operatorname{CSP}(\Gamma)=\operatorname{CSP}(\Delta)$.

Theorem (Bodirsky 2006)

Every finite or ω-categorical structure Γ is homomorphically equivalent to a unique ω-categorical model-complete core $\mathfrak{C}(\Gamma)$.

Homomorphic equivalence

Let Γ, Δ be structures, same signature.
Γ, Δ homomorphically equivalent if $\Gamma \rightarrow \Delta$ and $\Delta \rightarrow \Gamma$.
Observation. In that case, $\operatorname{CSP}(\Gamma)=\operatorname{CSP}(\Delta)$.

Theorem (Bodirsky 2006)

Every finite or ω-categorical structure Γ is homomorphically equivalent to a unique ω-categorical model-complete core $\mathfrak{C}(\Gamma)$.

This reduction is not covered by pp interpretations.

Homomorphic equivalence

Let Γ, Δ be structures, same signature.
Γ, Δ homomorphically equivalent if $\Gamma \rightarrow \Delta$ and $\Delta \rightarrow \Gamma$.
Observation. In that case, $\operatorname{CSP}(\Gamma)=\operatorname{CSP}(\Delta)$.

Theorem (Bodirsky 2006)

Every finite or ω-categorical structure Γ is homomorphically equivalent to a unique ω-categorical model-complete core $\mathfrak{C}(\Gamma)$.

This reduction is not covered by pp interpretations.
Dichotomy conjecture formulated in terms of $\operatorname{Pol}(\mathfrak{C}(\Gamma))$.

Homomorphic equivalence

Let Γ, Δ be structures, same signature.
Γ, Δ homomorphically equivalent if $\Gamma \rightarrow \Delta$ and $\Delta \rightarrow \Gamma$.
Observation. In that case, $\operatorname{CSP}(\Gamma)=\operatorname{CSP}(\Delta)$.

Theorem (Bodirsky 2006)

Every finite or ω-categorical structure Γ is homomorphically equivalent to a unique ω-categorical model-complete core $\mathfrak{C}(\Gamma)$.

This reduction is not covered by pp interpretations.
Dichotomy conjecture formulated in terms of $\operatorname{Pol}(\mathfrak{C}(\Gamma))$.
How does $\operatorname{Pol}(\mathfrak{C}(\Gamma))$ relate to $\operatorname{Pol}(\Gamma)$?

Double shrinks

Double shrinks

Let $\mathfrak{A}=\left(A ;\left(f_{i}^{\mathfrak{2} \mathfrak{l}}\right)_{i \in \tau}\right)$ be an algebra.

Double shrinks

Let $\mathfrak{A}=\left(A ;\left(f_{i}^{\mathfrak{A}}\right)_{i \in \tau}\right)$ be an algebra.
Let B be a set, and let $h_{1}: B \rightarrow A$ and $h_{2}: A \rightarrow B$ be functions.

Double shrinks

Let $\mathfrak{A}=\left(A ;\left(f_{i}^{\mathfrak{V}}\right)_{i \in \tau}\right)$ be an algebra.
Let B be a set, and let $h_{1}: B \rightarrow A$ and $h_{2}: A \rightarrow B$ be functions.
Define an algebra \mathfrak{B} on B with signature τ by setting

$$
f_{i}^{\mathfrak{B}}(\bar{x}):=h_{2}\left(f_{i}^{\mathfrak{l}}\left(h_{1}(\bar{x})\right) .\right.
$$

Double shrinks

Let $\mathfrak{A}=\left(A ;\left(f_{i}^{\mathfrak{V}}\right)_{i \in \tau}\right)$ be an algebra.
Let B be a set, and let $h_{1}: B \rightarrow A$ and $h_{2}: A \rightarrow B$ be functions.
Define an algebra \mathfrak{B} on B with signature τ by setting

$$
f_{i}^{\mathfrak{B}}(\bar{x}):=h_{2}\left(f_{i}^{\mathfrak{q}}\left(h_{1}(\bar{x})\right) .\right.
$$

\mathfrak{B} is called a double shrink of \mathfrak{A}.

Double shrinks

Let $\mathfrak{A}=\left(A ;\left(f_{i}^{\mathfrak{L} l}\right)_{i \in \tau}\right)$ be an algebra.
Let B be a set, and let $h_{1}: B \rightarrow A$ and $h_{2}: A \rightarrow B$ be functions.
Define an algebra \mathfrak{B} on B with signature τ by setting

$$
f_{i}^{\mathfrak{B}}(\bar{x}):=h_{2}\left(f_{i}^{\mathfrak{A}}\left(h_{1}(\bar{x})\right) .\right.
$$

\mathfrak{B} is called a double shrink of \mathfrak{A}.
Problem: the double shrink of a finite algebra can be infinite.

Double shrinks

Let $\mathfrak{A}=\left(A ;\left(f_{i}^{\mathfrak{L} l}\right)_{i \in \tau}\right)$ be an algebra.
Let B be a set, and let $h_{1}: B \rightarrow A$ and $h_{2}: A \rightarrow B$ be functions.
Define an algebra \mathfrak{B} on B with signature τ by setting

$$
f_{i}^{\mathfrak{B}}(\bar{x}):=h_{2}\left(f_{i}^{\mathfrak{A}}\left(h_{1}(\bar{x})\right) .\right.
$$

\mathfrak{B} is called a double shrink of \mathfrak{A}.
Problem: the double shrink of a finite algebra can be infinite.

WANTED: New name!

Double shrinks

Let $\mathfrak{A}=\left(A ;\left(f_{i}^{\mathfrak{V}}\right)_{i \in \tau}\right)$ be an algebra.
Let B be a set, and let $h_{1}: B \rightarrow A$ and $h_{2}: A \rightarrow B$ be functions.
Define an algebra \mathfrak{B} on B with signature τ by setting

$$
f_{i}^{\mathfrak{B}}(\bar{x}):=h_{2}\left(f_{i}^{\mathfrak{Z}}\left(h_{1}(\bar{x})\right)\right.
$$

\mathfrak{B} is called a double shrink of \mathfrak{A}.
Problem: the double shrink of a finite algebra can be infinite.

WANTED: New name!

Proposition

Let Γ, Δ be structures, where Γ is ω-categorical. TFAE:
■ Δ is homomorphically equivalent to a pp definable structure of Γ
■ $\operatorname{Pol}(\Delta)$ contains a double shrink of $\operatorname{Pol}(\Gamma)$.

D, H, S, and weak homomorphisms

$\mathrm{D}, \mathrm{H}, \mathrm{S}$, and weak homomorphisms

$\mathrm{D}(\mathfrak{A}) \ldots$ all double shrinks of \mathfrak{A}.

D, H, S, and weak homomorphisms

$\mathrm{D}(\mathfrak{A})$. . . all double shrinks of \mathfrak{A}.
Observation:

- $\mathrm{D}(\mathfrak{A}) \supseteq \mathrm{S}(\mathfrak{A})$;
- $\mathrm{D}(\mathfrak{A}) \supseteq \mathrm{H}(\mathfrak{A})$.

D, H, S, and weak homomorphisms

$\mathrm{D}(\mathfrak{A})$. . . all double shrinks of \mathfrak{A}.

Observation:

■ $\mathrm{D}(\mathfrak{A}) \supseteq \mathrm{S}(\mathfrak{A})$;

- $\mathrm{D}(\mathfrak{A}) \supseteq \mathrm{H}(\mathfrak{A})$.

Note: Double shrink does not preserve equations. Nor projections.

D, H, S, and weak homomorphisms

$\mathrm{D}(\mathfrak{A}) \ldots$ all double shrinks of \mathfrak{A}.

Observation:

- $\mathrm{D}(\mathfrak{A}) \supseteq \mathrm{S}(\mathfrak{A})$;
- $\mathrm{D}(\mathfrak{A}) \supseteq \mathrm{H}(\mathfrak{A})$.

Note: Double shrink does not preserve equations. Nor projections.
Let \mathcal{C}, \mathcal{D} be function clones.
Function $\xi: \mathcal{C} \rightarrow \mathcal{D}$ called weak homomorphism iff

D, H, S, and weak homomorphisms

$\mathrm{D}(\mathfrak{A})$. . . all double shrinks of \mathfrak{A}.
Observation:
■ $\mathrm{D}(\mathfrak{A}) \supseteq \mathrm{S}(\mathfrak{A})$;

- $\mathrm{D}(\mathfrak{A}) \supseteq \mathrm{H}(\mathfrak{A})$.

Note: Double shrink does not preserve equations. Nor projections.
Let \mathcal{C}, \mathcal{D} be function clones.
Function $\xi: \mathcal{C} \rightarrow \mathcal{D}$ called weak homomorphism iff

- it preserves arities

■ it preserves linear equations:
$\xi\left(f\left(\pi_{i_{1}}^{m}, \ldots, \pi_{i_{n}}^{m}\right)\right)=\xi(f)\left(\xi\left(\pi_{i_{1}}^{m}\right), \ldots, \xi\left(\pi_{i_{n}}^{m}\right)\right)$

D, H, S, and weak homomorphisms

$\mathrm{D}(\mathfrak{A})$. . . all double shrinks of \mathfrak{A}.
Observation:

- $D(\mathfrak{A}) \supseteq \mathrm{S}(\mathfrak{A})$;
- $\mathrm{D}(\mathfrak{A}) \supseteq \mathrm{H}(\mathfrak{A})$.

Note: Double shrink does not preserve equations. Nor projections.
Let \mathcal{C}, \mathcal{D} be function clones.
Function $\xi: \mathcal{C} \rightarrow \mathcal{D}$ called weak homomorphism iff

- it preserves arities
- it preserves linear equations:
$\xi\left(f\left(\pi_{i_{1}}^{m}, \ldots, \pi_{i_{n}}^{m}\right)\right)=\xi(f)\left(\xi\left(\pi_{i_{1}}^{m}\right), \ldots, \xi\left(\pi_{i_{n}}^{m}\right)\right)$
If there exists such a function, we write $\mathcal{C} \rightsquigarrow \mathcal{D}$.

Birkhoff's theorem for D and P

Birkhoff's theorem for D and P

Theorem (Barto + MP 2015)
Let C, \mathcal{D} be function clones. TFAE:

- $\mathcal{D} \in \mathrm{DP}(\mathcal{C})$;
- \mathcal{D} can be obtained from \mathcal{C} by D, H, S, P.
- $\mathfrak{C} \rightsquigarrow \mathcal{D}$ surjectively.

Birkhoff's theorem for D and P

Theorem (Barto + MP 2015)
Let C, \mathcal{D} be function clones. TFAE:

- $\mathcal{D} \in \mathrm{DP}(\mathcal{C})$;
- D can be obtained from \mathfrak{C} by D, H, S, P.
- $\mathfrak{C} \rightsquigarrow \mathcal{D}$ surjectively.

Theorem (Barto + MP 2015)

Let $\mathfrak{C}, \mathcal{D}$ be function clones, \mathcal{D} finite. TFAE:

- $\mathcal{D} \in \mathrm{DP}^{\text {fin }}(\mathcal{C})$;
- \mathcal{D} can be obtained from C by $\mathrm{D}, \mathrm{H}, \mathrm{S}, \mathrm{P}^{\text {fin }}$;
- $\mathfrak{C} \rightsquigarrow \mathcal{D}$ surjectively + uniformly continuously.

Birkhoff's theorem for D and P

Theorem (Barto + MP 2015)
Let C, \mathcal{D} be function clones. TFAE:

- $\mathcal{D} \in \mathrm{DP}(\mathcal{C})$;
- D can be obtained from \mathfrak{C} by D, H, S, P.
- $\mathfrak{C} \rightsquigarrow \mathcal{D}$ surjectively.

Theorem (Barto + MP 2015)

Let $\mathfrak{C}, \mathcal{D}$ be function clones, \mathcal{D} finite. TFAE:

- $\mathcal{D} \in \mathrm{DP}^{\text {fin }}(\mathrm{C})$;
- D can be obtained from e by D, H, S, $\mathrm{P}^{\text {fin }}$;
- $\mathfrak{C} \rightsquigarrow \mathcal{D}$ surjectively + uniformly continuously.

Meditation: What happened to \mathcal{D} which is finitely generated?

The relational side

The relational side

Theorem (Barto + MP 2015)

Let Γ be finite or ω-categorical, let Δ be finite. TFAE:

- Δ can be obtained from Γ by homomorphic equivalence, adding of constants to model-complete cores, and pp interpretations.

The relational side

Theorem (Barto + MP 2015)

Let Γ be finite or ω-categorical, let Δ be finite. TFAE:
■ Δ can be obtained from Γ by homomorphic equivalence, adding of constants to model-complete cores, and pp interpretations.

■ $\operatorname{Pol}(\Gamma) \rightsquigarrow \operatorname{Pol}(\Delta)$ uniformly contiuously.

Infinite tractability conjecture, revisited

Infinite tractability conjecture, revisited

Old Conjecture

Let Γ be definable in a countable finitely bounded homogeneous structure (implies ω-categorical). Then:

■ there exists a finite tuple \bar{c} such that $\operatorname{Pol}(\mathfrak{C}(\Gamma), \bar{c}) \rightarrow \mathbf{1}$ continuously (and CSP (Γ) is NP-complete), or
■ $\operatorname{CSP}(\Gamma)$ is polynomial-time solvable.

Infinite tractability conjecture, revisited

Old Conjecture

Let Γ be definable in a countable finitely bounded homogeneous structure (implies ω-categorical). Then:

■ there exists a finite tuple \bar{c} such that $\operatorname{Pol}(\mathfrak{C}(\Gamma), \bar{c}) \rightarrow \mathbf{1}$ continuously (and $\operatorname{CSP}(\Gamma)$ is NP-complete), or

- $\operatorname{CSP}(\Gamma)$ is polynomial-time solvable.

New Conjecture

Let Γ be as above or finite. Then:

- $\operatorname{Pol}(\Gamma) \rightsquigarrow 1$ uniformly continuously
(and CSP (Γ) is NP-complete), or
- $\operatorname{CSP}(\Gamma)$ is polynomial-time solvable.

Infinite tractability conjecture, revisited

Old Conjecture

Let Γ be definable in a countable finitely bounded homogeneous structure (implies ω-categorical). Then:

- there exists a finite tuple \bar{c} such that $\operatorname{Pol}(\mathfrak{C}(\Gamma), \bar{c}) \rightarrow \mathbf{1}$ continuously (and $\operatorname{CSP}(\Gamma)$ is NP-complete), or
- $\operatorname{CSP}(\Gamma)$ is polynomial-time solvable.

New Conjecture

Let Γ be as above or finite. Then:

- $\operatorname{Pol}(\Gamma) \rightsquigarrow 1$ uniformly continuously
(and CSP (Γ) is NP-complete), or
■ $\operatorname{CSP}(\Gamma)$ is polynomial-time solvable.

Observation: Old \Longrightarrow New.

C			4		3		2	8			9				B
7						A				6			4		
	E		8	D				F		5	2		C	7	
			0		7				B		D		6		E
4				9							E		1		
	6		2							0		5			3
	0	B	1	4		2			9				E		
	9	5			A	B	C	6			7				
	C		B		6		F	A	2		5			0	4
A		2			5	D	0			c	8	3	B		1
		0	F	B								D		2	
5			3		8				1		0	9	F		
3	8			5		6	E	0		F				9	
		C		F		1						B		E	
0							8				6	7			D
		4		A	D		7		E		C	2			5

VIII: Discussion \& Open Problems

Weak topological clones

Weak topological clones

■ "Right" (for the moment) abstraction of function clones for CSP are weak clone homomorphisms.

Weak topological clones

■ "Right" (for the moment) abstraction of function clones for CSP are weak clone homomorphisms.

Autom. group	Perm. gr.	Top. gr.	Abstr. gr.	-
Endom. monoid	Transf. mon.	Top. mon.	Abstr. mon.	-
Polym. clone	Function clone	Top. clone	Abstr. clone	Weak abstr. clone

Weak topological clones

■ "Right" (for the moment) abstraction of function clones for CSP are weak clone homomorphisms.

Autom. group	Perm. gr.	Top. gr.	Abstr. gr.	-
Endom. monoid	Transf. mon.	Top. mon.	Abstr. mon.	-
Polym. clone	Function clone	Top. clone	Abstr. clone	Weak abstr. clone

■ Any mapping between transformation monoids is a weak homomorphism.

Weak topological clones

■ "Right" (for the moment) abstraction of function clones for CSP are weak clone homomorphisms.

Autom. group	Perm. gr.	Top. gr.	Abstr. gr.	-
Endom. monoid	Transf. mon.	Top. mon.	Abstr. mon.	-
Polym. clone	Function clone	Top. clone	Abstr. clone	Weak abstr. clone

■ Any mapping between transformation monoids is a weak homomorphism. Any better name?

Weak topological clones

■ "Right" (for the moment) abstraction of function clones for CSP are weak clone homomorphisms.

Autom. group	Perm. gr.	Top. gr.	Abstr. gr.	-
Endom. monoid	Transf. mon.	Top. mon.	Abstr. mon.	-
Polym. clone	Function clone	Top. clone	Abstr. clone	Weak abstr. clone

■ Any mapping between transformation monoids is a weak homomorphism. Any better name?

■ Cannot expect weak homomorphism theorem with Δ infinite.

What have we gained?

What have we gained?

■ Avoids talking about (and proving) model-complete core $\mathfrak{C}(\Gamma)$.

What have we gained?

■ Avoids talking about (and proving) model-complete core $\mathfrak{C}(\Gamma)$.
■ No loss of nice properties of Γ when going to $\mathfrak{C}(\Gamma)$ (e.g., finitely bounded, Ramsey property).

What have we gained?

■ Avoids talking about (and proving) model-complete core $\mathfrak{C}(\Gamma)$.
■ No loss of nice properties of Γ when going to $\mathfrak{C}(\Gamma)$ (e.g., finitely bounded, Ramsey property).

■ Explains importance of linear equations.

What have we gained?

■ Avoids talking about (and proving) model-complete core $\mathfrak{C}(\Gamma)$.
■ No loss of nice properties of Γ when going to $\mathfrak{C}(\Gamma)$ (e.g., finitely bounded, Ramsey property).

■ Explains importance of linear equations.
■ Covers all known general CSP reductions.

What have we gained?

■ Avoids talking about (and proving) model-complete core $\mathfrak{C}(\Gamma)$.
■ No loss of nice properties of Γ when going to $\mathfrak{C}(\Gamma)$ (e.g., finitely bounded, Ramsey property).

■ Explains importance of linear equations.
■ Covers all known general CSP reductions.
■ Conjecture nicer.

What have we gained?

■ Avoids talking about (and proving) model-complete core $\mathfrak{C}(\Gamma)$.
■ No loss of nice properties of Γ when going to $\mathfrak{C}(\Gamma)$ (e.g., finitely bounded, Ramsey property).

■ Explains importance of linear equations.
■ Covers all known general CSP reductions.
■ Conjecture nicer.
■ Conjecture weaker (for infinite Γ)?

What have we gained?

■ Avoids talking about (and proving) model-complete core $\mathfrak{C}(\Gamma)$.
■ No loss of nice properties of Γ when going to $\mathfrak{C}(\Gamma)$ (e.g., finitely bounded, Ramsey property).

■ Explains importance of linear equations.
■ Covers all known general CSP reductions.
■ Conjecture nicer.
■ Conjecture weaker (for infinite Γ)?
■ Absence of weak projective homomorphism witnessed by ternary linear equations!

What have we gained?

■ Avoids talking about (and proving) model-complete core $\mathfrak{C}(\Gamma)$.
■ No loss of nice properties of Γ when going to $\mathfrak{C}(\Gamma)$ (e.g., finitely bounded, Ramsey property).

■ Explains importance of linear equations.
■ Covers all known general CSP reductions.
■ Conjecture nicer.
■ Conjecture weaker (for infinite Γ)?
■ Absence of weak projective homomorphism witnessed by ternary linear equations!

■ Useful?

Open problems

Open problems

■ Is there a countable Γ such that $\operatorname{Pol}(\Gamma) \rightarrow \mathbf{1}$, but not continuously?

Open problems

■ Is there a countable Γ such that $\operatorname{Pol}(\Gamma) \rightarrow \mathbf{1}$, but not continuously?
■ Is there a closed function clone \mathcal{C} such that $\mathbf{1} \in \operatorname{HSP}(\mathcal{C})$, but $\mathbf{1} \notin \operatorname{HSP}^{\text {fin }}(\mathcal{C})$?

Open problems

■ Is there a countable Γ such that $\operatorname{Pol}(\Gamma) \rightarrow \mathbf{1}$, but not continuously?
■ Is there a closed function clone \mathcal{C} such that $1 \in \operatorname{HSP}(\mathcal{C})$, but $\mathbf{1} \notin \operatorname{HSP}^{\text {fin }}(\mathcal{C})$?

■ Is there a countable Γ such that $\operatorname{Pol}(\Gamma) \rightsquigarrow \mathbf{1}$, but not continuously?

Open problems

■ Is there a countable Γ such that $\operatorname{Pol}(\Gamma) \rightarrow \mathbf{1}$, but not continuously?
■ Is there a closed function clone \mathcal{C} such that $1 \in \operatorname{HSP}(\mathcal{C})$, but $\mathbf{1} \notin \operatorname{HSP}^{\text {fin }}(\mathcal{C})$?

■ Is there a countable Γ such that $\operatorname{Pol}(\Gamma) \rightsquigarrow 1$, but not continuously?

- If so, is AC needed?

Open problems

■ Is there a countable Γ such that $\operatorname{Pol}(\Gamma) \rightarrow \mathbf{1}$, but not continuously?
■ Is there a closed function clone \mathcal{C} such that $1 \in \operatorname{HSP}(\mathcal{C})$, but $\mathbf{1} \notin \operatorname{HSP}^{\text {fin }}(\mathcal{C}) ?$

■ Is there a countable Γ such that $\operatorname{Pol}(\Gamma) \rightsquigarrow 1$, but not continuously?

- If so, is AC needed?

■ Is there a better name than "double shrink"?

Open problems

■ Is there a countable Γ such that $\operatorname{Pol}(\Gamma) \rightarrow \mathbf{1}$, but not continuously?
■ Is there a closed function clone \mathcal{C} such that $1 \in \operatorname{HSP}(\mathcal{C})$, but $\mathbf{1} \notin \operatorname{HSP}^{\text {fin }}(\mathcal{C}) ?$

■ Is there a countable Γ such that $\operatorname{Pol}(\Gamma) \rightsquigarrow \mathbf{1}$, but not continuously?

- If so, is AC needed?

■ Is there a better name than "double shrink"?
■ Are the old and new conjectures equivalent?

Open problems

- Is there a countable Γ such that $\operatorname{Pol}(\Gamma) \rightarrow \mathbf{1}$, but not continuously?
- Is there a closed function clone \mathcal{C} such that $1 \in \operatorname{HSP}(\mathcal{C})$, but $\mathbf{1} \notin \operatorname{HSP}^{\text {fin }}(\mathcal{C})$?

■ Is there a countable Γ such that $\operatorname{Pol}(\Gamma) \rightsquigarrow \mathbf{1}$, but not continuously?

- If so, is AC needed?
- Is there a better name than "double shrink"?
- Are the old and new conjectures equivalent?
- Is there an ω-categorical model-complete core Γ such that $\operatorname{Pol}(\Gamma) \rightsquigarrow \mathbf{1}$, but there is no projective homomorphism for any $\operatorname{Pol}(\Gamma, \bar{c})$?

Open problems

- Is there a countable Γ such that $\operatorname{Pol}(\Gamma) \rightarrow \mathbf{1}$, but not continuously?
- Is there a closed function clone \mathcal{C} such that $1 \in \operatorname{HSP}(\mathcal{C})$, but $\mathbf{1} \notin \operatorname{HSP}^{\text {fin }}(\mathcal{C})$?

■ Is there a countable Γ such that $\operatorname{Pol}(\Gamma) \rightsquigarrow \mathbf{1}$, but not continuously?

- If so, is AC needed?
- Is there a better name than "double shrink"?
- Are the old and new conjectures equivalent?
- Is there an ω-categorical model-complete core Γ such that $\operatorname{Pol}(\Gamma) \rightsquigarrow \mathbf{1}$, but there is no projective homomorphism for any $\operatorname{Pol}(\Gamma, \bar{c})$?
- If a closed function clone satisfies a linear equation, does it satisfy a special equation?

Reference

L. Barto, J. Opršal, and M. Pinsker

The wonderland of the double shrink
In preparation.

Wayne Ferrebee, Torus with Spearman, Bagpipes and Barnacle

