Representing semigroups and groups by endomorphisms of Fraïssé limits

Part II. Groups: overt & covert

Igor Dolinka

dockie@dmi.uns.ac.rs

Department of Mathematics and Informatics, University of Novi Sad

LMS – EPSRC Symposium

"Permutation Groups and Transformation Semigroups"

Durham, UK, July 28, 2015

Sherlock Holmes: A Game of Shadows (2011)

It's so overt, it's covert – a more brutal version

Green's relations

The most fundamental tool in studying the structure of semigroups. (Named after J. Alexander "Sandy" Green (1926-2014).)

$$a \mathcal{R} b \iff aS^1 = bS^1 \iff (\exists x, y \in S^1) ax = b \& by = a$$

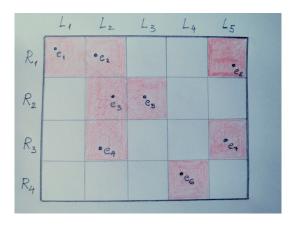
$$a \mathcal{L} b \iff S^1 a = S^1 b \iff (\exists u, v \in S^1) ua = b \& vb = a$$

$$\mathscr{D}=\mathscr{R}\circ\mathscr{L}=\mathscr{L}\circ\mathscr{R}$$

$$\mathscr{H}=\mathscr{R}\cap\mathscr{L}$$

$$\textit{a} \; \; \textit{J} \; \; \textit{b} \; \; \Leftrightarrow \; \; \; \textit{S}^{1}\textit{aS}^{1} = \textit{S}^{1}\textit{bS}^{1} \; \; \Leftrightarrow \; \; \left(\exists x,y,u,v \in \textit{S}^{1}\right)\textit{uax} = \textit{b} \, \& \, \textit{vby} = \textit{a}$$

The eggbox picture of a \mathscr{D} -class



Groups (overt): \mathscr{H} -classes shaded red (these are all isomorphic)

maximal subgroups of a semigroup $= \mathscr{H}\text{-classes}$ containing idempotents

Regularity

 $a \in S$ is regular if

a = axa

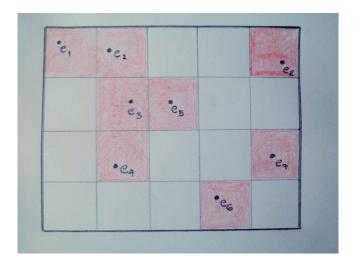
for some $x \in S$.

Fact

For any \mathscr{D} -class D, either all elements of D are regular or none of them.

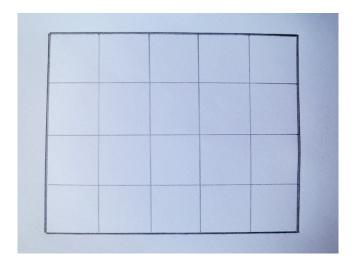
Hence, a is regular \iff a \mathscr{D} e for and idempotent e.

A regular $\mathscr{D}\text{-class}$



A regular eggbox

A non-regular \mathscr{D} -class



A non-regular eggbox

Schützenberger groups – groups the never were

There is a 'hidden' / covert group capturing the structure of a (non-regular) \mathscr{D} -class D, called the Schützenberger group of D.

Namely, let H be an \mathcal{H} -class within a \mathcal{D} -class D, and consider $T_H = \{t \in S^1 : Ht \subseteq H\}$.

Basic results of semigroup theory (Green's Lemma) show that each $\rho_t: H \to H$ $(t \in T_H)$ defined by

$$h\rho_t = ht$$

is a permutation of H.

Hence, $S_H = \{ \rho_t : t \in T_H \}$ is a permutation group on H. This is the (right) Schützenberger group of H.

Schützenberger groups – groups the never were

Fact

If both H_1, H_2 belong to D, then $S_{H_1} \cong S_{H_2}$. Hence the Schützenberger group is really an invariant of a \mathscr{D} -class of a semigroup.

Fact

If H is a group (so that D is regular), then $S_H \cong H$.

A classical example: \mathcal{T}_X

Fact

In \mathcal{T}_X we have:

- (1) $f \mathcal{R} g \iff \ker(f) = \ker(g)$;
- (2) $f \mathcal{L} g \iff \operatorname{im}(f) = \operatorname{im}(g)$;
- (3) $f \mathscr{D} g \iff \operatorname{rank}(f) = |\operatorname{im}(f)| = |\operatorname{im}(g)| = \operatorname{rank}(g);$
- (4) $\mathscr{J} = \mathscr{D}$;
- (5) if $e = e^2$ and rank(e) = k, then $H_e \cong \mathbb{S}_k$;
- (6) \mathcal{T}_X is regular.

End(A)

Let A be a first-order structure. Since $\operatorname{End}(A) \leq \mathcal{T}_A$, if $f,g \in \operatorname{End}(A)$ are $\mathscr{R}\text{-}/\mathscr{L}\text{-related}$ in $\operatorname{End}(A)$ they are certainly $\mathscr{R}\text{-}/\mathscr{L}\text{-related}$ in \mathcal{T}_A . Hence,

- (i) $f \mathcal{R} g \implies \ker(f) = \ker(g)$;
- (ii) $f \mathcal{L} g \implies \operatorname{im}(f) = \operatorname{im}(g)$.

Remark

We must be careful with the notion of an 'image' of an endomorphism if our language contains relational symbols, because besides $\operatorname{im}(f)$ we also have $\langle Af \rangle$, the induced substructure of A on Af.

Lemma

$$f \mathscr{D} g \implies \langle Af \rangle \cong \langle Ag \rangle.$$

Regular elements in End(A)

```
Proposition (Magill, Subbiah, 1974)
If f \in End(A) is regular, then im(f) = \langle Af \rangle.
Lemma (Magill, Subbiah, 1974)
Let f, g \in End(A) be regular. Then:
 (i) f \mathcal{R} g \iff \ker(f) = \ker(g);
(ii) f \mathcal{L} g \iff \operatorname{im}(f) = \operatorname{im}(g);
(iii) f \mathcal{D} g \iff \operatorname{im}(f) \cong \operatorname{im}(g);
(iv) if e is idempotent, then H_e \cong \operatorname{Aut}(\operatorname{im}(e)) \cong \operatorname{Aut}(\operatorname{im}(f)) for
      any f \in D_e.
```

Schützenberger groups in End(A)

Proposition

Let $f \in End(A)$ and $H = H_f$.

- (i) If $t \in T_H$, then $t|_{Af}$ is an automorphism of both $\langle Af \rangle$ and $\operatorname{im}(f)$;
- (ii) the mapping $\phi: \rho_t \mapsto t|_{Af}$ is an embedding of S_H into $\operatorname{Aut}(\langle Af \rangle) \cap \operatorname{Aut}(\operatorname{im}(f))$.

So, what the heck are the images of (idempotent) endomorphisms of Fraïssé limits?

Call a Fraïssé class ${\bf C}$ neat if it consists of finite structures, and for each $n \geq 1$ the number of isomorphism types of n-generated structures in ${\bf C}$ is finite.

Examples:

- relational structures
- Fraïssé classes of algebras contained in locally finite varieties

Theorem (ID, 2012)

Let ${\bf C}$ be a neat Fraïssé class enjoying the strict AP and the 1PHEP. Then there exists and (idempotent) endomorphism f of F, the Fraïssé limit of ${\bf C}$, such that $A\cong {\rm im}(f)$ if and only if A is algebraically closed in $\overline{{\bf C}}$.

Algebraically clo... wait, what?

An L-formula $\Phi(x)$ is primitive if it is of the form

$$(\exists \mathbf{y}) \bigwedge_{i < k} \Psi_i(\mathbf{x}, \mathbf{y})$$

where each Ψ_i is a literal: an atomic formula or its negation. No negation \longrightarrow primitive positive formula.

Let **K** be a class of *L*-structures. An *L*-structure *A* is existentially (algebraically) closed (in **K**) if for any primitive (positive) formula $\Phi(\mathbf{x})$ and any tuple **a** from *A* we have already $A \models \Phi(\mathbf{a})$ whenever there is an extension $A' \in \mathbf{K}$ of *A* such that $A' \models \Phi(\mathbf{a})$.

Graphs

Countable e.c. graphs: R (Alice's Restaurant property) Countable a.c. graphs: any finite set of vertices has a common neighbour (\Rightarrow infinitely many of them)

In the rest of this talk we will be concerned with simple graphs and study End(R). However, all these results can be adapted for

- the random digraph,
- the random bipartite graph,
- the random (non-strict) poset,
- •

Proposition

A countable graph (V, E) is a.c. if and only if there exists $E' \subseteq E$ such that $(V, E') \cong R$ (that is, it is e.c.). Consequently, for any a.c. graph Γ there is a bijective homomorphism $R \to \Gamma$.

Frucht's Theorem (1939)

Any finite group is \cong Aut(Γ) for a finite graph Γ .

de Groot / Sabidussi (1959/60) \Rightarrow automorphism groups of countable graphs include all countable groups.

Name of the game: Strengthen this for countable a.c. graphs.

The team

Point Guard: Martyn Quick

Forward: "Baby" James Mitchell

Center: Jillian "Jay" McPhee

Shooting Guard: Robert "Bob" Gray

Power Forward: Dr. D

Happy 30th birthday, Jay !!! (July 28)

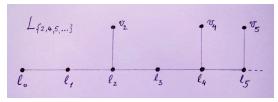
Automorphism groups of countable a.c. graphs

Theorem

Let Γ be a countable graph. Then there exist 2^{\aleph_0} pairwise non-isomorphic countable a.c. graphs whose automorphism group is $\cong \operatorname{Aut}(\Gamma)$.

Proof. For a (simple) graph Δ , let Δ^{\dagger} denote its complement.

- $\blacktriangleright \operatorname{Aut}(\Delta^{\dagger}) = \operatorname{Aut}(\Delta).$
- ▶ Δ any graph, Λ infinite locally finite graph $\Rightarrow (\Delta \uplus \Lambda)^{\dagger}$ is a.c.
- ▶ The central idea consider l.f. graphs L_S for $S \subseteq \mathbb{N} \setminus \{0,1\}$:



Automorphism groups of countable a.c. graphs

Proof (cont'd).

- ▶ Properties of L_S (S, $T \subseteq \mathbb{N} \setminus \{0,1\}$):
 - ▶ Each L_S is rigid (Aut(L_S) = 1).
 - $L_S \cong L_T \iff S = T.$
- ▶ If L_S is isomorphic to no connected component of Γ (and this excludes only countably many choices of S), then

$$\operatorname{\mathsf{Aut}}(\Gamma \uplus L_{\mathcal{S}})^\dagger = \operatorname{\mathsf{Aut}}(\Gamma \uplus L_{\mathcal{S}}) \cong \operatorname{\mathsf{Aut}}(\Gamma) \times \operatorname{\mathsf{Aut}}(L_{\mathcal{S}}) \cong \operatorname{\mathsf{Aut}}(\Gamma).$$

▶ $S_1 \neq S_2$ yield non-isomorphic a.c. graphs.

Images of idempotent endomorphisms

Theorem (Bonato, Delić, 2000; ID, 2012)

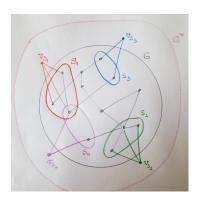
Let Γ be a countable graph. There exists an idempotent $f \in \operatorname{End}(R)$ such that $\operatorname{im}(f) \cong \Gamma$ if and only if Γ is a.c.

Theorem

If Γ is a countable a.c. graph, then there exists an (induced) subgraph $\Gamma' \cong \Gamma$ of R such that there are 2^{\aleph_0} idempotent endomorphisms f of R such that $\operatorname{im}(f) = \Gamma'$.

Images of idempotent endomorphisms

Proof.



At each stage of extending a homomorphism $\phi: \Gamma \to R_{\Gamma}$ to an endomorphism $\hat{\phi}$ of $R = R_{\Gamma}$, instead of mapping $v_S \mapsto v_{S\phi}$, if $\operatorname{im}(\phi)$ is a.c. one can find a common neighbour w for $S\phi$ within $\operatorname{im}(\phi)$.

In this way, we achieve

$$\operatorname{im}(\hat{\phi}) = \operatorname{im}(\phi).$$

In fact, at each stage there are infinitely many choices for w, which results in $\aleph_0^{\aleph_0}=2^{\aleph_0}$ extensions.

The number of regular \mathscr{D} -classes with a given group \mathscr{H} -class

Theorem

- (i) Let Γ be a countable graph. Then there exist 2^{\aleph_0} distinct regular \mathscr{D} -classes of $\operatorname{End}(R)$ whose group \mathscr{H} -classes are $\cong \operatorname{Aut}(\Gamma)$.
- (ii) Every regular \mathscr{D} -class contains 2^{\aleph_0} distinct group \mathscr{H} -classes.

Corollary

End(R) has 2^{\aleph_0} regular \mathscr{D} -classes. (You know, the ones with eggs...)

The size of a regular eggbox

Theorem

Every regular \mathcal{D} -class of $\operatorname{End}(R)$ contains 2^{\aleph_0} many \mathcal{R} - and \mathcal{L} -classes.

Proof. Let e be an idempotent endomorphism of R, and let $\Gamma = im(e)$ (a.c.).

 \mathscr{R} -classes: Assume R is constructed as R_{Γ} .

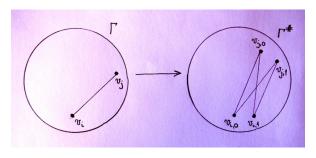
We already know that the identity mapping on Γ can be extended to $f \in \operatorname{End}(R)$ in 2^{\aleph_0} ways such that $\operatorname{im}(f) = \operatorname{im}(e)$.

All such f are idempotents, and $f \mathcal{D} e$, moreover, $f \mathcal{L} e$.

However, all these idempotents are not \mathscr{R} -related.

The size of a regular eggbox

 \mathscr{L} -classes: Key idea – construct the graph Γ^{\sharp} from Γ by replacing each edge by the following gadget:



Construct R around Γ^{\sharp} , so that $R = R_{\Gamma^{\sharp}}$.

 Γ a.c. $\Longrightarrow \Gamma^{\sharp}$ a.c. Hence, the identity map on Γ^{\sharp} can be extended to an endomorphism $g:R\to\Gamma^{\sharp}$.

The size of a regular eggbox

For each binary sequence $\mathbf{b} = (b_i)_{i \in \mathbb{N}}$ define a map $\psi_{\mathbf{b}}$ on Γ^\sharp by

$$\mathbf{v}_{i,r}\psi_{\mathbf{b}}=\mathbf{v}_{i,b_i}$$

for all $i \in \mathbb{N}$ and $r \in \{0,1\}$. Easy: $\psi_{\mathbf{b}} \in \operatorname{End}(\Gamma^{\sharp})$ and $\operatorname{im}(\psi_{\mathbf{b}}) \cong \Gamma$ is induced by $\{v_{i,b_i}: i \in \mathbb{N}\}$.

 $g\psi_{\mathbf{b}}\in \operatorname{End}(R)$ are idempotents, $\operatorname{im}(g\psi_{\mathbf{b}})\cong \Gamma\Rightarrow \operatorname{all}$ these idempotents are \mathscr{D} -related to e.

 $\mathsf{Different\ images} \Rightarrow \mathsf{they\ are\ not\ } \mathscr{L}\mathsf{-related}.$

Non-regular eggboxes

Theorem

Let $\Gamma \not\cong R$ be a countable a.c. graph. Then there exists a non-regular endomorphism of R such that $\operatorname{im}(f) \cong \Gamma$ and D_f contains 2^{\aleph_0} many \mathscr{R} - and \mathscr{L} -classes.

The proof is a variation of the idea of Γ^{\sharp} and binary sequences.

Theorem

There are 2^{\aleph_0} non-regular \mathscr{D} -classes in End(R).

Open Problem

Are there any non-regular eggboxes of some other size?

Schützenberger groups in End(R)

Let $\Gamma=(V_0,E_0)$ be a countable a.c. graph. Then, as we already know, there is a subset $F\subseteq E_0$ such that $(V_0,F)\cong R$. Now build $R_\Gamma\cong R$ around Γ , and let $f:R_\Gamma\to (V_0,F)$ be an isomorphism. Then f is an injective endomorphism of R; if $F\neq E_0$ then f is non-regular.

Proposition

Let f be an injective endomorphism of R = (V, E) as described above, with $Vf = V_0$. Then

$$S_{H_f} \cong \operatorname{Aut}(\langle V_0 \rangle) \cap \operatorname{Aut}(\operatorname{im}(f))$$

Schützenberger groups in End(R)

So, to show a universality result for Schützenberger groups in End(R), one needs to extend the Frucht-de Groot-Sabidussi Theorem to countable a.c. graphs with 2-coloured edges (blue and red, say) where the 'red graph' is $\cong R$.

This is what we did via an involved construction that again uses the rigid graphs L_S (for a particular countable family of sets S).

Theorem

Let Γ be any countable graph. There are 2^{\aleph_0} non-regular \mathscr{D} -classes of $\operatorname{End}(R)$ such that the Schützenberger groups of the \mathscr{H} -classes within them are $\cong \operatorname{Aut}(\Gamma)$.

See arXiv:1408.4107 for details.

A few words on posets

A poset (P, \leq) is a.c. if for any finite $A, B \subseteq P$ such that $A \leq B$ there exists $x \in P$ such that

$$A \le x \le B$$
.

Hence, any lattice is a.c. when considered as a poset (but not as an algebra!).

Now by the Birkhoff's Representation Theorem any automorphism group of a countable/finite graph can be represented as the automorphism group of a countable/finite distributive lattice.

It follows all countable/finite groups arise as automorphism groups of countable/finite a.c. posets.

A few words on posets

However, for strict posets (P, <) the notion of being a.c. changes: here we require that for all finite A < B we have $x \in P$ such that

$$A < x < B$$
.

Open Problem

What are the automorphism groups of countable a.c. strict posets? (I.e. what are the maximal subgroups of $End(\mathbb{P},<)$?)

Related work: G. Behrendt (PEMS, 1992)

THANK YOU!

Questions and comments to: dockie@dmi.uns.ac.rs

Further information may be found at:

http://people.dmi.uns.ac.rs/~dockie