Memoryless Computation and Universal Simulation

Alonso Castillo-Ramirez

Joint work with Maximilien Gadouleau
Durham University
alonso.castillo-ramirez@durham.ac.uk

July 2015

1. Introduction

What is memoryless computation?

$$
A^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A\right\}
$$

$$
f: A^{n} \rightarrow A^{n}
$$

■ Let A be a finite set of size $q \geq 2$ and let $n \geq 2$ be an integer.

What is memoryless computation?

$$
A^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A\right\}
$$

$$
f: A^{n} \rightarrow A^{n}
$$

- Let A be a finite set of size $q \geq 2$ and let $n \geq 2$ be an integer.
- Memoryless computation (MC) is a new model for computing transformations of A^{n} with instructions that only update one coordinate at a time while using no memory.

The XOR swap algorithm

Fig.: Swap of x and y using a temporary variable z.

The XOR swap algorithm

Fig.: Swap of x and y using a temporary variable z.

MC generalises the famous XOR swap algorithm:
Input: $(x, y) \in \mathbb{Z}^{2}$;

$$
\begin{aligned}
& x:=x+y \\
& y:=x-y \\
& x:=x-y
\end{aligned}
$$

Output: (x, y).

The XOR swap algorithm

Fig.: Swap of x and y using a temporary variable z.

MC generalises the famous XOR swap algorithm:

$$
\begin{gathered}
\text { Input: }(x, y) \in \mathbb{Z}^{2} \\
x:=x+y \\
y:=x-y \\
x:=x-y
\end{gathered}
$$

Output: (x, y).

$$
\begin{gathered}
\text { Example: }(x, y):=(3,2) ; \\
x:=3+2=5 ; \\
y:=5-2=3 ; \\
x:=5-3=2
\end{gathered}
$$

Output: $(2,3)$.

Why is MC interesting?

Here are some reasons:

Why is MC interesting?

Here are some reasons:

1 Using memory consumes time and resources.

Why is MC interesting?

Here are some reasons:

1 Using memory consumes time and resources.

2 Every transformation of A^{n} may be computed without memory.

Why is MC interesting?

Here are some reasons:

1 Using memory consumes time and resources.

2 Every transformation of A^{n} may be computed without memory.

3 If we use all possible instructions, every transformation of A^{n} may be computed without memory in linear time.

Why is MC interesting?

Here are some reasons:

1 Using memory consumes time and resources.

2 Every transformation of A^{n} may be computed without memory.

3 If we use all possible instructions, every transformation of A^{n} may be computed without memory in linear time.

4 We only need $\mathbf{n}+\mathbf{1}$ fixed instructions in order to compute without memory every transformation of A^{n}.

2. Memoryless Computation

Instructions

- Let $\operatorname{Tran}\left(A^{n}\right)$ be the full transformation monoid of A^{n}.

Instructions

■ Let $\operatorname{Tran}\left(A^{n}\right)$ be the full transformation monoid of A^{n}.

- Denote any $f \in \operatorname{Tran}\left(A^{n}\right)$ by $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$, where $f_{i}: A^{n} \rightarrow A$ is the i-th coordinate function of f.

Instructions

- Let $\operatorname{Tran}\left(A^{n}\right)$ be the full transformation monoid of A^{n}.

■ Denote any $f \in \operatorname{Tran}\left(A^{n}\right)$ by $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$, where $f_{i}: A^{n} \rightarrow A$ is the i-th coordinate function of f.

- An instruction of A^{n} is a transformation $f \in \operatorname{Tran}\left(A^{n}\right)$ with at most one nontrivial coordinate function f_{i}, i.e. $f_{i} \neq \mathrm{pr}_{i}$.

Instructions

- Let $\operatorname{Tran}\left(A^{n}\right)$ be the full transformation monoid of A^{n}.
- Denote any $f \in \operatorname{Tran}\left(A^{n}\right)$ by $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$, where $f_{i}: A^{n} \rightarrow A$ is the i-th coordinate function of f.
- An instruction of A^{n} is a transformation $f \in \operatorname{Tran}\left(A^{n}\right)$ with at most one nontrivial coordinate function f_{i}, i.e. $f_{i} \neq \mathrm{pr}_{i}$.
- For example, the following are instructions of \mathbb{Z}_{q}^{2} :

Instruction

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right) f=\left(x_{1}+1, x_{2}\right) \\
& \left(x_{1}, x_{2}\right) g=\left(x_{1}, x_{1}+x_{2}\right)
\end{aligned}
$$

Update form

$$
\begin{aligned}
& x_{1} \leftarrow x_{1}+1 \\
& x_{2} \leftarrow x_{1}+x_{2}
\end{aligned}
$$

Memoryless Complexity

■ Let \mathcal{H} be a set of instructions of A^{n}. Denote by $\langle\mathcal{H}\rangle$ the subsemigroup of $\operatorname{Tran}\left(A^{n}\right)$ generated by \mathcal{H}.

Memoryless Complexity

■ Let \mathcal{H} be a set of instructions of A^{n}. Denote by $\langle\mathcal{H}\rangle$ the subsemigroup of $\operatorname{Tran}\left(A^{n}\right)$ generated by \mathcal{H}.

- A program of length ℓ computing $g \in\langle\mathcal{H}\rangle$ is a sequence $f^{(1)}, \ldots, f^{(\ell)} \in \mathcal{H}$ such that $g=f^{(1)} \circ \ldots \circ f^{(\ell)}$.

Memoryless Complexity

■ Let \mathcal{H} be a set of instructions of A^{n}. Denote by $\langle\mathcal{H}\rangle$ the subsemigroup of $\operatorname{Tran}\left(A^{n}\right)$ generated by \mathcal{H}.

- A program of length ℓ computing $g \in\langle\mathcal{H}\rangle$ is a sequence $f^{(1)}, \ldots, f^{(\ell)} \in \mathcal{H}$ such that $g=f^{(1)} \circ \ldots \circ f^{(\ell)}$.
- For example, a program computing $\left(x_{1}, x_{2}\right) g=\left(x_{2}, x_{1}\right)$ is

$$
f^{(1)}: x_{1} \leftarrow x_{1}+x_{2}, f^{(2)}: x_{2} \leftarrow x_{1}-x_{2}, f^{(3)}: x_{1} \leftarrow x_{1}-x_{2}
$$

Memoryless Complexity

■ Let \mathcal{H} be a set of instructions of A^{n}. Denote by $\langle\mathcal{H}\rangle$ the subsemigroup of $\operatorname{Tran}\left(A^{n}\right)$ generated by \mathcal{H}.

- A program of length ℓ computing $g \in\langle\mathcal{H}\rangle$ is a sequence $f^{(1)}, \ldots, f^{(\ell)} \in \mathcal{H}$ such that $g=f^{(1)} \circ \ldots \circ f^{(\ell)}$.
- For example, a program computing $\left(x_{1}, x_{2}\right) g=\left(x_{2}, x_{1}\right)$ is

$$
f^{(1)}: x_{1} \leftarrow x_{1}+x_{2}, f^{(2)}: x_{2} \leftarrow x_{1}-x_{2}, f^{(3)}: x_{1} \leftarrow x_{1}-x_{2}
$$

■ The shortest length of a program computing $g \in\langle\mathcal{H}\rangle$ with instructions in \mathcal{H} is called the memoryless complexity of g with respect to \mathcal{H}.

Main Results

Theorem (Burckel '96; Gadouleau-Riis '15)
Let A be a finite set and $n \geq 2$. Let \mathcal{I} be the set of all instructions of A^{n}. Then, $\langle\mathcal{I}\rangle=\operatorname{Tran}\left(A^{n}\right)$.

Main Results

Theorem (Burckel '96; Gadouleau-Riis '15)
Let A be a finite set and $n \geq 2$. Let \mathcal{I} be the set of all instructions of A^{n}. Then, $\langle\mathcal{I}\rangle=\operatorname{Tran}\left(A^{n}\right)$.

Proof.
Let $c^{1}, c^{2}, \ldots, c^{q^{n}}$ be a Gray code for A^{n}, where $|A|=q$, so states c^{i} and c^{i+1} differ in exactly one coordinate.

Main Results

Theorem (Burckel '96; Gadouleau-Riis '15)
Let A be a finite set and $n \geq 2$. Let \mathcal{I} be the set of all instructions of A^{n}. Then, $\langle\mathcal{I}\rangle=\operatorname{Tran}\left(A^{n}\right)$.

Proof.
Let $c^{1}, c^{2}, \ldots, c^{q^{n}}$ be a Gray code for A^{n}, where $|A|=q$, so states c^{i} and c^{i+1} differ in exactly one coordinate. Hence, the set of transpositions

$$
\mathcal{H}:=\left\{\left(c^{i}, c^{i+1}\right): 1 \leq i \leq q^{n}-1\right\}
$$

is contained in \mathcal{I} and coincides with the set of Coxeter generators for $\operatorname{Sym}\left(A^{n}\right)$.

Main Results

Theorem (Burckel '96; Gadouleau-Riis '15)
Let A be a finite set and $n \geq 2$. Let \mathcal{I} be the set of all instructions of A^{n}. Then, $\langle\mathcal{I}\rangle=\operatorname{Tran}\left(A^{n}\right)$.

Proof.
Let $c^{1}, c^{2}, \ldots, c^{q^{n}}$ be a Gray code for A^{n}, where $|A|=q$, so states c^{i} and c^{i+1} differ in exactly one coordinate. Hence, the set of transpositions

$$
\mathcal{H}:=\left\{\left(c^{i}, c^{i+1}\right): 1 \leq i \leq q^{n}-1\right\}
$$

is contained in \mathcal{I} and coincides with the set of Coxeter generators for $\operatorname{Sym}\left(A^{n}\right)$. Thus, \mathcal{H} together with any instruction of defect 1 generates $\operatorname{Tran}\left(A^{n}\right)$.

Main Results

Theorem (Gadouleau-Riis '15)
The memoryles complexity of any $g \in \operatorname{Tran}\left(A^{n}\right)$ with respect to the set of all instructions is at most $4 n-3$.

Main Results

Theorem (Gadouleau-Riis '15)
The memoryles complexity of any $g \in \operatorname{Tran}\left(A^{n}\right)$ with respect to the set of all instructions is at most $4 n-3$.

Theorem (Cameron-Fairbairn-Gadouleau '14)
1 Unless $|A|=n=2, \operatorname{Sym}\left(A^{n}\right)$ is generated by n instructions, and $\operatorname{Tran}\left(A^{n}\right)$ is generated by $n+1$ instructions.

Main Results

Theorem (Gadouleau-Riis '15)
The memoryles complexity of any $g \in \operatorname{Tran}\left(A^{n}\right)$ with respect to the set of all instructions is at most $4 n-3$.

Theorem (Cameron-Fairbairn-Gadouleau '14)
1 Unless $|A|=n=2, \operatorname{Sym}\left(A^{n}\right)$ is generated by n instructions, and $\operatorname{Tran}\left(A^{n}\right)$ is generated by $n+1$ instructions.

2 If A is a finite field, the group $G L\left(A^{n}\right)$ is generated by n instructions.

3. Universal Simulation

Motivation

Let A be a finite set of size $q \geq 2$, and let $m \geq 2$.

- We want to study sets $\left\{F^{(1)}, \ldots, F^{(m)}\right\}$ of instructions of A^{m} such that $F^{(i)}$ updates the i-th coordinate.

Motivation

Let A be a finite set of size $q \geq 2$, and let $m \geq 2$.

- We want to study sets $\left\{F^{(1)}, \ldots, F^{(m)}\right\}$ of instructions of A^{m} such that $F^{(i)}$ updates the i-th coordinate.
- The set $\left\{F^{(1)}, \ldots, F^{(m)}\right\}$ never generates $\operatorname{Tran}\left(A^{m}\right)$, but is is possible that, for some $2 \leq n \leq m$, every transformation of A^{n} may be "simulated" by these instructions.

Motivation

Let A be a finite set of size $q \geq 2$, and let $m \geq 2$.

- We want to study sets $\left\{F^{(1)}, \ldots, F^{(m)}\right\}$ of instructions of A^{m} such that $F^{(i)}$ updates the i-th coordinate.
- The set $\left\{F^{(1)}, \ldots, F^{(m)}\right\}$ never generates $\operatorname{Tran}\left(A^{m}\right)$, but is is possible that, for some $2 \leq n \leq m$, every transformation of A^{n} may be "simulated" by these instructions.
- We shall formalize this idea and study different schemes of simulation such as sequential, parallel, and quasi-parallel.

Motivation

Let A be a finite set of size $q \geq 2$, and let $m \geq 2$.

- We want to study sets $\left\{F^{(1)}, \ldots, F^{(m)}\right\}$ of instructions of A^{m} such that $F^{(i)}$ updates the i-th coordinate.
- The set $\left\{F^{(1)}, \ldots, F^{(m)}\right\}$ never generates $\operatorname{Tran}\left(A^{m}\right)$, but is is possible that, for some $2 \leq n \leq m$, every transformation of A^{n} may be "simulated" by these instructions.
- We shall formalize this idea and study different schemes of simulation such as sequential, parallel, and quasi-parallel.

Notation

Let $m \geq n \geq 2$.
$■$ For any $f=\left(f_{1}, \ldots, f_{m}\right) \in \operatorname{Tran}\left(A^{m}\right)$, define

$$
S_{f}:=\left\langle F^{(1)}, \ldots, F^{(m)}\right\rangle
$$

where $F^{(i)}$ is the instruction of A^{m} defined by $x_{i} \leftarrow(x) f_{i}$.

Notation

Let $m \geq n \geq 2$.
$■$ For any $f=\left(f_{1}, \ldots, f_{m}\right) \in \operatorname{Tran}\left(A^{m}\right)$, define

$$
S_{f}:=\left\langle F^{(1)}, \ldots, F^{(m)}\right\rangle
$$

where $F^{(i)}$ is the instruction of A^{m} defined by $x_{i} \leftarrow(x) f_{i}$.

■ Denote $[n]:=\{1, \ldots, n\}$.

Notation

Let $m \geq n \geq 2$.
■ For any $f=\left(f_{1}, \ldots, f_{m}\right) \in \operatorname{Tran}\left(A^{m}\right)$, define

$$
S_{f}:=\left\langle F^{(1)}, \ldots, F^{(m)}\right\rangle
$$

where $F^{(i)}$ is the instruction of A^{m} defined by $x_{i} \leftarrow(x) f_{i}$.

■ Denote $[n]:=\{1, \ldots, n\}$.
■ Consider the $[n]$-projection $\operatorname{pr}_{[n]}: A^{m} \rightarrow A^{n}$, where

$$
\left(x_{1}, \ldots, x_{m}\right) \operatorname{pr}_{[n]}:=\left(x_{1}, \ldots, x_{n}\right)
$$

Universal Transformations

Definition (CR-Gadouleau '15; cf. Dömösi-Nehaniv '05)
Let $m \geq n \geq 2$. A transformation $f \in \operatorname{Tran}\left(A^{m}\right)$ simulates $g \in \operatorname{Tran}\left(A^{n}\right)$ if there exists $h \in S_{f} \subseteq \operatorname{Tran}\left(A^{m}\right)$ such that

$$
\operatorname{pr}_{[n]} \circ g=h \circ \mathrm{pr}_{[n]} ;
$$

Universal Transformations

Definition (CR-Gadouleau '15; cf. Dömösi-Nehaniv '05)
Let $m \geq n \geq 2$. A transformation $f \in \operatorname{Tran}\left(A^{m}\right)$ simulates $g \in \operatorname{Tran}\left(A^{n}\right)$ if there exists $h \in S_{f} \subseteq \operatorname{Tran}\left(A^{m}\right)$ such that

$$
\begin{gathered}
\operatorname{pr}_{[n]} \circ g=h \circ \operatorname{pr}_{[n]} ; \\
\left(x_{1}, \ldots, x_{n}\right) g=\left((x) h_{1}, \ldots,(x) h_{n}\right), \quad\left(\forall x \in A^{m}\right) .
\end{gathered}
$$

Universal Transformations

Definition (CR-Gadouleau '15; cf. Dömösi-Nehaniv '05)
Let $m \geq n \geq 2$. A transformation $f \in \operatorname{Tran}\left(A^{m}\right)$ simulates $g \in \operatorname{Tran}\left(A^{n}\right)$ if there exists $h \in S_{f} \subseteq \operatorname{Tran}\left(A^{m}\right)$ such that

$$
\begin{gathered}
\operatorname{pr}_{[n]} \circ g=h \circ \operatorname{pr}_{[n]} ; \\
\left(x_{1}, \ldots, x_{n}\right) g=\left((x) h_{1}, \ldots,(x) h_{n}\right), \quad\left(\forall x \in A^{m}\right) .
\end{gathered}
$$

The time of simulation of g by f is the minimum possible memoryless complexity of h with respect to $\left\{F^{(1)}, \ldots, F^{(m)}\right\}$.

Universal Transformations

Definition (CR-Gadouleau '15; cf. Dömösi-Nehaniv '05)

Let $m \geq n \geq 2$. A transformation $f \in \operatorname{Tran}\left(A^{m}\right)$ simulates $g \in \operatorname{Tran}\left(A^{n}\right)$ if there exists $h \in S_{f} \subseteq \operatorname{Tran}\left(A^{m}\right)$ such that

$$
\begin{gathered}
\operatorname{pr}_{[n]} \circ g=h \circ \operatorname{pr}_{[n]} ; \\
\left(x_{1}, \ldots, x_{n}\right) g=\left((x) h_{1}, \ldots,(x) h_{n}\right), \quad\left(\forall x \in A^{m}\right) .
\end{gathered}
$$

The time of simulation of g by f is the minimum possible memoryless complexity of h with respect to $\left\{F^{(1)}, \ldots, F^{(m)}\right\}$.
An n-universal transformation of size m is a transformation of A^{m} that may simulate any transformation of A^{n}.

Universal Transformations of Small Size

Theorem (CR-Gadouleau '15)
There is no n-universal transformation of size n, but there exists one of size $\mathbf{n}+\mathbf{2}$ and time of simulation $\mathbf{3}(\mathbf{q}-\mathbf{1}) \mathbf{n q} \mathbf{q}^{\mathbf{n}} \mathbf{O}\left(\mathbf{q}^{\mathbf{n}}\right)$.

Universal Transformations of Small Size

Theorem (CR-Gadouleau '15)

There is no n-universal transformation of size n, but there exists one of size $\mathbf{n}+\mathbf{2}$ and time of simulation $\mathbf{3}(\mathbf{q}-\mathbf{1}) \mathbf{n q} \mathbf{q}^{\mathbf{n}}+\mathbf{O}\left(\mathbf{q}^{\mathbf{n}}\right)$.

Sketch of the Proof.
We find the required set $\left\{F^{(1)}, \ldots, F^{(n+2)}\right\} \subseteq \operatorname{Tran}\left(A^{n+2}\right)$:

1. Choose a generating set of instructions $\mathcal{H} \subseteq \operatorname{Tran}\left(A^{n}\right)$ such that for any $i \in[n]$, at most two instructions in \mathcal{H} update i.

Universal Transformations of Small Size

Theorem (CR-Gadouleau '15)

There is no n-universal transformation of size n, but there exists one of size $\mathbf{n}+\mathbf{2}$ and time of simulation $\mathbf{3}(\mathbf{q}-\mathbf{1}) \mathbf{n q} \mathbf{q}^{\mathbf{n}}+\mathbf{O}\left(\mathbf{q}^{\mathbf{n}}\right)$.

Sketch of the Proof.
We find the required set $\left\{F^{(1)}, \ldots, F^{(n+2)}\right\} \subseteq \operatorname{Tran}\left(A^{n+2}\right)$:

1. Choose a generating set of instructions $\mathcal{H} \subseteq \operatorname{Tran}\left(A^{n}\right)$ such that for any $i \in[n]$, at most two instructions in \mathcal{H} update i.
2. If there exist $A, B \in \mathcal{H}, A \neq B$, that update $i \in[n]$, let

$$
F^{(i)}: x_{i} \leftarrow \begin{cases}(x) \operatorname{pr}_{[n]} \circ A_{i} & \text { if } x_{n+1}=x_{n+2} \\ (x) \operatorname{pr}_{[n]} \circ B_{i} & \text { if } x_{n+1} \neq x_{n+2}\end{cases}
$$

Universal Transformations of Small Size

Sketch of the Proof (continuation).
3. If there is a unique $C \in \mathcal{H}$ that update $i \in[n]$, let $F^{(i)}: x_{i} \leftarrow(x) \operatorname{pr}_{[n]}{ }^{\circ}$.

Universal Transformations of Small Size

Sketch of the Proof (continuation).
3. If there is a unique $C \in \mathcal{H}$ that update $i \in[n]$, let

$$
F^{(i)}: x_{i} \leftarrow(x) \operatorname{pr}_{[n]} \circ_{i}
$$

4. Let $F^{(n+1)}: x_{n+1} \leftarrow x_{n+2}$ and

$$
F^{(n+2)}: x_{n+2} \leftarrow \begin{cases}x_{n+2}+1 & \text { if } x_{n+1}=x_{n+2} \\ x_{n+2} & \text { if } x_{n+1} \neq x_{n+2}\end{cases}
$$

Universal Transformations of Small Size

Sketch of the Proof (continuation).
3. If there is a unique $C \in \mathcal{H}$ that update $i \in[n]$, let $F^{(i)}: x_{i} \leftarrow(x) \operatorname{pr}_{[n]}{ }^{\circ}$.
4. Let $F^{(n+1)}: x_{n+1} \leftarrow x_{n+2}$ and

$$
F^{(n+2)}: x_{n+2} \leftarrow \begin{cases}x_{n+2}+1 & \text { if } x_{n+1}=x_{n+2} \\ x_{n+2} & \text { if } x_{n+1} \neq x_{n+2}\end{cases}
$$

5. Any $g \in \operatorname{Tran}\left(A^{n}\right)$ has a program in \mathcal{H}, so we may use this program to define $h \in S_{f}$ such that $\operatorname{pr}_{[n]} \circ g=h \circ \operatorname{pr}_{[n]}$.

Universal Transformations of Small Size

Sketch of the Proof (continuation).
3. If there is a unique $C \in \mathcal{H}$ that update $i \in[n]$, let $F^{(i)}: x_{i} \leftarrow(x) \operatorname{pr}_{[n]}{ }^{\circ} ;$
4. Let $F^{(n+1)}: x_{n+1} \leftarrow x_{n+2}$ and

$$
F^{(n+2)}: x_{n+2} \leftarrow \begin{cases}x_{n+2}+1 & \text { if } x_{n+1}=x_{n+2} \\ x_{n+2} & \text { if } x_{n+1} \neq x_{n+2}\end{cases}
$$

5. Any $g \in \operatorname{Tran}\left(A^{n}\right)$ has a program in \mathcal{H}, so we may use this program to define $h \in S_{f}$ such that $\operatorname{pr}_{[n]} \circ g=h \circ \operatorname{pr}_{[n]}$.

Question: Is there an n-universal transformation of size $n+1$?

Fast Universal Transformations

Theorem (CR-Gadouleau '15)
There is an n-universal transformation of A^{m} with time of simulation at most $\mathbf{q}^{\mathbf{n}}+\mathbf{O}(\mathbf{n})$.

Fast Universal Transformations

Theorem (CR-Gadouleau '15)
There is an n-universal transformation of A^{m} with time of simulation at most $\mathbf{q}^{\mathbf{n}}+\mathbf{O}(\mathbf{n})$.

Fast Universal Transformations

Theorem (CR-Gadouleau '15)
There is an n-universal transformation of A^{m} with time of simulation at most $\mathbf{q}^{\mathbf{n}}+\mathbf{O}(\mathbf{n})$.

Idea of the Proof.
The key idea of the proof is to enumerate all the coordinate functions $A^{n} \rightarrow A$ and use a one-error correcting code to decide which one of them shall be computed in each simulation.

Fast Universal Transformations

Theorem (CR-Gadouleau '15)
There is an n-universal transformation of A^{m} with time of simulation at most $\mathbf{q}^{\mathbf{n}}+\mathbf{O}(\mathbf{n})$.

Idea of the Proof.
The key idea of the proof is to enumerate all the coordinate functions $A^{n} \rightarrow A$ and use a one-error correcting code to decide which one of them shall be computed in each simulation.

Question: Is there an n-universal transformation with maximum time of simulation less than $q^{n}+O(n)$?

Sequential Simulation

Definition

A transformation $f \in \operatorname{Tran}\left(A^{m}\right)$ sequentially simulates a sequence of transformations $g^{(1)}, \ldots, g^{(\ell)} \in \operatorname{Tran}\left(A^{n}\right)$ if there are $h^{(1)}, \ldots, h^{(\ell)} \in S_{f} \subseteq \operatorname{Tran}\left(A^{m}\right)$ such that

$$
\operatorname{pr}_{[n]} \circ g^{(i)}=h^{(1)} \circ \cdots \circ h^{(i)} \circ \operatorname{pr}_{[n]}, \quad \forall(1 \leq i \leq \ell)
$$

Sequential Simulation

Definition

A transformation $f \in \operatorname{Tran}\left(A^{m}\right)$ sequentially simulates a sequence of transformations $g^{(1)}, \ldots, g^{(\ell)} \in \operatorname{Tran}\left(A^{n}\right)$ if there are $h^{(1)}, \ldots, h^{(\ell)} \in S_{f} \subseteq \operatorname{Tran}\left(A^{m}\right)$ such that

$$
\operatorname{pr}_{[n]} \circ g^{(i)}=h^{(1)} \circ \cdots \circ h^{(i)} \circ \operatorname{pr}_{[n]}, \quad \forall(1 \leq i \leq \ell)
$$

An n-universal transformation is complete if it may sequentially simulate any finite sequence of transformations of A^{n}.

Sequential Simulation

Definition

A transformation $f \in \operatorname{Tran}\left(A^{m}\right)$ sequentially simulates a sequence of transformations $g^{(1)}, \ldots, g^{(\ell)} \in \operatorname{Tran}\left(A^{n}\right)$ if there are $h^{(1)}, \ldots, h^{(\ell)} \in S_{f} \subseteq \operatorname{Tran}\left(A^{m}\right)$ such that

$$
\operatorname{pr}_{[n]} \circ g^{(i)}=h^{(1)} \circ \cdots \circ h^{(i)} \circ \operatorname{pr}_{[n]}, \quad \forall(1 \leq i \leq \ell)
$$

An n-universal transformation is complete if it may sequentially simulate any finite sequence of transformations of A^{n}.

Lemma
Any complete n-universal transformation has size $m \geq 2 n$.

Other Schemes of Simulation

Theorem (CR-Gadouleau '15)
Let A be a finite set and $m \geq n \geq 2$.
1 There is an n-universal complete transformation of size $2 n+3$.

Other Schemes of Simulation

Theorem (CR-Gadouleau '15)
Let A be a finite set and $m \geq n \geq 2$.
1 There is an n-universal complete transformation of size $2 n+3$.

2 There is no transformation $f \in \operatorname{Tran}\left(A^{m}\right)$ that may simulate in parallel (i.e. with $h \in\langle f\rangle$ instead of $h \in S_{f}$) every transformation of A^{n}.

Other Schemes of Simulation

Theorem (CR-Gadouleau '15)
Let A be a finite set and $m \geq n \geq 2$.
1 There is an n-universal complete transformation of size $2 n+3$.

2 There is no transformation $f \in \operatorname{Tran}\left(A^{m}\right)$ that may simulate in parallel (i.e. with $h \in\langle f\rangle$ instead of $h \in S_{f}$) every transformation of A^{n}.

3 There is a transformation $f \in \operatorname{Tran}\left(A^{m}\right)$ that may simulate in quasi-parallel (i.e. with $\left.h \in\left\langle\left(f_{1}, \ldots, f_{m-1}, \operatorname{pr}_{m}\right), F^{(m)}\right\rangle\right)$ every finite sequence of $\operatorname{Tran}\left(A^{n}\right)$.

Thanks for listening!

Universal Simulation of Automata Networks, joint with M. Gadouleau arXiv:1504.00169.

