Memoryless Computation and Universal Simulation

Alonso Castillo-Ramirez

Joint work with Maximilien Gadouleau

Durham University

alonso.castillo-ramirez@durham.ac.uk

July 2015

Alonso Castillo-Ramirez

Durham University

Memoryless Computation and Universal Simulation

1. Introduction

Alonso Castillo-Ramirez Memoryless Computation and Universal Simulation

Universal Simulation

What is memoryless computation?

$$\mathbf{A}^n = \{(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n) \mid \mathbf{a}_i \in \mathbf{A}\}$$

$$f: A^n \to A^n$$

• Let A be a finite set of size $q \ge 2$ and let $n \ge 2$ be an integer.

Alonso Castillo-Ramirez

Durham University

Memoryless Computation and Universal Simulation

Universal Simulation

What is memoryless computation?

• Let A be a finite set of size $q \ge 2$ and let $n \ge 2$ be an integer.

Memoryless computation (MC) is a new model for computing transformations of Aⁿ with instructions that only update one coordinate at a time while using no memory.

Universal Simulation

The XOR swap algorithm

Fig.: Swap of x and y using a temporary variable z.

Universal Simulation

The XOR swap algorithm

Fig.: Swap of *x* and *y* using a temporary variable *z*.

MC generalises the famous XOR swap algorithm:

Input:
$$(x, y) \in \mathbb{Z}^2$$
;
 $x := x + y$;
 $y := x - y$;
 $x := x - y$;
Dutput: (x, y) .

Alonso Castillo-Ramirez

Memoryless Computation and Universal Simulation

Universal Simulation

The XOR swap algorithm

Fig.: Swap of x and y using a temporary variable z.

MC generalises the famous XOR swap algorithm:

Input:
$$(x, y) \in \mathbb{Z}^2$$
;
 $x :=x + y$;
 $y :=x - y$;
 $x :=x - y$;
Output: (x, y) .

Example:
$$(x, y) := (3, 2);$$

 $x :=3 + 2 = 5;$
 $y :=5 - 2 = 3;$
 $x :=5 - 3 = 2;$
Output: $(2, 3).$

Memoryless Computation and Universal Simulation

Here are some reasons:

Alonso Castillo-Ramirez Memoryless Computation and Universal Simulation

Here are some reasons:

1 Using memory consumes time and resources.

Here are some reasons:

- **1** Using memory consumes time and resources.
- Every transformation of Aⁿ may be computed without memory.

Here are some reasons:

- **1** Using memory consumes time and resources.
- Every transformation of Aⁿ may be computed without memory.
- If we use all possible instructions, every transformation of Aⁿ may be computed without memory in linear time.

Here are some reasons:

- **1** Using memory consumes time and resources.
- Every transformation of Aⁿ may be computed without memory.
- If we use all possible instructions, every transformation of Aⁿ may be computed without memory in linear time.
- 4 We only need n + 1 fixed instructions in order to compute without memory every transformation of A^n .

Alonso Castillo-Ramirez Memoryless Computation and Universal Simulation

• Let $Tran(A^n)$ be the full transformation monoid of A^n .

- Let $Tran(A^n)$ be the full transformation monoid of A^n .
- Denote any $f \in \text{Tran}(A^n)$ by $f = (f_1, f_2, \dots, f_n)$, where $f_i : A^n \to A$ is the *i*-th coordinate function of f.

- Let $Tran(A^n)$ be the full transformation monoid of A^n .
- Denote any $f \in \text{Tran}(A^n)$ by $f = (f_1, f_2, \dots, f_n)$, where $f_i : A^n \to A$ is the *i*-th coordinate function of f.
- An instruction of A^n is a transformation $f \in \text{Tran}(A^n)$ with at most one nontrivial coordinate function f_i , i.e. $f_i \neq \text{pr}_i$.

- Let $Tran(A^n)$ be the full transformation monoid of A^n .
- Denote any $f \in \text{Tran}(A^n)$ by $f = (f_1, f_2, \dots, f_n)$, where $f_i : A^n \to A$ is the *i*-th coordinate function of f.
- An instruction of A^n is a transformation $f \in \text{Tran}(A^n)$ with at most one nontrivial coordinate function f_i , i.e. $f_i \neq \text{pr}_i$.
- For example, the following are instructions of \mathbb{Z}_q^2 :

 Instruction
 Update form

 $(x_1, x_2)f = (x_1 + 1, x_2)$ $x_1 \leftarrow x_1 + 1$
 $(x_1, x_2)g = (x_1, x_1 + x_2)$ $x_2 \leftarrow x_1 + x_2$

■ Let *H* be a set of instructions of *Aⁿ*. Denote by ⟨*H*⟩ the subsemigroup of Tran(*Aⁿ*) generated by *H*.

- Let *H* be a set of instructions of *Aⁿ*. Denote by ⟨*H*⟩ the subsemigroup of Tran(*Aⁿ*) generated by *H*.
- A **program** of length ℓ computing $g \in \langle \mathcal{H} \rangle$ is a sequence $f^{(1)}, \ldots, f^{(\ell)} \in \mathcal{H}$ such that $g = f^{(1)} \circ \cdots \circ f^{(\ell)}$.

- Let *H* be a set of instructions of *Aⁿ*. Denote by ⟨*H*⟩ the subsemigroup of Tran(*Aⁿ*) generated by *H*.
- A **program** of length ℓ computing $g \in \langle \mathcal{H} \rangle$ is a sequence $f^{(1)}, \ldots, f^{(\ell)} \in \mathcal{H}$ such that $g = f^{(1)} \circ \cdots \circ f^{(\ell)}$.
- For example, a program computing $(x_1, x_2)g = (x_2, x_1)$ is

$$f^{(1)}: x_1 \leftarrow x_1 + x_2, \ f^{(2)}: x_2 \leftarrow x_1 - x_2, \ f^{(3)}: x_1 \leftarrow x_1 - x_2.$$

- Let *H* be a set of instructions of *Aⁿ*. Denote by ⟨*H*⟩ the subsemigroup of Tran(*Aⁿ*) generated by *H*.
- A **program** of length ℓ computing $g \in \langle \mathcal{H} \rangle$ is a sequence $f^{(1)}, \ldots, f^{(\ell)} \in \mathcal{H}$ such that $g = f^{(1)} \circ \cdots \circ f^{(\ell)}$.
- For example, a program computing $(x_1, x_2)g = (x_2, x_1)$ is

$$f^{(1)}: x_1 \leftarrow x_1 + x_2, \ f^{(2)}: x_2 \leftarrow x_1 - x_2, \ f^{(3)}: x_1 \leftarrow x_1 - x_2.$$

■ The shortest length of a program computing g ∈ ⟨ℋ⟩ with instructions in ℋ is called the memoryless complexity of g with respect to ℋ.

Theorem (Burckel '96; Gadouleau-Riis '15)

Let A be a finite set and $n \ge 2$. Let \mathcal{I} be the set of <u>all instructions</u> of A^n . Then, $\langle \mathcal{I} \rangle = \operatorname{Tran}(A^n)$.

Theorem (Burckel '96; Gadouleau-Riis '15)

Let A be a finite set and $n \ge 2$. Let \mathcal{I} be the set of <u>all instructions</u> of A^n . Then, $\langle \mathcal{I} \rangle = \operatorname{Tran}(A^n)$.

Proof. Let $c^1, c^2, \ldots, c^{q^n}$ be a **Gray code** for A^n , where |A| = q, so states c^i and c^{i+1} differ in exactly one coordinate.

Theorem (Burckel '96; Gadouleau-Riis '15)

Let A be a finite set and $n \ge 2$. Let \mathcal{I} be the set of <u>all instructions</u> of A^n . Then, $\langle \mathcal{I} \rangle = \operatorname{Tran}(A^n)$.

Proof.

Let $c^1, c^2, \ldots, c^{q^n}$ be a **Gray code** for A^n , where |A| = q, so states c^i and c^{i+1} differ in exactly one coordinate. Hence, the set of transpositions

$$\mathcal{H} := \{(c^i, c^{i+1}) : 1 \le i \le q^n - 1\}$$

is contained in \mathcal{I} and coincides with the set of Coxeter generators for $Sym(A^n)$.

Theorem (Burckel '96; Gadouleau-Riis '15)

Let A be a finite set and $n \ge 2$. Let \mathcal{I} be the set of <u>all instructions</u> of A^n . Then, $\langle \mathcal{I} \rangle = \operatorname{Tran}(A^n)$.

Proof.

Let $c^1, c^2, \ldots, c^{q^n}$ be a **Gray code** for A^n , where |A| = q, so states c^i and c^{i+1} differ in exactly one coordinate. Hence, the set of transpositions

$$\mathcal{H} := \{(c^i, c^{i+1}) : 1 \le i \le q^n - 1\}$$

is contained in \mathcal{I} and coincides with the set of Coxeter generators for $\text{Sym}(A^n)$. Thus, \mathcal{H} together with any instruction of defect 1 generates $\text{Tran}(A^n)$.

Theorem (Gadouleau-Riis '15)

The memoryles complexity of any $g \in \text{Tran}(A^n)$ with respect to the set of all instructions is at most 4n - 3.

Theorem (Gadouleau-Riis '15)

The memoryles complexity of any $g \in \text{Tran}(A^n)$ with respect to the set of all instructions is at most 4n - 3.

Theorem (Cameron-Fairbairn-Gadouleau '14)

Unless |A| = n = 2, Sym(Aⁿ) is generated by n instructions, and Tran(Aⁿ) is generated by n + 1 instructions.

Theorem (Gadouleau-Riis '15)

The memoryles complexity of any $g \in \text{Tran}(A^n)$ with respect to the set of all instructions is at most 4n - 3.

Theorem (Cameron-Fairbairn-Gadouleau '14)

- Unless |A| = n = 2, Sym(Aⁿ) is generated by n instructions, and Tran(Aⁿ) is generated by n + 1 instructions.
- **2** If A is a finite field, the group $GL(A^n)$ is generated by n instructions.

3. Universal Simulation

Let A be a finite set of size $q \ge 2$, and let $m \ge 2$.

We want to study sets {F⁽¹⁾,..., F^(m)} of instructions of A^m such that F⁽ⁱ⁾ updates the *i*-th coordinate.

Let A be a finite set of size $q \ge 2$, and let $m \ge 2$.

- We want to study sets {F⁽¹⁾,..., F^(m)} of instructions of A^m such that F⁽ⁱ⁾ updates the *i*-th coordinate.
- The set {F⁽¹⁾,..., F^(m)} never generates Tran(A^m), but is is possible that, for some 2 ≤ n ≤ m, every transformation of Aⁿ may be "simulated" by these instructions.

Let A be a finite set of size $q \ge 2$, and let $m \ge 2$.

- We want to study sets {F⁽¹⁾,..., F^(m)} of instructions of A^m such that F⁽ⁱ⁾ updates the *i*-th coordinate.
- The set {F⁽¹⁾,..., F^(m)} never generates Tran(A^m), but is is possible that, for some 2 ≤ n ≤ m, every transformation of Aⁿ may be "simulated" by these instructions.
- We shall formalize this idea and study different schemes of simulation such as sequential, parallel, and quasi-parallel.

Let A be a finite set of size $q \ge 2$, and let $m \ge 2$.

- We want to study sets {F⁽¹⁾,..., F^(m)} of instructions of A^m such that F⁽ⁱ⁾ updates the *i*-th coordinate.
- The set {F⁽¹⁾,..., F^(m)} never generates Tran(A^m), but is is possible that, for some 2 ≤ n ≤ m, every transformation of Aⁿ may be "simulated" by these instructions.
- We shall formalize this idea and study different schemes of simulation such as sequential, parallel, and quasi-parallel.

Notation

Let $m \ge n \ge 2$.

• For any $f = (f_1, \dots, f_m) \in \operatorname{Tran}(A^m)$, define $S_f := \langle F^{(1)}, \dots, F^{(m)} \rangle$

where $F^{(i)}$ is the instruction of A^m defined by $x_i \leftarrow (x)f_i$.

Notation

Let $m \ge n \ge 2$.

For any
$$f = (f_1, \dots, f_m) \in \operatorname{Tran}(A^m)$$
, define $S_f := \langle F^{(1)}, \dots, F^{(m)}
angle$

where $F^{(i)}$ is the instruction of A^m defined by $x_i \leftarrow (x)f_i$.

• Denote
$$[n] := \{1, \ldots, n\}.$$

Notation

Let $m \ge n \ge 2$.

• For any $f = (f_1, \dots, f_m) \in \operatorname{Tran}(A^m)$, define $S_f := \langle F^{(1)}, \dots, F^{(m)} \rangle$

where $F^{(i)}$ is the instruction of A^m defined by $x_i \leftarrow (x)f_i$.

• Denote
$$[n] := \{1, \ldots, n\}.$$

• Consider the [n]-projection $pr_{[n]} : A^m \to A^n$, where

$$(x_1,\ldots,x_m)\operatorname{pr}_{[n]} := (x_1,\ldots,x_n).$$

Definition (CR-Gadouleau '15; cf. Dömösi-Nehaniv '05)

Let $m \ge n \ge 2$. A transformation $f \in \text{Tran}(A^m)$ simulates $g \in \text{Tran}(A^n)$ if there exists $h \in S_f \subseteq \text{Tran}(A^m)$ such that

$$\operatorname{pr}_{[n]} \circ g = h \circ \operatorname{pr}_{[n]};$$

Definition (CR-Gadouleau '15; cf. Dömösi-Nehaniv '05)

Let $m \ge n \ge 2$. A transformation $f \in \text{Tran}(A^m)$ simulates $g \in \text{Tran}(A^n)$ if there exists $h \in S_f \subseteq \text{Tran}(A^m)$ such that

$$\operatorname{pr}_{[n]} \circ g = h \circ \operatorname{pr}_{[n]};$$

$$(x_1,\ldots,x_n)g = ((x)h_1,\ldots,(x)h_n), \quad (\forall x \in A^m).$$

Definition (CR-Gadouleau '15; cf. Dömösi-Nehaniv '05)

Let $m \ge n \ge 2$. A transformation $f \in \text{Tran}(A^m)$ simulates $g \in \text{Tran}(A^n)$ if there exists $h \in S_f \subseteq \text{Tran}(A^m)$ such that

 $\operatorname{pr}_{[n]} \circ g = h \circ \operatorname{pr}_{[n]};$

$$(x_1,\ldots,x_n)g=((x)h_1,\ldots,(x)h_n), \quad (\forall x\in A^m).$$

The **time of simulation** of g by f is the minimum possible memoryless complexity of h with respect to $\{F^{(1)}, \ldots, F^{(m)}\}$.

Definition (CR-Gadouleau '15; cf. Dömösi-Nehaniv '05)

Let $m \ge n \ge 2$. A transformation $f \in \text{Tran}(A^m)$ simulates $g \in \text{Tran}(A^n)$ if there exists $h \in S_f \subseteq \text{Tran}(A^m)$ such that

 $\operatorname{pr}_{[n]} \circ g = h \circ \operatorname{pr}_{[n]};$

$$(x_1,\ldots,x_n)g=((x)h_1,\ldots,(x)h_n), \ (\forall x\in A^m).$$

The **time of simulation** of g by f is the minimum possible memoryless complexity of h with respect to $\{F^{(1)}, \ldots, F^{(m)}\}$.

An *n*-universal transformation of size *m* is a transformation of A^m that may simulate any transformation of A^n .

Theorem (CR-Gadouleau '15)

There is no n-universal transformation of size n, but there exists one of size n + 2 and time of simulation $3(q - 1)nq^n + O(q^n)$.

Theorem (CR-Gadouleau '15)

There is no n-universal transformation of size n, but there exists one of size n + 2 and time of simulation $3(q - 1)nq^n + O(q^n)$.

Sketch of the Proof.

We find the required set $\{F^{(1)}, \ldots, F^{(n+2)}\} \subseteq \operatorname{Tran}(A^{n+2})$:

1. Choose a generating set of instructions $\mathcal{H} \subseteq \operatorname{Tran}(A^n)$ such that for any $i \in [n]$, at most two instructions in \mathcal{H} update *i*.

Theorem (CR-Gadouleau '15)

There is no n-universal transformation of size n, but there exists one of size n + 2 and time of simulation $3(q - 1)nq^n + O(q^n)$.

Sketch of the Proof.

We find the required set $\{F^{(1)}, \ldots, F^{(n+2)}\} \subseteq \operatorname{Tran}(A^{n+2})$:

- 1. Choose a generating set of instructions $\mathcal{H} \subseteq \operatorname{Tran}(A^n)$ such that for any $i \in [n]$, at most two instructions in \mathcal{H} update *i*.
- 2. If there exist $A, B \in \mathcal{H}$, $A \neq B$, that update $i \in [n]$, let

$$F^{(i)}: x_i \leftarrow \begin{cases} (x) \operatorname{pr}_{[n]} \circ A_i & \text{ if } x_{n+1} = x_{n+2} \\ (x) \operatorname{pr}_{[n]} \circ B_i & \text{ if } x_{n+1} \neq x_{n+2}. \end{cases}$$

Sketch of the Proof (continuation).

3. If there is a unique $C \in \mathcal{H}$ that update $i \in [n]$, let $F^{(i)} : x_i \leftarrow (x) \operatorname{pr}_{[n]} \circ_i$.

Sketch of the Proof (continuation).

3. If there is a unique $C \in \mathcal{H}$ that update $i \in [n]$, let $F^{(i)} : x_i \leftarrow (x) \operatorname{pr}_{[n]} \circ_i$.

4. Let
$$F^{(n+1)}: x_{n+1} \leftarrow x_{n+2}$$
 and

$$F^{(n+2)}: x_{n+2} \leftarrow \begin{cases} x_{n+2} + 1 & \text{if } x_{n+1} = x_{n+2} \\ x_{n+2} & \text{if } x_{n+1} \neq x_{n+2}. \end{cases}$$

Memoryless Computation and Universal Simulation

Sketch of the Proof (continuation).

3. If there is a unique $C \in \mathcal{H}$ that update $i \in [n]$, let $F^{(i)} : x_i \leftarrow (x) \operatorname{pr}_{[n]} \circ_i$.

4. Let
$$F^{(n+1)}: x_{n+1} \leftarrow x_{n+2}$$
 and

$$F^{(n+2)}: x_{n+2} \leftarrow \begin{cases} x_{n+2} + 1 & \text{if } x_{n+1} = x_{n+2} \\ x_{n+2} & \text{if } x_{n+1} \neq x_{n+2}. \end{cases}$$

5. Any $g \in \text{Tran}(A^n)$ has a program in \mathcal{H} , so we may use this program to define $h \in S_f$ such that $\text{pr}_{[n]} \circ g = h \circ \text{pr}_{[n]}$.

Sketch of the Proof (continuation).

3. If there is a unique $C \in \mathcal{H}$ that update $i \in [n]$, let $F^{(i)} : x_i \leftarrow (x) \operatorname{pr}_{[n]} \circ_i$.

4. Let
$$F^{(n+1)}: x_{n+1} \leftarrow x_{n+2}$$
 and

$$F^{(n+2)}: x_{n+2} \leftarrow \begin{cases} x_{n+2} + 1 & \text{if } x_{n+1} = x_{n+2} \\ x_{n+2} & \text{if } x_{n+1} \neq x_{n+2}. \end{cases}$$

5. Any $g \in \text{Tran}(A^n)$ has a program in \mathcal{H} , so we may use this program to define $h \in S_f$ such that $\text{pr}_{[n]} \circ g = h \circ \text{pr}_{[n]}$.

Question: Is there an *n*-universal transformation of size n + 1?

Alonso Castillo-Ramirez

Theorem (CR-Gadouleau '15)

There is an n-universal transformation of A^m with time of simulation at most $q^n + O(n)$.

Theorem (CR-Gadouleau '15)

There is an n-universal transformation of A^m with time of simulation at most $q^n + O(n)$.

Theorem (CR-Gadouleau '15)

There is an n-universal transformation of A^m with time of simulation at most $q^n + O(n)$.

Idea of the Proof.

The key idea of the proof is to enumerate all the coordinate functions $A^n \rightarrow A$ and use a one-error correcting code to decide which one of them shall be computed in each simulation.

Theorem (CR-Gadouleau '15)

There is an n-universal transformation of A^m with time of simulation at most $q^n + O(n)$.

Idea of the Proof.

The key idea of the proof is to enumerate all the coordinate functions $A^n \rightarrow A$ and use a one-error correcting code to decide which one of them shall be computed in each simulation.

Question: Is there an *n*-universal transformation with maximum time of simulation less than $q^n + O(n)$?

Sequential Simulation

Definition

A transformation $f \in \operatorname{Tran}(A^m)$ sequentially simulates a sequence of transformations $g^{(1)}, \ldots, g^{(\ell)} \in \operatorname{Tran}(A^n)$ if there are $h^{(1)}, \ldots, h^{(\ell)} \in S_f \subseteq \operatorname{Tran}(A^m)$ such that

$$\operatorname{pr}_{[n]} \circ g^{(i)} = h^{(1)} \circ \cdots \circ h^{(i)} \circ \operatorname{pr}_{[n]}, \quad \forall (1 \leq i \leq \ell).$$

Sequential Simulation

Definition

A transformation $f \in \operatorname{Tran}(A^m)$ sequentially simulates a sequence of transformations $g^{(1)}, \ldots, g^{(\ell)} \in \operatorname{Tran}(A^n)$ if there are $h^{(1)}, \ldots, h^{(\ell)} \in S_f \subseteq \operatorname{Tran}(A^m)$ such that

$$\operatorname{pr}_{[n]} \circ g^{(i)} = h^{(1)} \circ \cdots \circ h^{(i)} \circ \operatorname{pr}_{[n]}, \quad \forall (1 \leq i \leq \ell).$$

An *n*-universal transformation is **complete** if it may sequentially simulate any finite sequence of transformations of A^n .

Sequential Simulation

Definition

A transformation $f \in \operatorname{Tran}(A^m)$ sequentially simulates a sequence of transformations $g^{(1)}, \ldots, g^{(\ell)} \in \operatorname{Tran}(A^n)$ if there are $h^{(1)}, \ldots, h^{(\ell)} \in S_f \subseteq \operatorname{Tran}(A^m)$ such that

$$\operatorname{pr}_{[n]} \circ g^{(i)} = h^{(1)} \circ \cdots \circ h^{(i)} \circ \operatorname{pr}_{[n]}, \quad \forall (1 \leq i \leq \ell).$$

An *n*-universal transformation is **complete** if it may sequentially simulate any finite sequence of transformations of A^n .

Lemma

Any complete n-universal transformation has size $m \ge 2n$.

Other Schemes of Simulation

Theorem (CR-Gadouleau '15)

Let A be a finite set and $m \ge n \ge 2$.

1 There is an n-universal complete transformation of size 2n + 3.

Other Schemes of Simulation

Theorem (CR-Gadouleau '15)

Let A be a finite set and $m \ge n \ge 2$.

- **1** There is an n-universal complete transformation of size 2n + 3.
- 2 There is no transformation f ∈ Tran(A^m) that may simulate in parallel (i.e. with h ∈ ⟨f⟩ instead of h ∈ S_f) every transformation of Aⁿ.

Other Schemes of Simulation

Theorem (CR-Gadouleau '15)

Let A be a finite set and $m \ge n \ge 2$.

- **1** There is an n-universal complete transformation of size 2n + 3.
- 2 There is no transformation f ∈ Tran(A^m) that may simulate in parallel (i.e. with h ∈ ⟨f⟩ instead of h ∈ S_f) every transformation of Aⁿ.
- **3** There is a transformation $f \in \text{Tran}(A^m)$ that may simulate in quasi-parallel (i.e. with $h \in \langle (f_1, \ldots, f_{m-1}, \text{pr}_m), F^{(m)} \rangle$) every finite sequence of $\text{Tran}(A^n)$.

Thanks for listening!

Universal Simulation of Automata Networks, joint with M. Gadouleau arXiv:1504.00169.

Alonso Castillo-Ramirez

Durham University

Memoryless Computation and Universal Simulation