Embedding in 2-generated semigroups using transformations

Peter M. Higgins
University of Essex

Durham, July 2015

Classical Results

Classical Results

- Any finite semigroup S may be embedded in the 3-generator regular semigroup $T_{S^{1}}$.

Classical Results

- Any finite semigroup S may be embedded in the 3-generator regular semigroup $T_{S^{1}}$.
- Any countable semigroup may be embedded in a 2-generator semigroup (Evans, 1952)

Classical Results

- Any finite semigroup S may be embedded in the 3-generator regular semigroup $T_{S^{1}}$.
- Any countable semigroup may be embedded in a 2-generator semigroup (Evans, 1952)
- Any countable semigroup in T_{X} embeds in a 2-generator subsemigroup of T_{X} (Sierpinski, 1935)

Classical Results

- Any finite semigroup S may be embedded in the 3-generator regular semigroup $T_{S^{1}}$.
- Any countable semigroup may be embedded in a 2-generator semigroup (Evans, 1952)
- Any countable semigroup in T_{X} embeds in a 2-generator subsemigroup of T_{X} (Sierpinski, 1935)
- Any finite semigroup embeds in a 2-generator semigroup (BH Neumann, 1960)

Theorem
Any finite semigroup S may be embedded in a finite semigroup $T=\langle\alpha, \beta\rangle$, where α is an idempotent and β is a nilpotent.

Theorem
Any finite semigroup S may be embedded in a finite semigroup $T=\langle\alpha, \beta\rangle$, where α is an idempotent and β is a nilpotent.

Proof.

Embed S via S^{1} in $T_{X}=T_{n}$, where $n=\left|S^{1}\right|$. Write $S^{1}=\left\{\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n-1}\right\}$, where $\alpha_{0}=\iota$, the identity mapping in T_{n}. We embed S in $T \leq P T_{Z}$ where $Z=X \times\{0,1,2, \cdots, n\}$, where we also put $\alpha_{n}=\alpha_{0}$.

$$
(x, i) \cdot \alpha=\left(x \cdot \alpha_{i}, 0\right)(0 \leq i \leq n),(x, i) \cdot \beta=(x, i+1)(0 \leq i \leq n-1)
$$

Then $\alpha=\alpha^{2}$ and $\beta^{n+1}=0$, the empty map.

Theorem

Any finite semigroup S may be embedded in a finite semigroup $T=\langle\alpha, \beta\rangle$, where α is an idempotent and β is a nilpotent.

Proof.

Embed S via S^{1} in $T_{X}=T_{n}$, where $n=\left|S^{1}\right|$. Write $S^{1}=\left\{\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n-1}\right\}$, where $\alpha_{0}=\iota$, the identity mapping in T_{n}. We embed S in $T \leq P T_{Z}$ where $Z=X \times\{0,1,2, \cdots, n\}$, where we also put $\alpha_{n}=\alpha_{0}$.

$$
(x, i) \cdot \alpha=\left(x \cdot \alpha_{i}, 0\right)(0 \leq i \leq n),(x, i) \cdot \beta=(x, i+1)(0 \leq i \leq n-1)
$$

Then $\alpha=\alpha^{2}$ and $\beta^{n+1}=0$, the empty map.
Put $\lambda=\beta^{n} \alpha$; then $\lambda=\left.\iota\right|_{X \times\{0\}}$. Let $\gamma_{i}=\lambda \beta^{i} \alpha \in T$; then

$$
(x, 0) \cdot \gamma_{i}=(x, 0) \cdot \lambda \beta^{i} \alpha=(x, 0) \cdot \beta^{i} \alpha=(x, i) \cdot \alpha=\left(x \cdot \alpha_{i}, 0\right)
$$

and so $\alpha_{i} \mapsto \gamma_{i}$ is a monomorphism of S^{1} into T.

Other results in the literature

Theorem
(in McAlister, Stephen \& Vernitski) T_{n} may be embedded in a 2-generator subsemigroup T of T_{n+1}.

Other results in the literature

Theorem

(in McAlister, Stephen \& Vernitski) T_{n} may be embedded in a 2-generator subsemigroup T of T_{n+1}.

Theorem
(Margolis) A finite semigroup S may be embedded in a 2-generated semigroup T that is a Rees matrix semigroup $T=M(S)$ over S with a cyclic group adjoined as a group of units.

Other results in the literature

Theorem

(in McAlister, Stephen \& Vernitski) T_{n} may be embedded in a 2-generator subsemigroup T of T_{n+1}.

Theorem
(Margolis) A finite semigroup S may be embedded in a 2-generated semigroup T that is a Rees matrix semigroup $T=M(S)$ over S with a cyclic group adjoined as a group of units.
In both cases, the containing semigroup T is regular, so any finite semigroup S embeds in a regular, finite 2-generator semigroup T.

Other results in the literature

Theorem

(in McAlister, Stephen \& Vernitski) T_{n} may be embedded in a 2-generator subsemigroup T of T_{n+1}.

Theorem
(Margolis) A finite semigroup S may be embedded in a 2-generated semigroup T that is a Rees matrix semigroup $T=M(S)$ over S with a cyclic group adjoined as a group of units.
In both cases, the containing semigroup T is regular, so any finite semigroup S embeds in a regular, finite 2-generator semigroup T. Also Margolis shows that any (finite) n-generated semigroup embeds in a (finite) semigroup generated by $n+1$ idempotents. Hence any finite semigroup S embeds in a finite semigroup generated by 3 idempotents.

Other results in the literature

Theorem

(in McAlister, Stephen \& Vernitski) T_{n} may be embedded in a 2-generator subsemigroup T of T_{n+1}.

Theorem
(Margolis) A finite semigroup S may be embedded in a 2-generated semigroup T that is a Rees matrix semigroup $T=M(S)$ over S with a cyclic group adjoined as a group of units.
In both cases, the containing semigroup T is regular, so any finite semigroup S embeds in a regular, finite 2-generator semigroup T. Also Margolis shows that any (finite) n-generated semigroup embeds in a (finite) semigroup generated by $n+1$ idempotents. Hence any finite semigroup S embeds in a finite semigroup generated by 3 idempotents.
Any semigroup (finite or not) generated by 2 idempotents has at most 6 idempotents and no 3-element chain. (Benzaken and Mayr) characterised all such semigoups.

Mian-Chowla sequence

What is the next number in the sequence,

$$
0,1,3,7, \cdots ?
$$

Mian-Chowla sequence

What is the next number in the sequence,

$$
0,1,3,7, \cdots ?
$$

It of course goes:

$$
0,1,3,7,12,20,30,44,65,80,96, \cdots
$$

Mian-Chowla sequence

What is the next number in the sequence,

$$
0,1,3,7, \cdots ?
$$

It of course goes:

$$
0,1,3,7,12,20,30,44,65,80,96, \cdots
$$

Definition
The MC sequence of non-negative integers begins $m_{0}=0$ and $m_{i}>m_{i-1}$ is least such that there are no repeated differences between any pairs in the sequence.

Mian-Chowla sequence

What is the next number in the sequence,

$$
0,1,3,7, \cdots ?
$$

It of course goes:

$$
0,1,3,7,12,20,30,44,65,80,96, \cdots
$$

Definition

The MC sequence of non-negative integers begins $m_{0}=0$ and $m_{i}>m_{i-1}$ is least such that there are no repeated differences between any pairs in the sequence.
The construction for 2-generator semigroups has one principal generator, α, containing copies of all mappings in $S \leq P T_{X}$; dom α and ran α consist of n copies of X; the second generator β moves us around that cycle. The domain intervals are sparsely placed so that products with multiple factors of α are defined for one interval at most. The MC property ensures that unwanted products do not arise - the main subsemigroup of T is a Rees-matrix semigroup over S with identity matrix.

First Construction

- The Ingredients

$$
\begin{aligned}
& S^{1}=\left\{\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n-1}\right\} \leq P T_{X}, \alpha_{0}=\iota \\
& Z=X \times\left\{0,1,2, \cdots, m_{2 n-1}\right\}, \text { put } m=1+m_{2 n-1}
\end{aligned}
$$

First Construction

- The Ingredients
$S^{1}=\left\{\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n-1}\right\} \leq P T_{X}, \alpha_{0}=\iota ;$
$Z=X \times\left\{0,1,2, \cdots, m_{2 n-1}\right\}$, put $m=1+m_{2 n-1}$.
The generator β simply cycles $(\bmod m)$ around the copies of X :

$$
(x, i) \cdot \beta=(x, i+1)\left(0 \leq i \leq m_{2 n-1}\right)
$$

First Construction

- The Ingredients
$S^{1}=\left\{\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n-1}\right\} \leq P T_{X}, \alpha_{0}=\iota ;$
$Z=X \times\left\{0,1,2, \cdots, m_{2 n-1}\right\}$, put $m=1+m_{2 n-1}$.
The generator β simply cycles $(\bmod m)$ around the copies of X :

$$
(x, i) \cdot \beta=(x, i+1)\left(0 \leq i \leq m_{2 n-1}\right)
$$

The principal generator α satisfies $\alpha^{2}=0$ and acts only on the intervals $X \times\left\{m_{n+j}\right\}$:

$$
\left(x, m_{n+j}\right) \cdot \alpha=\left(x \cdot \alpha_{j}, m_{j}\right)(0 \leq j \leq n-1)
$$

- Structure of $T=\langle\alpha, \beta\rangle$:

Theorem
$T=D_{\alpha} \cup H_{\beta} \cup T_{1}$ where $H_{\beta}=D_{\beta}$ is the group of units and an m-cycle,

Theorem
$T=D_{\alpha} \cup H_{\beta} \cup T_{1}$ where $H_{\beta}=D_{\beta}$ is the group of units and an m-cycle,
$D_{\beta}>D_{\alpha}=\left\{\beta^{r} \alpha \beta^{s}: 0 \leq r, s \leq m-1\right\}$ is an \mathcal{H}-trivial non-regular \mathcal{D}-class of order m^{2},

Theorem
$T=D_{\alpha} \cup H_{\beta} \cup T_{1}$ where $H_{\beta}=D_{\beta}$ is the group of units and an m-cycle,
$D_{\beta}>D_{\alpha}=\left\{\beta^{r} \alpha \beta^{s}: 0 \leq r, s \leq m-1\right\}$ is an \mathcal{H}-trivial non-regular \mathcal{D}-class of order m^{2},
and $D_{\alpha}>T_{1} \cong(S \times B) / I$, where B is an $m \times m$ combinatorial Brandt semigroup and I is the ideal $S \times\{0\}$ of $S \times B$.

$$
\begin{gathered}
T_{1}=\left\{\lambda\left(\alpha_{i}, j, k\right): 0 \leq i \leq n-1,0 \leq j, k \leq m-1\right\}, \\
(x, j) \cdot \lambda\left(\alpha_{i}, j, k\right)=\left(x \cdot \alpha_{i}, k\right) .
\end{gathered}
$$

$$
E(T)=\bigcup_{i=1}^{m} E_{i} \cup(0, \iota) \text { where } E_{i}=\{\lambda(e, i, i): e \in E(S), 0 \leq i \leq m-1\}
$$

Theorem
$T=D_{\alpha} \cup H_{\beta} \cup T_{1}$ where $H_{\beta}=D_{\beta}$ is the group of units and an m-cycle,
$D_{\beta}>D_{\alpha}=\left\{\beta^{r} \alpha \beta^{s}: 0 \leq r, s \leq m-1\right\}$ is an \mathcal{H}-trivial non-regular \mathcal{D}-class of order m^{2},
and $D_{\alpha}>T_{1} \cong(S \times B) / I$, where B is an $m \times m$ combinatorial Brandt semigroup and I is the ideal $S \times\{0\}$ of $S \times B$.

$$
\begin{gathered}
T_{1}=\left\{\lambda\left(\alpha_{i}, j, k\right): 0 \leq i \leq n-1,0 \leq j, k \leq m-1\right\}, \\
(x, j) \cdot \lambda\left(\alpha_{i}, j, k\right)=\left(x \cdot \alpha_{i}, k\right) .
\end{gathered}
$$

$$
E(T)=\bigcup_{i=1}^{m} E_{i} \cup(0, \iota) \text { where } E_{i}=\{\lambda(e, i, i): e \in E(S), 0 \leq i \leq m-1\}
$$

Corollary

Let S be a finite monoid with $E(S) \leq S$. Then S may be embedded in a finite monoid $T=\langle\alpha, \beta\rangle$ as above such that $E(T)$ is a submonoid satisfying the same semigroup identities as $E(S)$.

Second Construction: orthodox semigroups

The next construction looks to preserve regularity as well as the idempotent structure. Here β is again a cycle but α now satisfies $\alpha=\alpha^{3}$. We now work with $m_{i}=2^{i}$ and $m=1+2^{n-1}$ as we need a sequence where the MC property to hold for sums and differences of more than two of its members. All additions in what follows are now modulo m.

Second Construction: orthodox semigroups

The next construction looks to preserve regularity as well as the idempotent structure. Here β is again a cycle but α now satisfies $\alpha=\alpha^{3}$. We now work with $m_{i}=2^{i}$ and $m=1+2^{n-1}$ as we need a sequence where the MC property to hold for sums and differences of more than two of its members. All additions in what follows are now modulo m.

- The Ingredients
$S^{1}=\left\{\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n-1}\right\}$ is as before but S is now assumed regular: let α_{i}^{\prime} denote a fixed inverse of α_{i}. The cycle β is formally defined as before but, writing α_{i}^{\prime} also as α_{i+n} we define the principal generator α as the self-inverse mapping:

Second Construction: orthodox semigroups

The next construction looks to preserve regularity as well as the idempotent structure. Here β is again a cycle but α now satisfies $\alpha=\alpha^{3}$. We now work with $m_{i}=2^{i}$ and $m=1+2^{n-1}$ as we need a sequence where the MC property to hold for sums and differences of more than two of its members. All additions in what follows are now modulo m.

- The Ingredients
$S^{1}=\left\{\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n-1}\right\}$ is as before but S is now assumed regular: let α_{i}^{\prime} denote a fixed inverse of α_{i}. The cycle β is formally defined as before but, writing α_{i}^{\prime} also as α_{i+n} we define the principal generator α as the self-inverse mapping:

$$
\left(x, m_{t}\right) \cdot \alpha=\left(x \cdot \alpha_{t \pm n}, m_{t \pm n}\right)(0 \leq t \leq 2 n-1)
$$

subscript signs are + or - according as $0 \leq t \leq n-1$ or $n \leq t \leq 2 n-1$.

Structure of $T=\langle\alpha, \beta\rangle$

Theorem
Again T is a disjoint union, $T=H_{\beta} \cup D_{\alpha} \cup T_{1}$ but here

Structure of $T=\langle\alpha, \beta\rangle$

Theorem
Again T is a disjoint union, $T=H_{\beta} \cup D_{\alpha} \cup T_{1}$ but here
$D_{\alpha}=\left\{\beta^{r} \alpha^{\epsilon} \beta^{s}: \varepsilon=1,2\right\}$ is a regular \mathcal{D}-class with associated principal factor isomorphic to the Brandt semigroup $\mathcal{M}^{0}\left[\mathbb{Z}_{2}, m, m, I_{m}\right] ;$

Structure of $T=\langle\alpha, \beta\rangle$

Theorem
Again T is a disjoint union, $T=H_{\beta} \cup D_{\alpha} \cup T_{1}$ but here
$D_{\alpha}=\left\{\beta^{r} \alpha^{\epsilon} \beta^{s}: \varepsilon=1,2\right\}$ is a regular \mathcal{D}-class with associated principal factor isomorphic to the Brandt semigroup
$\mathcal{M}^{0}\left[\mathbb{Z}_{2}, m, m, I_{m}\right] ;$

$$
T_{1}=\left\{\lambda_{i, j, k}\right\} \cup\{0\}(0 \leq i \leq n-1,0 \leq j, k \leq m-1\}
$$

Structure of $T=\langle\alpha, \beta\rangle$

Theorem
Again T is a disjoint union, $T=H_{\beta} \cup D_{\alpha} \cup T_{1}$ but here
$D_{\alpha}=\left\{\beta^{r} \alpha^{\epsilon} \beta^{s}: \varepsilon=1,2\right\}$ is a regular \mathcal{D}-class with associated principal factor isomorphic to the Brandt semigroup $\mathcal{M}^{0}\left[\mathbb{Z}_{2}, m, m, I_{m}\right] ;$

$$
\begin{gathered}
T_{1}=\left\{\lambda_{i, j, k}\right\} \cup\{0\}(0 \leq i \leq n-1,0 \leq j, k \leq m-1\} \\
E(T)=E \cup F \cup\{\iota, 0\} \text { where } \\
E=\{\lambda(e, i, i): e \in E(S), 0 \leq i \leq m-1\} \\
F=\left\{\beta^{j} \alpha^{2} \beta^{-j}: 0 \leq j \leq m-1\right\}
\end{gathered}
$$

Theorem
(a) Any finite orthodox semigroup S may be embedded in a finite orthodox semigroup T generated by two group elements.

Theorem
(a) Any finite orthodox semigroup S may be embedded in a finite orthodox semigroup T generated by two group elements.
(b) Any finite orthodox monoid S^{1} may be embedded as a semigroup in a finite 2 -generated orthodox monoid T whose subband of idempotents satisfies the same semigroup identities as S^{1}.

Theorem
(a) Any finite orthodox semigroup S may be embedded in a finite orthodox semigroup T generated by two group elements.
(b) Any finite orthodox monoid S^{1} may be embedded as a semigroup in a finite 2 -generated orthodox monoid T whose subband of idempotents satisfies the same semigroup identities as S^{1}.

Corollary

(McAlister, Stephen and Vernitski) Every finite inverse semigroup may be embedded is a finite 2-generated semigroup that is an inverse semigroup.
(in Benzaken, C. Mayr, H. C. Notion de demi-bande: demi-bandes de type deux. (French) Semigroup Forum 10 (1975), no. 2, 115-128.
Evans, T. Embedding theorems for multiplicative systems and projective geometries, Proc. American Math. Soc, 3 (1952), 614-620.
E Hall, T.E. Inverse and regular semigroups and amalgamation: a brief survey, in Proc. of the Symposium on regular semigroups, Northern Illinois University, (1979), pp. 49-79.

围 Higgins, P.M., Techniques of semigroup theory, OUP, Oxford, (1992).
(in Howie, J.M,. Fundamentals of semigroup theory, OUP, Oxford, (1995).

围 Hunter, R.P., On Certain Two Generator Monoids, Semigroup Forum, Vol. 47 (1993), 96-100.
(1) Margolis, S., Maximal pseudovarieties of finite monoids and semigroups Russian Mathematics (Izvestiya VUZ. Matematika), 1995, 39:1.
(1) McAlister, D.B., J.B. Stephen and A. Vernitski, Embedding I_{n} in a 2-generator inverse subsemigroup of I_{n+2}, Proceedings of the Edinburgh Mathematical Society (2002) 45, 1-4.
(1) Mian, A. M. and Chowla, S. D. On the B_{2}-sequences of Sidon, Proc. Nat. Acad. Sci. India A14, 3-4, (1944).

回 Neumann, B.H. Embedding theorems for semigroups, Journal of the London Math Soc. 35 (1960), (184-192).
(ierpinski, W., Sur les suites infinies de fonctions définies dans les ensembles quelconques, Fund. Math. 24 (1935), 209-212.

