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Loop Theory for the Working Mathematician

Loops

Combinatorial definition
A loop (Q, ·) is a set Q with a binary operation · such that
(1) there is an identity element 1 · x = x · 1 = x .
(2) for each a,b ∈ Q, the equations

ax = b and ya = b

have unique solutions x , y ∈ Q.

Multiplication tables of loops = reduced Latin squares

Example:

1 2 3 4 5
2 1 4 5 3
3 4 5 1 2
4 5 2 3 1
5 3 1 2 4
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Loops

Universal algebra definition

A loop (Q, ·, \, /,1) is a set Q with an identity element
1x = x1 = x and three binary operations ·, \, / such that for all
x , y ∈ Q:

x\(xy) = y x(x\y) = y
(xy)/y = x (x/y)y = x

This definition has advantages if the class of loops in which one
is interested can be viewed as a variety.
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Various Groups

Inner Mappings

In a loop Q, the left and right translations

Lx : Q → Q; yLx = xy Rx : Q → Q; yRx = yx

are permutations.
Various permutation groups act on loops:

The multiplication group Mlt Q = 〈Lx ,Rx |x ∈ Q〉
The inner mapping group Inn Q = (Mlt Q)1
(stabilizer of 1 ∈ Q)
The automorphism group Aut Q
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Various Groups

Generators

For any loop Q, Inn(Q) has a set of canonical generators:

Tx = RxL−1
x (generalized conjugations)

Lx ,y = LxLyL−1
yx (measures of

Rx ,y = RxRyR−1
xy nonassociativity)

Thus conditions on Inn(Q) can sometimes be expressed
equationally.



Automorphic loops

Loop Theory for the Working Mathematician

Normality

Normality

Any of the following equivalent conditions can be used to define
what it means for a subloop A of a loop Q to be normal:

A is a block of Mlt(Q) containing 1;
A is Inn(Q)-invariant;
xA = Ax , x · yA = xy · A, Ax · y = A · xy for all x , y ∈ Q.
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Normality

Solvability and simplicity

Solvability of a loop Q is defined just as for groups: there is an
subnormal series 1 = H0 < H1 < · · · < Hn = Q such that each
factor Hj+1/Hj is an abelian group.

A loop is simple if it has no nontrivial normal subloops.



Automorphic loops

Loop Theory for the Working Mathematician

Normality

Using the multiplication group

Theorem (Albert ’41)
A loop Q is simple if and only if Mlt(Q) acts primitively on Q.

Theorem (Vesanen ’94)
If Q is finite and Mlt(Q) is solvable, then Q is solvable.

Thus the multiplication groups of finite simple loops are
nonsolvable and primitive.
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Bruck and Paige (1956)

Bruck and Paige

Definition
A loop is automorphic (or an A-loop, for short) if Inn Q ≤ Aut Q.

These were introduced by Bruck and Paige in 1956 in the last
loop theory paper which ever appeared in Annals.

Bruck and Paige provided very few examples, so let’s jump out
of historical order to give some.
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Example

One of these is the smallest nonassociative automorphic loop
([KKPV] 2015). The other is S3 ∼= D3. Can you tell which is
which?

· 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 0 4 5 3
2 2 0 1 5 3 4
3 3 5 4 0 1 2
4 4 3 5 2 0 1
5 5 4 3 1 2 0

· 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 0 4 5 3
2 2 0 1 5 3 4
3 3 5 4 0 2 1
4 4 3 5 1 0 2
5 5 4 3 2 1 0
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Dihedral automorphic loops

The preceding is a case of a general construction ([KKPV ’15],
[Aboras ’14]).

Let (A,+) be an abelian group, fix α ∈ Aut(A). On Z2 × A,
define

(i ,u) · (j , v) = (i + j , ((−1)ju + v)αij) .

This is a dihedral automorphic loop, which is a (generalized)
dihedral group if α = 1.
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Lie algebra construction

(From [JKV ’11])

Let F be a field and let A ∈ GL(2,F) be such that
I + cA ∈ GL(2,F) for all c ∈ F. On F× F2, define

(a, x) · (b, y) = (a + b, x(I + bA) + y(I − aA)) .

This is an automorphic loop.

If F = R, this is a Lie loop of dimension 3.

If F = GF (p), this is a loop of order p3 with trivial center!
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Variety

The automorphic condition Inn Q ≤ Aut Q can be expressed as
three universally quantified identities by using the standard
generators of Inn(Q):

xLz,u · yLz,u = (xy)Lz,u

xRz,u · yRz,u = (xy)Rz,u

xTz · yTz = (xy)Tz .

Thus automorphic loops form a variety of loops, closed under
taking subloops, direct products and homomorphic images.
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Basic Facts

Basic facts about automorphic loops [BP ’56, JKNV ’10]
〈Lx ,Rx | x ∈ Q〉 is an abelian group.
Q is power-associative: each 〈x〉 is a group.
Q has the antiautomorphic inverse property:
(xy)−1 = y−1x−1.
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Back to B&P

Moufang loops

Moufang loops are probably more familiar to mathematicians
than automorphic loops. Examples include the nonzero
octonions, S7 and the Parker loop used to construct the
Monster.
“Most” Moufang loops are not automorphic. Commutative
Moufang loops are. The smallest nonassociative automorphic
Moufang loops (commutative or not) have order 81.

Bruck’s interest in A-loops: How much of the structure of
commutative Moufang loops comes from their being
A-loops?
Paige’s interest: he was Bruck’s student.
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Diassociative A-loops

B & P’s Main Question

A loop is diassociative if every 2-generated subloop is
associative.

Every Moufang loop is diassociative. (This is a corollary of
Moufang’s Theorem.)

B & P’s Question: Is every diassociative automorphic loop
Moufang?
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Diassociative A-loops

Answers

Yes, for commutative automorphic loops. (Osborn ’58)
Yes, in general. (K, Kunen, Phillips 2002)

There were no papers on A-loops between those two, and none
afterward for another 8 years.

Many knew what these loops were, but no one knew how to
handle them.
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Products of squares in commutative A-loops
A breakthrough came in 2009 for commutative automorphic
loops.

In abelian groups (and commutative Moufang loops), the
product of squares is (trivially!) a square:

x2y2 = (xy)2

This is false in commutative A-loops. (The smallest
counterexample has order 15.)

However, it is still true that the product of squares is a square:

Theorem
In a commutative A-loop,

x2y2 = (yLy ,x · xLx ,y )
2
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Commutative automorphic loops

Combining work of K, Jedlička, Vojtěchovský, Grishkov, Nagy,
Greer. . . , we now know a lot!
Let Q be a commutative automorphic loop. Then. . .

Q is solvable.
Q ∼= O × E where O has odd order and |E | is power of 2.
The Lagrange property holds.
The Sylow & Hall (Existence) Theorems hold.
If |Q| = pn, p > 2, then Q is nilpotent.
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The Main Problem

Problem
Do there exist finite simple nonassociative automorphic loops?

Conjecture
No. More precisely. . .

Every finite simple automorphic loop is associative.
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Main Problem

Odd Order Theorem

Theorem (K, Kunen, Phillips, Vojtěchovský (proved in
2011; to appear in 2015))
Every automorphic loop of odd order is solvable.

The easy part of the proof use some deep ideas of
Glauberman to prove that a minimal counterexample Q must
have exponent p. The hard part constructs a Lie algebra over
GF (p) on Q which is simultaneously simple and solvable to get
a contradiction.
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p-loops

Theorem (KKPV ’15, GKN ’14)
A finite automorphic p-loop is solvable.

The case p odd is covered by the Odd Order Theorem. The
case p = 2 first reduces the problem to exponent 2. Then we
construct a Lie algebra over GF (2) on the same set which is
both simple and nilpotent. This uses the Kostrikin-Zelmanov
“Crust of a Thin Sandwich” theorem.
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Main Problem

Socle

Theorem (KKPV ’15)
If Q is finite simple nonassociative automorphic loop, then
Soc(Mlt(Q)) is not regular.

So if we attack the problem via O’Nan-Scott, this eliminates
affine and twisted affine types.
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Main Problem

2-Transitivity

Proposition (Cameron & K, walking to lunch in Lisbon)
If Q is a finite simple nonassociative automorphic loop, then
Mlt(Q) is not 2-transitive.

Proof.
If Inn(Q) is transitive on Q\{1}, then all nonidentity elements of
Q must have the same order since Inn(Q) consists of
automorphisms. This common order must be a prime p. Thus
Q is a p-loop, hence not simple.
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Main Problem

A Basic Bound

Proposition (Cameron, email 3 Sept 2014)
If H and K are subgroups of Mlt(Q) fixing h and k points
respectively, with H < K and h > k > 0, then h ≥ 2k.

The reason is that the fixed points of a set of automorphisms of
a loop form a subloop. But a subloop of a finite loop cannot
have order more than half the order of the larger loop.



Automorphic loops

Simple automorphic loops

Main Problem

Basic Bounds II

Proposition (Cameron, July ’14)
Let Q be an automorphic loop of order n. Then

|Mlt(Q)| ≤ n1+log2 n
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Diagonal Type

Proposition
If Mlt(Q) is of diagonal type. Then Mlt(Q) has at most two
factors.

Proof.
Suppose Mlt(Q) has socle N = T k for some simple group T ,
and stabilizer N1 = {(x , . . . , x) | x ∈ T}. N is characteristic,
hence invariant under conjugation by J : x 7→ x−1. Thus J
permutes the factors, say, (T × 1× . . .)J = 1× T × . . .. Hence
for each x ∈ T , (x ,1, . . .)J = (1, y , . . .) for some y ∈ T . But then
if u = (x , y ,1, . . .), we have uJ = u. Thus u ∈ Inn(Q), hence
u ∈ N1. This is a contradiction if k > 2.
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Main Problem

Computer Search

Using the libraries of primitive groups in GAP and Magma, we
now know. . .

Theorem
There are no finite nonassociative simple automorphic loops up
to order

2500 (Johnson, K, Nagý, Vojtěchovský ’10)
4096 (Cameron & Leemans ’15)
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Conclusion

Where Are We?

If Q is a finite simple nonassociative automorphic loop, then. . .
Q is not commutative;
|Q| > 4096, |Q| is even and not a power of 2;
Mlt(Q) is primitive and nonsolvable;
Mlt(Q) cannot have regular socle, hence is neither of affine
nor of twisted affine type;
Mlt(Q) is not 2-transitive;
If Mlt(Q) is of diagonal type, then there are at most two
factors.
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What do we not know?

Keep in mind that for finite (noncommutative) automorphic
loops, we do not know. . .

Problem (Lagrange property)
Does the order of a subloop necessarily divide the order of the
loop?

If every finite simple automorphic loop is a group, then the
Lagrange property will hold.

(This is what happened for Moufang loops: the proof of the
Lagrange property depends on the classification of finite simple
Moufang loops, which in turn depends on CFSG.)
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What’s next?

A permutation group has (permutation) rank 3 if every point
stabilizer has exactly 3 orbits.

If Mlt(Q) is primitive and of rank 3, then within each of the two
nontrivial orbits of Inn(Q), all elements have the same order. It
is easy to see one order must be 2, the other an odd prime p.

Hence every nonidentity element has order 2 or order p. This
would be a very strange loop, but that’s all we can say right now.
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