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Important notice



Thesis

Thesis. Category theory is an appropriate context
for understanding Ramsey property.
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A. S. KECHRIS, V. G. PESTOV, S. TODORČEVIĆ: Fraı̈ssé limits,
Ramsey theory and topological dynamics of automorphism
groups. GAFA Geometric and Functional Analysis, 15 (2005) 106–189.

Ingredients:

I Fraı̈ssé theory,
I structural Ramsey theory,
I topological dynamics.
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Homogeneity • Ramsey prop • Extreme amenability
↓
↓ abstract interpretation
↓

Homogeneity • Ramsey prop • Extreme amenability
in a category in a category w.r.t. particular topology

↓
↓ categorical duality
↓

Projective • Dual • Extreme amenability
Homogeneity Ramsey prop

T. IRWIN, S. SOLECKI: Projective Fraı̈ssé limits and the
pseudo-arc. Trans. Amer. Math. Soc. 358, no. 7 (2006) 3077–3096.



Ramsey Theory

Finite Ramsey Theorem.
For all a,b ∈ N and k > 2 there
is a c ∈ N such that for every
c-element set C and every
coloring

χ :
(C

a

)
→ k

there is a b-element set B ⊆ C
such that |χ(

(B
a

)
)| = 1. Frank P. Ramsey

1903 – 1930
Image courtesy of Wikipedia



Ramsey Theory

R. L. GRAHAM, B. L. ROTHSCHILD, J. H. SPENCER: Ramsey
Theory (2nd Ed). John Wiley & Sons, 1990.

Finite Product Ramsey Theorem. For all s, a1, . . . ,as,
b1, . . . ,bs ∈ N and k > 2 there exist c1, . . . , cs ∈ N such that for
all sets C1, . . . ,Cs of cardinalities c1, . . . , cs, respectively, and
every k-coloring of the set

(C1
a1

)
× . . .×

(Cs
as

)
there exist B1 ⊆ C1

of cardinality b1, . . . , Bs ⊆ Cs of cardinality bs such that(B1
a1

)
× . . .×

(Bs
as

)
is monochromatic.



Ramsey Theory

R. L. GRAHAM, B. L. ROTHSCHILD: Ramsey’s theorem for
n-parameter sets. Tran. Amer. Math. Soc. 159 (1971), 257–292.

Finite Dual Ramsey Theorem. For all a,b ∈ N and k > 2
there is a c ∈ N such that for every c-element set C and every
k-coloring of the set

[C
a

]
of all partitions of C with exactly a

blocks there is a partition β of C with exaclty b blocks such that
the set of all patitions from

[C
a

]
which are coarser than β is

monochromatic.



Structural Ramsey theory

Deep structural property developed in the 1970’s by Erdős,
Graham, Leeb, Rothschild, Rödl, Nešetřil and many more.

Instead of sets, consider structures!

Definition. A class K of finite structures has the Ramsey
property if:

for all A,B ∈ K such that A ↪→ B and all k > 2 there is a
C ∈ K such that −→



Structural Ramsey theory

A B C



Structural Ramsey theory

A B C

for every coloring χ :
(C
A
)
→ k



Structural Ramsey theory

A B C

there is a B̃ ∈
(C
B
)

such that
∣∣∣χ((B̃A))∣∣∣ = 1.



Categories

In order to specify a category C one has to specify:

1 a class of objects Ob(C),

2 a set of morphisms hom(A,B) for all A,B ∈ Ob(C),

3 an identity morphism idA for all A ∈ Ob(C), and

4 the composition of morphisms · so that
I (f · g) · h = f · (g · h), and
I idB · f = f · idA for all f ∈ hom(A,B).



Ramsey properties in a category

J. NEŠETŘIL: Ramsey classes and homogeneous structures.
Combinatorics, probability and computing, 14 (2005) 171–189.(B

A

)
= hom(A,B)/∼A

I f ∼A g for f ,g ∈ hom(A,B) iff f = g ·α for some α ∈ Aut(A).

A category C has the Ramsey property for objects if:
for all k > 2 and all A,B ∈ Ob(C) such that hom(A,B) 6= ∅
there is a C ∈ Ob(C) such that for every SET-mapping
χ :
(C

A

)
→ k there is a C-morphism w : B → C such that

|χ(w ·
(B

A

)
)| = 1.



Ramsey properties in a category

Example. SETfin

I objects are finite sets
I hom(A,B) = injective maps A→ B,
I identity is the identity map,
I composition: f · g = f ◦ g.

SETfin has the Ramsey property for objects.

This is the finite Ramsey theorem.



Ramsey properties in a category

Example. SET(�)
fin

I objects are finite sets
I hom(A,B) = surjective maps A� B,
I identity is the identity map,
I composition: f · g = g ◦ f .

SET(�)
fin has the Ramsey property for objects.

This is the finite dual Ramsey theorem.



Ramsey properties in a category

Example. BAfin

I objects are finite boolean algebras
I hom(A,B) = embeddings A→ B,
I identity is the identity map,
I composition: f · g = f ◦ g.

BAfin has the Ramsey property for objects.

This is the finite Ramsey theorem for boolean algebras.



Ramsey properties in a category

A category C has the Ramsey property for morphisms if:
for all k > 2 and all A,B ∈ Ob(C) such that hom(A,B) 6= ∅
there is a C ∈ Ob(C) such that for every SET-mapping
χ : hom(A,C)→ k there is a C-morphism w : B → C such
that |χ(w · hom(A,B))| = 1.



Ramsey properties in a category

Example. CHfin

I objects are finite chains ({1, . . . ,n},6), n > 1
I hom(A,B) = embeddings A→ B,
I identity is the identity map,
I composition: f · g = f ◦ g.

Ramsey property for CHfin ⇐⇒ Ramsey property for finite
chains.



Ramsey properties in a category

Example. CH(�)
fin

I objects are finite chains ({0,1, . . . ,n},6), n > 1
I hom(A,B) = surjective monotonous maps A� B,
I identity is the identity map,
I composition: f · g = g ◦ f .

Ramsey property for CH(�)
fin ⇐⇒ dual Ramsey property for

partitions of finite chains into intervals.



Ramsey property and categorical equivalence

Proposition. Assume that C and D are equivalent categories.
Then C has the Ramsey property for morphisms (objects) iff D
has the Ramsey property for morphisms (objects).

I Categories C and D are equivalent if there exist functors
E : C→ D and H : D→ C, and natural isomorphisms
η : IDC → HE and ε : IDD → EH.



Ramsey property and categorical equivalence

Example. Finite Stone duality:

Finite
Ramsey Theorem

⇐⇒ Dual Ramsey Theorem
for Finite BA’s

Dual Ramsey Theorem for Finite BA’s. Let Con(B) denote the set
of congruences of B, and let

Con(B,A) = {Φ ∈ Con(B) : B/Φ ∼= A}.

For every finite bolean algebra B, every Φ ∈ Con(B) and every k > 2
there is a finite boolean algebra C such that for every k-coloring of
Con(C,B/Φ) there is a congruence Ψ ∈ Con(C,B) such that the set of
all congruences from Con(C,B/Φ) which are coarser than Ψ is
monochromatic.



Ramsey property and categorical equivalence

Example. Finite Stone duality:

Finite Dual
Ramsey Theorem

⇐⇒ Ramsey Theorem
for Finite BA’a

Example. Hu’s equivalence:

Ramsey Theorem
for Finite BA’a

⇐⇒ Ramsey Theorem for
Finite Powers of a Primal Algebra



Ramsey property and categorical equivalence

Example. By the standard duality of fin dim vector spaces:

Ramsey Theorem
for Finite Vector Spaces

⇐⇒ Dual Ramsey Theorem
for Finite Vector Spaces

Dual Ramsey Theorem for Finite Vector Spaces. Let F be a finite
field and for a vector space V over F let[V

d

]
lin = {V/W : W 6 V ,dim(V/W ) = d}.

For all a,b ∈ N and k > 2 there is a c ∈ N such that for every
c-dimensional vector space V over F and every k-coloring of

[V
a

]
lin

there is a partition β ∈
[V

b

]
lin such that the set of all patitions from[V

a

]
lin which are coarser than β is monochromatic.



Ramsey property and products of categories

Theorem. Assume that both C and D satisfy the following
finiteness condition:
I hom(A,B) is finite for all objects A and B in the category.

If both C and D have the Ramsey property for morphisms
(objects) then C× D has the Ramsey property for morphisms
(objects).

I Objects of C× D are pairs (A,B) where A ∈ Ob(C) and
B ∈ Ob(D).

I Morphisms of C× D are pairs (f ,g) : (A1,B1)→ (A2,B2)
where f : A1 → A2 in C and g : B1 → B2 in D.

I The composition is componentwise.



Ramsey property and products of categories

Corollary. Assume that hom(A,B) is finite for all A,B ∈ Ob(C).
If C has the Ramsey property for morphisms (objects) then Cn

has the Ramsey property for morphisms (objects).

Metatheorem. Every Ramsey property for classes of finite
structures, be it “direct” or dual, has the finite product version.

Example.

Finite
Ramsey Theorem

=⇒ Finite Product
Ramsey Theorem

R. L. GRAHAM, B. L. ROTHSCHILD, J. H. SPENCER: Ramsey
Theory (2nd Ed). John Wiley & Sons, 1990.
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Ramsey property and products of categories

Example.

Finite
Dual Ramsey Theorem

=⇒ Finite Product
Dual Ramsey Theorem

Finite Product Dual Ramsey Theorem. For all s, a1, . . . ,as,
b1, . . . ,bs ∈ N and k > 2 there exist c1, . . . , cs ∈ N such that for all
sets C1, . . . ,Cs of cardinalities c1, . . . , cs, respectively, and every
k-coloring of the set

[C1
a1

]
× . . .×

[Cs
as

]
, there exist a partition β1 of C1

with b1 blocks, . . . , a partition βs of Cs with bs blocks such that the
following set is monochromatic:{

(γ1, . . . , γs) ∈
[C1

a1

]
× . . .×

[Cs
as

]
: γi is coarser than βi ,1 6 i 6 s

}
.



Ramsey property and products of categories

Example.

Ramsey Theorem
for Finite BA’a

=⇒ Finite Product Ramsey
Theorem for Finite BA’a

Finite Product Ramsey Theorem for Finite BA’a. For all positive
integers s, k and all finite boolean algebras A1, . . . , As, B1, . . . , Bs

there exist finite boolean algebras C1, . . . , Cs such that for every
k-coloring of the set

(C1
A1

)
× . . .×

(Cs
As

)
, where

(C
A
)

is the set of all
subalgebras of C that are isomorphic to A, there exist B̃1 ∈

(C1
B1

)
, . . . ,

B̃s ∈
(Cs
Bs

)
such that the set

(B̃1
A1

)
× . . .×

(B̃s
As

)
is monochromatic.



Ramsey property and products of categories

Example. Finite product Ramsey theorem for
I finite linearly ordered graphs,
I finite linearly ordered posets,
I finite linearly ordered metric spaces with rational distances,
I (and so on)



Self-dual Ramsey results

Example. SETfin × SET(�)
fin has the Ramsey property for

objects since both the factors do, so:

For all a,b ∈ N and k > 2 there exists a c ∈ N such that for
every set C with |C| = c and for every coloring

χ :
(C

a

)
×
[C

a

]
→ k

there is a set B ⊆ C with |B| = b and a partition β of C with b
blocks such that the following set is monochromatic:(B

a

)
× {γ ∈

[C
a

]
: γ is coarser than β}.

(Cf. S. SOLECKI: Abstract approach to finite Ramsey theory
and a self-dual Ramsey theorem. Adv. Math. 248 (2013), 1156–1198.)



Silly self-dual Ramsey results

Example. BAfin × V(�)
fin has the Ramsey property for obj’s, so:

Let F be a finite field. For all a,b ∈ N and k > 2 there exists a
c ∈ N such that for every finite boolean algebra C with c atoms,
every vector space V over F of dimension c and for every
coloring

χ :
( C
P(a)

)
×
[V

a

]
lin → k

there is a subalgebra B of C with b atoms and a β ∈
[V

b

]
lin such

that the following set is monochromatic:( B
P(a)

)
× {γ ∈

[V
a

]
lin : γ is coarser than β}.

I V(�)
fin are finite vector spaces over a finite field F with

surjective linear maps V �W .



Ramsey property and extremely amenable groups

A. S. KECHRIS, V. G. PESTOV, S. TODORČEVIĆ: Fraı̈ssé limits,
Ramsey theory and topological dynamics of automorphism
groups. GAFA Geometric and Functional Analysis, 15 (2005) 106–189.

Theorem. TFAE for a countable locally finite
ultrahomogeneous first-order structure F :

1 Aut(F ) is extremely amenable
2 Age(F ) has the Ramsey property and consists of rigid

elements.

I A group G is extremely amenable if every continuous
action of G on a compact Hausdorff space X has a
common fixed point.



KPT theory in a category – the setup

Let C be a category and C0 a full subcategory of C such that:

(C1) all morphisms in C are monic (= left cancellable);

(C2) Ob(C0) is a set;

(C3) for all A,B ∈ Ob(C0) the set hom(A,B) is finite;

(C4) for every F ∈ Ob(C) there is an A ∈ Ob(C0) such that
A→ F ;

(C5) for every B ∈ Ob(C0) the set {A ∈ Ob(C0) : A→ B}
is finite.

C0 are (templates of) finite objects in C.

Age(F ) = {A ∈ Ob(C0) : A→ F}.



KPT theory in a category – the setup

Example. CH
I objects are all chains,
I hom(A,B) = embeddings A→ B,
I composition: f · g = f ◦ g,
I CH0 objects are finite chains ({1, . . . ,n},6), n > 1.



KPT theory in a category – the setup

Example. HAUS(�)

I objects are Hausdorff spaces,
I hom(A,B) = continuous surjective maps A� B,
I composition: f · g = g ◦ f ,

I HAUS(�)
0 objects are finite discrete spaces {1, . . . ,n},

n > 1.

An age of a structure in an op-category will be referred to as
the projective age and denoted by ∂Age(A).

Example. K = Cantor set 2ω.
∂Age(K) = all finite discrete spaces.



KPT theory in a category – the setup

Example. OHAUS(�)

I objects are all lin ordered Hausdorff spaces,
I hom(A,B) = continuous monotonous surjective maps

A� B,
I composition: f · g = g ◦ f ,

I OHAUS(�)
0 objects are finite chains ({1, . . . ,n},6), n > 1.

Example. K6 = K with the lexicographic order.
∂Age(K6) = all finite chains.



Homogeneous objects

F ∈ Ob(C) is homogeneous if for
every A ∈ Age(F ) and every pair of
morphisms e1,e2 : A→ F there is a
g ∈ Aut(F ) such that g · e1 = e2.

F
g // F

A
e1

__

e2

??

Example. Ultrahomogeneous structures in “direct” categories.

Following Irwin and Solecki,
homogeneous structures in an
op-category will be referred to as
projectively homogeneous.

F

q1 �� ��

F
goo

q2����
A

Example. Both K and K6 are projectively homogeneous (each
in its category).



Locally finite objects

F ∈ Ob(C) is locally finite if
1 for every A,B ∈ Age(F ) and every e : A→ F , f : B → F

there are a D ∈ Age(F ), r : D → F , p : A→ D and
q : B → D such that r · p = e and r · q = f , and

2 for every H ∈ Ob(C), r ′ : H → F , p′ : A→ H and
q′ : B → H such that r ′ · p′ = e and r ′ · q′ = f there is an
s : D → H such that the diagram below commutes.

F

A

e ??

B

f__
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Locally finite objects

F ∈ Ob(C) is locally finite if
1 for every A,B ∈ Age(F ) and every e : A→ F , f : B → F

there are a D ∈ Age(F ), r : D → F , p : A→ D and
q : B → D such that r · p = e and r · q = f , and

2 for every H ∈ Ob(C), r ′ : H → F , p′ : A→ H and
q′ : B → H such that r ′ · p′ = e and r ′ · q′ = f there is an
s : D → H such that the diagram below commutes.

D r //

∃s

))F Hr ′oo

A
p

__ e ??

p′

44

B

qjj
f__

q′

??



Locally finite objects

Example. Every object in CH is locally finite.

Locally finite structures in an op-category will be referred to as
projectively locally finite.

Example. Both K and K6 are projectively locally finite (each in
its category).



Finitely separated automorphisms

The automorphisms of F ∈ Ob(C) are finitely separated if the
following holds for all f ,g ∈ Aut(F ):

if f 6= g then there is an A ∈ Age(F ) and an e : A→ F such
that f · e 6= g · e.

Example. Automorphisms of every relational structure are
finitely separated.

Example. The automorphisms of both K and K6 are finitely
separated (each in its category).



The topology generated by the age of an object

F ∈ Ob(C)

For A ∈ Age(F ) and e1,e2 ∈ hom(A,F ) let

NF (e1,e2) = {f ∈ Aut(F ) : f · e1 = e2}.

Lemma. Let F be a locally finite object in C. Then

MF = {NF (e1,e2) : A ∈ Age(F ); e1,e2 ∈ hom(A,F )}

is a base of a topology αF on Aut(F ). If, in addition, the
automorphisms of F are fintely separated, Aut(F ) endowed
with the topology αF is a Hausdorff topological group.



The topology generated by the age of an object

Example. In the category REL(∆) of relational structures of a
fixed relational type ∆ and embeddings, αF is the pointwise
convergence topology for every ∆-structure F .

Example. In the category of Hausdorff topological spaces and
topological embeddings αR is nontrivial, but it is not the
pointwise convergence topology.



The topology generated by the age of an object

Example. In HAUS(�): αK = compact-open topology on K.

Example. In HAUS(�): αK6 = “compact interval-open interval”
topology on K6.

Example. In the op-category of metric spaces and
nonexpansive maps αR is antidiscrete.



Ramsey property and extreme amenability

Theorem. Let F be a homogeneous locally finite object in C
whose automorphisms are finitely separated. TFAE:

1 Aut(F ) endowed with αF is extr amenable,
2 Age(F ) has the Ramsey property for morphisms.



Ramsey property and extreme amenability

Theorem. Let F be a homogeneous locally finite object in C
whose automorphisms are finitely separated. TFAE:

1 Aut(F ) endowed with αF is extr amenable,
2 Age(F ) has the Ramsey property for morphisms.

Corollary 1. Let F be an ultrahomogeneous relational
structure. Then Aut(F ) with with the pointwise convergence
topology is extremely amenable if and only if Age(F ) has the
Ramsey property.

D. BARTOŠOVÁ: Universal minimal flows of groups of
automorphisms of uncountable structures. Canadian Mathematical

Bulletin, 2012.



Ramsey property and extreme amenability

Theorem. Let F be a homogeneous locally finite object in C
whose automorphisms are finitely separated. TFAE:

1 Aut(F ) endowed with αF is extr amenable,
2 Age(F ) has the Ramsey property for morphisms.

Corollary 2. Let F be a projectively locally finite projectively
homogeneous structure. Then Aut(F ) endowed with the
topology αF is extremely amenable if and only if ∂Age(F ) has
the dual Ramsey property.



Ramsey property and extreme amenability

Theorem. Let F be a homogeneous locally finite object in C
whose automorphisms are finitely separated. TFAE:

1 Aut(F ) endowed with αF is extr amenable,
2 Age(F ) has the Ramsey property for morphisms.

Corollary 3. Let F be a projectively homogeneous
0-dimensional Hausdorff space. Then Homeo(F ) endowed with
the compact-open topology is extremely amenable if and only if
∂Age(F ) has the dual Ramsey property.

(Cf. D. BARTOŠOVÁ: Universal minimal flows of groups of
automorphisms of uncountable structures. Canadian Mathematical

Bulletin, 2012.)



Ramsey property and extreme amenability

Theorem. Let F be a homogeneous locally finite object in C
whose automorphisms are finitely separated. TFAE:

1 Aut(F ) endowed with αF is extr amenable,
2 Age(F ) has the Ramsey property for morphisms.

Example. In HAUS(�): Homeo(K) endowed with the
compact-open topology is not extremely amenable.

Example. In OHAUS(�): Let G be the homeomorphism group
of K6 endowed with αK6 = “compact interval – open interval”
topology. Then G is extremely amenable.



Minimal flows and the expansion property

A. S. KECHRIS, V. G. PESTOV, S. TODORČEVIĆ: Fraı̈ssé limits,
Ramsey theory and topological dynamics of automorphism
groups. GAFA Geometric and Functional Analysis, 15 (2005) 106–189.

Theorem. Let F be a locally finite Fraı̈ssé structure, F∗ a
Fraı̈ssé order expansion of F and X ∗ the set of admissible
linear orders on F. TFAE:

1 X ∗ is a minimal Aut(F)-flow
2 Age(F∗) has the ordering property w.r.t. Age(F).



Minimal flows and the expansion property

L. NGUYEN VAN THÉ: More on the Kechris-Pestov-Todorcevic
correspondence: precompact expansions. Fund. Math. 222 (2013),

19–47.

Theorem. Let F be a locally finite Fraı̈ssé structure, F∗ a
Fraı̈ssé precompact expansion of F and X ∗ the set of
admissible expansions on F. TFAE:

1 X ∗ is a minimal Aut(F)-flow
2 Age(F∗) has the expansion property w.r.t. Age(F).



Minimal flows and the expansion property

Θ = (θi)i<n – a finite relational language

ΩF =
⋃
{hom(A,F ) : A ∈ Ob(C0)}

For F ∈ Ob(C), a Θ-expansion of F is a tuple (F , (ρi)i<n) where
ρi is a finitary relation on ΩF .



Minimal flows and the expansion property

C(Θ) – a category of Θ expansions of objects from C:

• objects are Θ-expansions of objects from C;

• f : (F , (ρi)i<n)→ (H, (σi)i<n) is a C(Θ)-morphism if

I f ∈ homC(F ,H), and
I (e0, . . . ,em−1) ∈ ρi ⇒ (f · e0, . . . , f · em−1) ∈ σi , for all i < n.

Age(F , (θi)i<n) has the expansion property w.r.t. Age(F ) if

for every A ∈ Age(F ) there is a B ∈ Age(F ) such that for
all (A, (ρi)i<n), (B, (σi)i<n) ∈ Age(F , (θi)i<n) we have a
morphism (A, (ρi)i<n)→ (B, (σi)i<n) in C(Θ).



Minimal flows and the expansion property

F ∈ Ob(C), G = Aut(F )

EF = {all the tuples (ρi)i<n where ρi ⊆ Ωmi
F }

G acts on EF logically, that is

(ρi)
g
i<n = (ρ

g
i )i<n and

(e0, . . . ,em−1) ∈ ρg
i ⇒ (g−1 · e0, . . . ,g−1 · em−1) ∈ ρi



Minimal flows and the expansion property

Theorem. Let F be a locally finite homogeneous object in C
and let G = Aut(F ). Let (F , (ρi)i<n) be a Θ-expansion of F
which is locally finite in C(Θ). Let X Θ = (ρi)

G
i<n be a G-flow

where the action of G is logical. TFAE:
1 X Θ is a minimal G-flow.
2 Age(F , (ρi)i<n) has the expansion property w.r.t. Age(F ).



Minimal flows and the expansion property

Example. Let S be an infinite set, let G = Sym(S) and let
(S,6) be an ultrahomogeneous chain. Then

X Θ = 6G = all lin orders on S

is a minimal G-flow.

Example. Let G = Aut(K) and recall that K6 is the Cantor set
with the lexicographic order. Then X Θ = 6G is a minimal
G-flow.



Universal minimal flows

A. S. KECHRIS, V. G. PESTOV, S. TODORČEVIĆ: Fraı̈ssé limits,
Ramsey theory and topological dynamics of automorphism
groups. GAFA Geometric and Functional Analysis, 15 (2005) 106–189.

Theorem. Let F be a locally finite Fraı̈ssé structure, F∗ a
Fraı̈ssé order expansion of F and X ∗ the set of admissible
linear orders on F. TFAE:

1 X ∗ is the universal minimal Aut(F)-flow
2 Age(F∗) has the Ramsey property and the ordering

property w.r.t. Age(F).



Universal minimal flows

Work in progress . . .


