Categorical Constructions and the Ramsey Property

Dragan Mašulović

Department of Mathematics and Informatics University of Novi Sad, Serbia

LMS – EPSRC Durham Symposium Permutation groups and transformation semigroups Durham, 29 Jul 2015

Important notice

Thesis. Category theory is an appropriate context for understanding Ramsey property.

Thesis

R. L. GRAHAM, K. LEEB, B. L. ROTHSCHILD: *Ramsey's* theorem for a class of categories. Adv. Math. 8 (1972) 417–443.

H. J. PRÖMEL, B. VOIGT: *Hereditary attributes of surjections* and parameter sets. European J. Combin. 7 (1986) 161–170.

J. NEŠETŘIL: *Ramsey classes and homogeneous structures.* Combinatorics, probability and computing, 14 (2005) 171–189.

L. NGUYEN VAN THÉ: Universal flows of closed subgroups of S_{∞} and relative extreme amenability. Asymptotic Geometric Analysis, Fields Institute Communications Vol. 68, 2013, 229–245.

S. SOLECKI: Dual Ramsey theorem for trees. arXiv:1502.04442v1.

A. S. KECHRIS, V. G. PESTOV, S. TODORČEVIĆ: *Fraïssé limits, Ramsey theory and topological dynamics of automorphism groups.* GAFA Geometric and Functional Analysis, 15 (2005) 106–189.

Ingredients:

- Fraïssé theory,
- structural Ramsey theory,
- topological dynamics.

Homogeneity	Ramsey prop	Extreme amenability			
	\downarrow				
\downarrow abstract interpretation					
	\downarrow				
Homogeneity •	Ramsey prop	Extreme amenability			
in a category	in a category	w.r.t. particular topology			

Homogeneity •	Ramsey prop	Extreme amenability				
	\downarrow					
↓ abstract interpretation						
	\downarrow					
Homogeneity •	Ramsey prop	Extreme amenability				
in a category	in a category	w.r.t. particular topology				
	\downarrow					
<i>↓ specialization</i>						
	\downarrow					
Homogeneity •	Ramsey prop	Extreme amenability				
for ultrahomog structs that are not Fraïssé limits						
(e.g. uncountable ulrahomog structs)						

Homogeneity	•	Ramsey prop)	Extreme amenability	
		\downarrow				
	\downarrow abstract interpretation					
		\downarrow				
Homogeneity	•	Ramsey prop			Extreme amenability	
in a category		in a category		W	r.t. particular topology	
		\downarrow				
↓ categorical duality						
		\downarrow				
Projective	•	Dual	•		Extreme amenability	
Homogeneity		Ramsey prop				

T. IRWIN, S. SOLECKI: *Projective Fraïssé limits and the pseudo-arc.* Trans. Amer. Math. Soc. 358, no. 7 (2006) 3077–3096.

Ramsey Theory

Finite Ramsey Theorem.

For all $a, b \in \mathbb{N}$ and $k \ge 2$ there is a $c \in \mathbb{N}$ such that for every c-element set C and every coloring

$$\chi: \binom{C}{a} \to k$$

there is a b-element set $B \subseteq C$ such that $|\chi({B \choose a})| = 1$.

Frank P. Ramsey 1903 – 1930 Image courtesy of Wikipedia

Ramsey Theory

R. L. GRAHAM, B. L. ROTHSCHILD, J. H. SPENCER: *Ramsey Theory (2nd Ed).* John Wiley & Sons, 1990.

Finite Product Ramsey Theorem. For all s, a_1, \ldots, a_s , $b_1, \ldots, b_s \in \mathbb{N}$ and $k \ge 2$ there exist $c_1, \ldots, c_s \in \mathbb{N}$ such that for all sets C_1, \ldots, C_s of cardinalities c_1, \ldots, c_s , respectively, and every k-coloring of the set $\binom{C_1}{a_1} \times \ldots \times \binom{C_s}{a_s}$ there exist $B_1 \subseteq C_1$ of cardinality $b_1, \ldots, B_s \subseteq C_s$ of cardinality b_s such that $\binom{B_1}{a_1} \times \ldots \times \binom{B_s}{a_s}$ is monochromatic.

Ramsey Theory

R. L. GRAHAM, B. L. ROTHSCHILD: *Ramsey's theorem for n-parameter sets.* Tran. Amer. Math. Soc. 159 (1971), 257–292.

Finite Dual Ramsey Theorem. For all $a, b \in \mathbb{N}$ and $k \ge 2$ there is a $c \in \mathbb{N}$ such that for every *c*-element set *C* and every *k*-coloring of the set $\begin{bmatrix} C \\ a \end{bmatrix}$ of all partitions of *C* with exactly a blocks there is a partition β of *C* with exactly b blocks such that the set of all patitions from $\begin{bmatrix} C \\ a \end{bmatrix}$ which are coarser than β is monochromatic.

Deep structural property developed in the 1970's by Erdős, Graham, Leeb, Rothschild, Rödl, Nešetřil and many more.

Instead of sets, consider structures!

Definition. A class **K** of finite structures has the *Ramsey property* if:

for all $\mathcal{A}, \mathcal{B} \in \mathbf{K}$ such that $\mathcal{A} \hookrightarrow \mathcal{B}$ and all $k \ge 2$ there is a $\mathcal{C} \in \mathbf{K}$ such that \longrightarrow

for every coloring $\chi : \begin{pmatrix} \mathcal{C} \\ \mathcal{A} \end{pmatrix} \to k$

there is a $\tilde{\mathcal{B}} \in \binom{\mathcal{C}}{\mathcal{B}}$ such that $\left|\chi\left(\binom{\tilde{\mathcal{B}}}{\mathcal{A}}\right)\right| = 1$.

Categories

In order to specify a category ${\mathbb C}$ one has to specify:

- 1 a class of objects $Ob(\mathbb{C})$,
- 2 a set of morphisms hom(A, B) for all $A, B \in Ob(\mathbb{C})$,
- 3 an identity morphism id_A for all $A \in Ob(\mathbb{C})$, and
- 4 the composition of morphisms so that
 - $(f \cdot g) \cdot h = f \cdot (g \cdot h)$, and
 - $id_B \cdot f = f \cdot id_A$ for all $f \in hom(A, B)$.

J. NEŠETŘIL: *Ramsey classes and homogeneous structures.* Combinatorics, probability and computing, 14 (2005) 171–189.

$${B \choose A} = \mathsf{hom}(A, B) / \sim_A$$

► $f \sim_A g$ for $f, g \in hom(A, B)$ iff $f = g \cdot \alpha$ for some $\alpha \in Aut(A)$.

A category C has the Ramsey property for objects if:

for all $k \ge 2$ and all $A, B \in Ob(\mathbb{C})$ such that $hom(A, B) \ne \emptyset$ there is a $C \in Ob(\mathbb{C})$ such that for every \mathbb{SET} -mapping $\chi : \binom{C}{A} \to k$ there is a \mathbb{C} -morphism $w : B \to C$ such that $|\chi(w \cdot \binom{B}{A})| = 1.$

Example. $\mathbb{SET}_{\text{fin}}$

- objects are finite sets
- hom(A, B) = injective maps $A \rightarrow B$,
- identity is the identity map,
- composition: $f \cdot g = f \circ g$.

 $\mathbb{SET}_{\text{fin}}$ has the Ramsey property for objects.

This is the finite Ramsey theorem.

Example. $SET_{fin}^{(-)}$

- objects are finite sets
- hom(A, B) = surjective maps $A \leftarrow B$,
- identity is the identity map,
- composition: $f \cdot g = g \circ f$.

 $\mathbb{SET}_{\text{fin}}^{(\text{\tiny K-})}$ has the Ramsey property for objects.

This is the finite dual Ramsey theorem.

Example. $\mathbb{B}\mathbb{A}_{\text{fin}}$

- objects are finite boolean algebras
- hom(A, B) = embeddings $A \rightarrow B$,
- identity is the identity map,
- composition: $f \cdot g = f \circ g$.

 \mathbb{BA}_{fin} has the Ramsey property for objects.

This is the finite Ramsey theorem for boolean algebras.

A category \mathbb{C} has the *Ramsey property for morphisms* if: for all $k \ge 2$ and all $A, B \in Ob(\mathbb{C})$ such that $hom(A, B) \ne \emptyset$ there is a $C \in Ob(\mathbb{C})$ such that for every \mathbb{SET} -mapping $\chi : hom(A, C) \rightarrow k$ there is a \mathbb{C} -morphism $w : B \rightarrow C$ such that $|\chi(w \cdot hom(A, B))| = 1$.

Example. \mathbb{CH}_{fin}

- ► objects are finite chains ($\{1, ..., n\}, \leq$), $n \ge 1$
- hom(A, B) = embeddings $A \rightarrow B$,
- identity is the identity map,
- composition: $f \cdot g = f \circ g$.

Ramsey property for $\mathbb{CH}_{\text{fin}} \Longleftrightarrow$ Ramsey property for finite chains.

Example. $\mathbb{CH}_{fin}^{(\leftarrow)}$

- ► objects are finite chains ($\{0, 1, ..., n\}, \leq$), $n \ge 1$
- ▶ hom(A, B) = surjective monotonous maps A ← B,
- identity is the identity map,
- composition: $f \cdot g = g \circ f$.

Ramsey property for $\mathbb{CH}_{fin}^{(\leftarrow)} \iff dual$ Ramsey property for partitions of finite chains into intervals.

Proposition. Assume that \mathbb{C} and \mathbb{D} are equivalent categories. Then \mathbb{C} has the Ramsey property for morphisms (objects) iff \mathbb{D} has the Ramsey property for morphisms (objects).

Categories C and D are *equivalent* if there exist functors *E* : C → D and *H* : D → C, and natural isomorphisms η : ID_C → *HE* and ε : ID_D → *EH*.

Example. Finite Stone duality:

Dual Ramsey Theorem for Finite BA's. Let Con(B) denote the set of congruences of B, and let

 $\operatorname{Con}(\mathcal{B},\mathcal{A}) = \{ \Phi \in \operatorname{Con}(\mathcal{B}) : \mathcal{B}/\Phi \cong \mathcal{A} \}.$

For every finite bolean algebra \mathcal{B} , every $\Phi \in Con(\mathcal{B})$ and every $k \ge 2$ there is a finite boolean algebra \mathcal{C} such that for every k-coloring of $Con(\mathcal{C}, \mathcal{B}/\Phi)$ there is a congruence $\Psi \in Con(\mathcal{C}, \mathcal{B})$ such that the set of all congruences from $Con(\mathcal{C}, \mathcal{B}/\Phi)$ which are coarser than Ψ is monochromatic.

Example. Finite Stone duality:

Example. Hu's equivalence:

Example. By the standard duality of fin dim vector spaces:

Ramsey Theorem for Finite Vector Spaces

Dual Ramsey Theorem for Finite Vector Spaces. Let *F* be a finite field and for a vector space *V* over *F* let

 $\begin{bmatrix} V \\ d \end{bmatrix}_{\text{lin}} = \{ V/W : W \leqslant V, \dim(V/W) = d \}.$

For all $a, b \in \mathbb{N}$ and $k \ge 2$ there is a $c \in \mathbb{N}$ such that for every c-dimensional vector space V over F and every k-coloring of $\begin{bmatrix} V \\ a \end{bmatrix}_{\text{lin}}$ there is a partition $\beta \in \begin{bmatrix} V \\ b \end{bmatrix}_{\text{lin}}$ such that the set of all patitions from $\begin{bmatrix} V \\ a \end{bmatrix}_{\text{lin}}$ which are coarser than β is monochromatic.

Theorem. Assume that both \mathbb{C} and \mathbb{D} satisfy the following finiteness condition:

▶ hom(A, B) is finite for all objects A and B in the category. If both \mathbb{C} and \mathbb{D} have the Ramsey property for morphisms (objects) then $\mathbb{C} \times \mathbb{D}$ has the Ramsey property for morphisms (objects).

- ► Objects of C × D are pairs (A, B) where A ∈ Ob(C) and B ∈ Ob(D).
- ► Morphisms of $\mathbb{C} \times \mathbb{D}$ are pairs $(f, g) : (A_1, B_1) \to (A_2, B_2)$ where $f : A_1 \to A_2$ in \mathbb{C} and $g : B_1 \to B_2$ in \mathbb{D} .
- ► The composition is componentwise.

Corollary. Assume that hom(A, B) is finite for all A, $B \in Ob(\mathbb{C})$. If \mathbb{C} has the Ramsey property for morphisms (objects) then \mathbb{C}^n has the Ramsey property for morphisms (objects).

Corollary. Assume that hom(A, B) is finite for all A, $B \in Ob(\mathbb{C})$. If \mathbb{C} has the Ramsey property for morphisms (objects) then \mathbb{C}^n has the Ramsey property for morphisms (objects).

Metatheorem. *Every Ramsey property for classes of finite structures, be it "direct" or dual, has the finite product version.*

Corollary. Assume that hom(A, B) is finite for all A, $B \in Ob(\mathbb{C})$. If \mathbb{C} has the Ramsey property for morphisms (objects) then \mathbb{C}^n has the Ramsey property for morphisms (objects).

Metatheorem. *Every Ramsey property for classes of finite structures, be it "direct" or dual, has the finite product version.*

Example.

R. L. GRAHAM, B. L. ROTHSCHILD, J. H. SPENCER: *Ramsey Theory (2nd Ed).* John Wiley & Sons, 1990.

Example.

Finite Product Dual Ramsey Theorem. For all s, a_1, \ldots, a_s , $b_1, \ldots, b_s \in \mathbb{N}$ and $k \ge 2$ there exist $c_1, \ldots, c_s \in \mathbb{N}$ such that for all sets C_1, \ldots, C_s of cardinalities c_1, \ldots, c_s , respectively, and every k-coloring of the set $\begin{bmatrix} C_1 \\ a_1 \end{bmatrix} \times \ldots \times \begin{bmatrix} C_s \\ a_s \end{bmatrix}$, there exist a partition β_1 of C_1 with b_1 blocks, ..., a partition β_s of C_s with b_s blocks such that the following set is monochromatic:

$$\{(\gamma_1,\ldots,\gamma_s)\in {C_1\brack a_1}\times\ldots\times {C_s\brack a_s}: \gamma_i \text{ is coarser than } \beta_i, 1\leqslant i\leqslant s\}.$$

Example.

Finite Product Ramsey Theorem for Finite BA'a. For all positive integers s, k and all finite boolean algebras $A_1, \ldots, A_s, B_1, \ldots, B_s$ there exist finite boolean algebras C_1, \ldots, C_s such that for every k-coloring of the set $\binom{C_1}{A_1} \times \ldots \times \binom{C_s}{A_s}$, where $\binom{C}{A}$ is the set of all subalgebras of C that are isomorphic to A, there exist $\tilde{B}_1 \in \binom{C_1}{B_1}, \ldots, \tilde{B}_s \in \binom{C_s}{B_s}$ such that the set $\binom{\tilde{B}_1}{A_1} \times \ldots \times \binom{\tilde{B}_s}{A_s}$ is monochromatic.

Example. Finite product Ramsey theorem for

- ► finite linearly ordered graphs,
- ► finite linearly ordered posets,
- ► finite linearly ordered metric spaces with rational distances,
- ► (and so on)

Self-dual Ramsey results

Example. $\mathbb{SET}_{fin} \times \mathbb{SET}_{fin}^{(\leftarrow)}$ has the Ramsey property for objects since both the factors do, so:

For all $a, b \in \mathbb{N}$ and $k \ge 2$ there exists $a c \in \mathbb{N}$ such that for every set C with |C| = c and for every coloring

$$\chi: \begin{pmatrix} C \\ a \end{pmatrix} \times \begin{bmatrix} C \\ a \end{bmatrix} \to k$$

there is a set $B \subseteq C$ with |B| = b and a partition β of C with b blocks such that the following set is monochromatic:

$$\binom{B}{a} \times \{ \gamma \in \begin{bmatrix} C \\ a \end{bmatrix} : \gamma \text{ is coarser than } \beta \}.$$

(Cf. S. SOLECKI: Abstract approach to finite Ramsey theory and a self-dual Ramsey theorem. Adv. Math. 248 (2013), 1156–1198.)

Silly self-dual Ramsey results

Example. $\mathbb{BA}_{fin} \times \mathbb{V}_{fin}^{(\leftarrow)}$ has the Ramsey property for obj's, so:

Let F be a finite field. For all $a, b \in \mathbb{N}$ and $k \ge 2$ there exists a $c \in \mathbb{N}$ such that for every finite boolean algebra C with c atoms, every vector space V over F of dimension c and for every coloring

$$\chi: \begin{pmatrix} \mathcal{C} \\ \mathcal{P}(a) \end{pmatrix} \times \begin{bmatrix} \mathbf{V} \\ a \end{bmatrix}_{\text{lin}} \to \mathbf{k}$$

there is a subalgebra \mathcal{B} of \mathcal{C} with b atoms and a $\beta \in \begin{bmatrix} V \\ b \end{bmatrix}_{\text{lin}}$ such that the following set is monochromatic:

$$\binom{\mathcal{B}}{\mathcal{P}(a)} \times \{ \gamma \in \begin{bmatrix} V \\ a \end{bmatrix}_{\text{lin}} : \gamma \text{ is coarser than } \beta \}.$$

► V^(*-)_{fin} are finite vector spaces over a finite field *F* with surjective linear maps *V* ^{*-} *W*.

Ramsey property and extremely amenable groups

A. S. KECHRIS, V. G. PESTOV, S. TODORČEVIĆ: *Fraïssé limits, Ramsey theory and topological dynamics of automorphism groups.* GAFA Geometric and Functional Analysis, 15 (2005) 106–189.

Theorem. *TFAE* for a countable locally finite ultrahomogeneous first-order structure F:

- 1 Aut(*F*) is extremely amenable
- 2 Age(*F*) has the Ramsey property and consists of rigid elements.
- ► A group *G* is *extremely amenable* if every continuous action of *G* on a compact Hausdorff space *X* has a common fixed point.

KPT theory in a category – the setup

Let $\mathbb C$ be a category and $\mathbb C_0$ a full subcategory of $\mathbb C$ such that:

- (C1) all morphisms in \mathbb{C} are monic (= left cancellable);
- $(C2) \quad Ob(\mathbb{C}_0) \text{ is a set;} \\$
- (C3) for all $A, B \in Ob(\mathbb{C}_0)$ the set hom(A, B) is finite;
- (C4) for every $F \in Ob(\mathbb{C})$ there is an $A \in Ob(\mathbb{C}_0)$ such that $A \to F$;
- (C5) for every $B \in Ob(\mathbb{C}_0)$ the set $\{A \in Ob(\mathbb{C}_0) : A \to B\}$ is finite.

 \mathbb{C}_0 are (templates of) finite objects in \mathbb{C} .

$$\operatorname{Age}(F) = \{A \in \operatorname{Ob}(\mathbb{C}_0) : A \to F\}.$$

KPT theory in a category - the setup

Example. $\mathbb{C}\mathbb{H}$

- objects are all chains,
- hom(A, B) = embeddings $A \rightarrow B$,
- composition: $f \cdot g = f \circ g$,
- \mathbb{CH}_0 objects are finite chains $(\{1, \ldots, n\}, \leq), n \ge 1$.

KPT theory in a category - the setup

Example. HAUS^(*-)

- objects are Hausdorff spaces,
- $hom(A, B) = continuous surjective maps A \leftarrow B$,
- composition: $f \cdot g = g \circ f$,
- ▶ HAUS₀^(≪) objects are finite discrete spaces {1,..., n}, n ≥ 1.

An age of a structure in an op-category will be referred to as the *projective age* and denoted by $\partial Age(A)$.

Example. $\mathcal{K} = \text{Cantor set } 2^{\omega}.$ $\partial \text{Age}(\mathcal{K}) = \text{all finite discrete spaces.}$

KPT theory in a category - the setup

Example. OHAUS⁽⁺⁻⁾

- ► objects are all lin ordered Hausdorff spaces,
- hom(A, B) = continuous monotonous surjective maps
 A ← B,
- composition: $f \cdot g = g \circ f$,
- $OHAUS_0^{(*-)}$ objects are finite chains $(\{1, \ldots, n\}, \leq), n \geq 1$.

Example. $\mathcal{K}_{\leq} = \mathcal{K}$ with the lexicographic order. $\partial \text{Age}(\mathcal{K}_{\leq}) = \text{all finite chains.}$

Homogeneous objects

 $F \in Ob(\mathbb{C})$ is *homogeneous* if for every $A \in Age(F)$ and every pair of morphisms $e_1, e_2 : A \to F$ there is a $g \in Aut(F)$ such that $g \cdot e_1 = e_2$.

Example. Ultrahomogeneous structures in "direct" categories.

Following Irwin and Solecki, homogeneous structures in an op-category will be referred to as *projectively homogeneous*.

Example. Both \mathcal{K} and \mathcal{K}_{\leq} are projectively homogeneous (each in its category).

- 1 for every $A, B \in \text{Age}(F)$ and every $e : A \to F, f : B \to F$ there are a $D \in \text{Age}(F), r : D \to F, p : A \to D$ and $q : B \to D$ such that $r \cdot p = e$ and $r \cdot q = f$, and
- 2 for every $H \in Ob(\mathbb{C})$, $r' : H \to F$, $p' : A \to H$ and $q' : B \to H$ such that $r' \cdot p' = e$ and $r' \cdot q' = f$ there is an $s : D \to H$ such that the diagram below commutes.

- 1 for every $A, B \in \text{Age}(F)$ and every $e : A \to F, f : B \to F$ there are a $D \in \text{Age}(F), r : D \to F, p : A \to D$ and $q : B \to D$ such that $r \cdot p = e$ and $r \cdot q = f$, and
- 2 for every $H \in Ob(\mathbb{C})$, $r' : H \to F$, $p' : A \to H$ and $q' : B \to H$ such that $r' \cdot p' = e$ and $r' \cdot q' = f$ there is an $s : D \to H$ such that the diagram below commutes.

- 1 for every $A, B \in \text{Age}(F)$ and every $e : A \to F, f : B \to F$ there are a $D \in \text{Age}(F), r : D \to F, p : A \to D$ and $q : B \to D$ such that $r \cdot p = e$ and $r \cdot q = f$, and
- 2 for every $H \in Ob(\mathbb{C})$, $r' : H \to F$, $p' : A \to H$ and $q' : B \to H$ such that $r' \cdot p' = e$ and $r' \cdot q' = f$ there is an $s : D \to H$ such that the diagram below commutes.

- 1 for every $A, B \in \text{Age}(F)$ and every $e : A \to F, f : B \to F$ there are a $D \in \text{Age}(F), r : D \to F, p : A \to D$ and $q : B \to D$ such that $r \cdot p = e$ and $r \cdot q = f$, and
- 2 for every $H \in Ob(\mathbb{C})$, $r' : H \to F$, $p' : A \to H$ and $q' : B \to H$ such that $r' \cdot p' = e$ and $r' \cdot q' = f$ there is an $s : D \to H$ such that the diagram below commutes.

Example. Every object in \mathbb{CH} is locally finite.

Locally finite structures in an op-category will be referred to as *projectively locally finite*.

Example. Both \mathcal{K} and \mathcal{K}_{\leqslant} are projectively locally finite (each in its category).

Finitely separated automorphisms

The automorphisms of $F \in Ob(\mathbb{C})$ are *finitely separated* if the following holds for all $f, g \in Aut(F)$:

if $f \neq g$ then there is an $A \in Age(F)$ and an $e : A \rightarrow F$ such that $f \cdot e \neq g \cdot e$.

Example. Automorphisms of every relational structure are finitely separated.

Example. The automorphisms of both \mathcal{K} and \mathcal{K}_{\leq} are finitely separated (each in its category).

The topology generated by the age of an object

 $F\in\mathsf{Ob}(\mathbb{C})$

For $A \in Age(F)$ and $e_1, e_2 \in hom(A, F)$ let

$$N_F(e_1, e_2) = \{ f \in \operatorname{Aut}(F) : f \cdot e_1 = e_2 \}.$$

Lemma. Let F be a locally finite object in \mathbb{C} . Then

$$\mathcal{M}_{F} = \{ N_{F}(e_{1}, e_{2}) : A \in \operatorname{Age}(F); e_{1}, e_{2} \in \operatorname{hom}(A, F) \}$$

is a base of a topology α_F on Aut(*F*). If, in addition, the automorphisms of *F* are fintely separated, Aut(*F*) endowed with the topology α_F is a Hausdorff topological group.

The topology generated by the age of an object

Example. In the category $\mathbb{REL}(\Delta)$ of relational structures of a fixed relational type Δ and embeddings, $\alpha_{\mathcal{F}}$ is the pointwise convergence topology for every Δ -structure \mathcal{F} .

Example. In the category of Hausdorff topological spaces and topological embeddings $\alpha_{\mathbb{R}}$ is nontrivial, but it is not the pointwise convergence topology.

The topology generated by the age of an object

Example. In $\mathbb{HAUS}^{(\text{--})}$: $\alpha_{\mathcal{K}}$ = compact-open topology on \mathcal{K} .

Example. In $\mathbb{HAUS}^{(*-)}$: $\alpha_{\mathcal{K}_{\leq}}$ = "compact interval-open interval" topology on \mathcal{K}_{\leq} .

Example. In the op-category of metric spaces and nonexpansive maps $\alpha_{\mathbb{R}}$ is antidiscrete.

Theorem. Let F be a homogeneous locally finite object in \mathbb{C} whose automorphisms are finitely separated. TFAE:

- 1 Aut(F) endowed with α_F is extr amenable,
- 2 Age(F) has the Ramsey property for morphisms.

Theorem. Let F be a homogeneous locally finite object in \mathbb{C} whose automorphisms are finitely separated. TFAE:

- 1 Aut(F) endowed with α_F is extr amenable,
- 2 Age(F) has the Ramsey property for morphisms.

Corollary 1. Let F be an ultrahomogeneous relational structure. Then Aut(F) with with the pointwise convergence topology is extremely amenable if and only if Age(F) has the Ramsey property.

D. BARTOŠOVÁ: *Universal minimal flows of groups of automorphisms of uncountable structures.* Canadian Mathematical Bulletin, 2012.

Theorem. Let F be a homogeneous locally finite object in \mathbb{C} whose automorphisms are finitely separated. TFAE:

- 1 Aut(F) endowed with α_F is extr amenable,
- 2 Age(F) has the Ramsey property for morphisms.

Corollary 2. Let *F* be a projectively locally finite projectively homogeneous structure. Then Aut(F) endowed with the topology α_F is extremely amenable if and only if $\partial Age(F)$ has the dual Ramsey property.

Theorem. Let F be a homogeneous locally finite object in \mathbb{C} whose automorphisms are finitely separated. TFAE:

- 1 Aut(F) endowed with α_F is extr amenable,
- 2 Age(F) has the Ramsey property for morphisms.

Corollary 3. Let *F* be a projectively homogeneous 0-dimensional Hausdorff space. Then Homeo(F) endowed with the compact-open topology is extremely amenable if and only if $\partial Age(F)$ has the dual Ramsey property.

(Cf. D. BARTOŠOVÁ: *Universal minimal flows of groups of automorphisms of uncountable structures.* Canadian Mathematical Bulletin, 2012.)

Theorem. Let F be a homogeneous locally finite object in \mathbb{C} whose automorphisms are finitely separated. TFAE:

- 1 Aut(F) endowed with α_F is extr amenable,
- 2 Age(F) has the Ramsey property for morphisms.

Example. In $\mathbb{HAUS}^{(\leftarrow)}$: Homeo(\mathcal{K}) endowed with the compact-open topology is not extremely amenable.

Example. In $\mathbb{OHAUS}^{(-)}$: Let *G* be the homeomorphism group of \mathcal{K}_{\leq} endowed with $\alpha_{\mathcal{K}_{\leq}} =$ "compact interval – open interval" topology. Then *G* is extremely amenable.

A. S. KECHRIS, V. G. PESTOV, S. TODORČEVIĆ: *Fraïssé limits, Ramsey theory and topological dynamics of automorphism groups.* GAFA Geometric and Functional Analysis, 15 (2005) 106–189.

Theorem. Let \mathcal{F} be a locally finite Fraïssé structure, \mathcal{F}^* a Fraïssé order expansion of \mathcal{F} and X^* the set of admissible linear orders on F. TFAE:

- 1 X^* is a minimal Aut(\mathcal{F})-flow
- 2 Age(\mathcal{F}^*) has the ordering property w.r.t. Age(\mathcal{F}).

L. NGUYEN VAN THÉ: *More on the Kechris-Pestov-Todorcevic correspondence: precompact expansions.* Fund. Math. 222 (2013), 19–47.

Theorem. Let \mathcal{F} be a locally finite Fraïssé structure, \mathcal{F}^* a Fraïssé precompact expansion of \mathcal{F} and X^* the set of admissible expansions on F. TFAE:

- 1 X^* is a minimal Aut(\mathcal{F})-flow
- 2 Age(\mathcal{F}^*) has the expansion property w.r.t. Age(\mathcal{F}).

 $\Theta = (\theta_i)_{i < n} - a$ finite relational language

$$\Omega_{\mathcal{F}} = \bigcup \{ \mathsf{hom}(\mathcal{A}, \mathcal{F}) : \mathcal{A} \in \mathsf{Ob}(\mathbb{C}_0) \}$$

For $F \in Ob(\mathbb{C})$, a Θ -expansion of F is a tuple $(F, (\rho_i)_{i < n})$ where ρ_i is a finitary relation on Ω_F .

 $\mathbb{C}(\Theta)$ – a category of Θ expansions of objects from \mathbb{C} :

- objects are Θ -expansions of objects from \mathbb{C} ;
- $f : (F, (\rho_i)_{i < n}) \to (H, (\sigma_i)_{i < n})$ is a $\mathbb{C}(\Theta)$ -morphism if
 - ▶ $f \in \hom_{\mathbb{C}}(F, H)$, and
 - ► $(e_0, ..., e_{m-1}) \in \rho_i \Rightarrow (f \cdot e_0, ..., f \cdot e_{m-1}) \in \sigma_i$, for all i < n.

Age(F, $(\theta_i)_{i < n}$) has the *expansion property* w.r.t. Age(F) if for every $A \in \text{Age}(F)$ there is a $B \in \text{Age}(F)$ such that for all $(A, (\rho_i)_{i < n}), (B, (\sigma_i)_{i < n}) \in \text{Age}(F, (\theta_i)_{i < n})$ we have a morphism $(A, (\rho_i)_{i < n}) \rightarrow (B, (\sigma_i)_{i < n})$ in $\mathbb{C}(\Theta)$.

$$F \in \mathsf{Ob}(\mathbb{C}), \ G = \mathsf{Aut}(F)$$

 $E_F = \{ \text{all the tuples } (\rho_i)_{i < n} \text{ where } \rho_i \subseteq \Omega_F^{m_i} \}$

G acts on E_F logically, that is

$$(
ho_i)_{i < n}^g = (
ho_i^g)_{i < n}$$
 and
 $(e_0, \dots, e_{m-1}) \in
ho_i^g \Rightarrow (g^{-1} \cdot e_0, \dots, g^{-1} \cdot e_{m-1}) \in
ho_i$

Theorem. Let *F* be a locally finite homogeneous object in \mathbb{C} and let $G = \operatorname{Aut}(F)$. Let $(F, (\rho_i)_{i < n})$ be a Θ -expansion of *F* which is locally finite in $\mathbb{C}(\Theta)$. Let $X^{\Theta} = \overline{(\rho_i)_{i < n}^G}$ be a *G*-flow where the action of *G* is logical. TFAE:

1 X^{Θ} is a minimal G-flow.

2 Age(F, (ρ_i)_{*i*<*n*}) has the expansion property w.r.t. Age(F).

Example. Let *S* be an infinite set, let G = Sym(S) and let (S, \leq) be an ultrahomogeneous chain. Then

$$X^{\Theta} = \overline{\leqslant^G} =$$
all lin orders on S

is a minimal *G*-flow.

Example. Let $G = Aut(\mathcal{K})$ and recall that \mathcal{K}_{\leq} is the Cantor set with the lexicographic order. Then $X^{\Theta} = \overline{\leq^{G}}$ is a minimal *G*-flow.

Universal minimal flows

A. S. KECHRIS, V. G. PESTOV, S. TODORČEVIĆ: *Fraïssé limits, Ramsey theory and topological dynamics of automorphism groups.* GAFA Geometric and Functional Analysis, 15 (2005) 106–189.

Theorem. Let \mathcal{F} be a locally finite Fraïssé structure, \mathcal{F}^* a Fraïssé order expansion of \mathcal{F} and X^* the set of admissible linear orders on F. TFAE:

- 1 X^* is the universal minimal Aut(\mathcal{F})-flow
- 2 Age(F*) has the Ramsey property and the ordering property w.r.t. Age(F).

Universal minimal flows

Work in progress ...