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Motivation: Gluing Faithful Permutation Groups and
Transformation Semigroups

We show the existence and describe the structure of coproducts in the
following categories with objects (X ,S), with X a set and S ⊆ XX a set
of functions on X closed under composition, writing x · s for s ∈ S
applied to x ∈ X :

permutation groups PermGrp (each s ∈ S is a permutation of X and S is group)

transformation monoids TM (identity idX ∈ S)

transformation semigroups TS
partial transformation semigroups PTS . (Each s partial function from X to X )

Also for the variants PermGrp∗,TM∗,TS∗,PTS∗ of these categories with

base-points ∗ ∈ X and base-point preserving maps.

All in all these categories actions are faithful: if elements s1, s2 of the
group (resp., monoid, semigroup) act the same on all states, then they
are equal.

Related to these we describe coproducts in various automata categories
(deterministic partial; complete deterministic; nondeterministic partial;

with and without initial state)
Chrystopher L. Nehaniv joint work with Fariba Karimi Coproducts for Permutation Groups, Transformation Semigroups, Automata and Related Categories



A morphism ψ of permutation groups (X ,S) to (X ′, S ′) is a set
map ψstate : X → X ′ and homomorphism ψoperators : S → S ′, with

ψstate(x · s) = ψstate(x) · ψoperator (s) ∀x ∈ X , s ∈ S

ψoperator (s1s2) = ψoperator (s1)ψoperator (s2)∀s1, s2 ∈ S

It follows that inverses map to inverses, and identity of S maps to
identity element of S ′ (since idempotents map to idempotents).

A transformation semigroup morphism is defined the same way.
For the transformation monoid category, one must require of
morphisms, that the identity of S map to that of S ′.
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Coproduct of Groups, Monoids, or Semigroups

In groups or monoids, the coproduct is the “free product”.
S ∗ T = {(a1, . . . , ak) : k ≥ 0, with the ai 6= 1

alternating membership in S and T}.
If k = 0 this is the identity element of S ∗ T .

Multiply: (a1, . . . , ak)(b1, . . . , bn) ={
(a1, . . . , ak , b1, . . . , bn) if ak ∈ S , b1 ∈ T , or ak ∈ T , b1 ∈ S

reduce(a1, . . . , akb1, . . . , bn) if ak , b1 ∈ S or ak , b1 ∈ T

where reduce means removing any 1’s that appear, and combine
any new neighbors by multiplication if both are from same S or T ,
and then iterating reduction to get a canonical form.

Coproduct of two groups in the monoid category is the same as
their coproduct in the category of groups.

S ∗ T = T ∗ S , 1 ∗ S = S
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Coproduct of Semigroups

S ∗ T = {(a1, . . . , ak) : k ≥ 1, with the ai
alternating membership in S and T}.

Multiply: (a1, . . . , ak)(b1, . . . , bn) ={
(a1, . . . , ak , b1, . . . , bn) if ak ∈ S , b1 ∈ T , or ak ∈ T , b1 ∈ S

(a1, . . . , akb1, . . . , bn) if ak , b1 ∈ S or ak , b1 ∈ T

For semigroups, coproduct of two nonempty semigroups is always
infinite, e.g., 1*1 is infinite.

S ∗ T = T ∗ S , ∅ ∗ S = S ,
S ∗ T is not a monoid unless one factor is a monoid and the other
is empty. Can make S ∗ T into a monoid by adjoining a new
identity element λ (empty sequence).
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A coproduct (X ,S)
∐

(Y ,T ) of permutation groups (X ,S) and
(Y ,T ), if it exists is some (Q,C ) with two maps i(X ,S) and i(Y ,T )

to (Q,C ) such that when j ’s are given to some permutation group
(Z ,U) then these factor uniquely through (Q,C ):

(Q,C )

(X , S) (Y ,T )

(Z ,U)

i
(X ,S)

i
(Y ,T )

j
(X ,S)

j
(Y ,T )∃!ϕ

(1)

Observe: A coproduct is unique up to isomorphism (if it exists).
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Obvious guesses about what the coproduct should be are mostly
wrong....

Example: Let [n] = {1, . . . , n}. What could ([3],S3)
∐

([2],Z2) be?
What could ([3],Z3)

∐
([2],Z2) be?
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Obvious guesses about what the coproduct should be are mostly
wrong....

Example: What could ([3],Z3)
∐

([2],Z2) be?

Take disjoint union of state sets as new state set?

Group acting should be free product (coproduct) of Z3 ∗ Z2 or their direct
product Z3 × Z2?

How to act on states from the other component with embedded copies of
Z3 and Z2?
- Trivially? Undefined?? (Good idea for partial trans. semigroups...)

See black board: What if (Z ,U) is given by identifying one of the states
of each factor?
NB: Images of Z3 and Z2 in U under the j ’s do not commute!

So their preimages under the unique ϕ cannot commute either.
So can’t act trivially on the other component.
(So coproduct can’t have group the direct product).
Also action must be faithful, so if Z3 ∗ Z2 acts, the state set Q is infinite.

later in talk: Compare this to ([3],S3) ∗ ([2],Z2) in PermGrp∗, TS∗
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Coproduct of Permutation Groups

Theorem

In the category of permutation groups PermGrp, given permutation
groups (X ,S) and (Y ,T ), their coproduct is

((X t Y )⊗ (S ∗ T ),S ∗ T ),

where S ∗ T is the free product of groups and
(X t Y ) ⊗ (S ∗ T ) denotes ((X t Y ) × (S ∗ T ))/ ≡ under the
equivlaence relation ≡ generated by

(a, sw) ∼ (a · s,w), if a ∈ X , s ∈ S ,

(a, tw) ∼ (a · t,w), if a ∈ Y , t ∈ T ,
(2)

where iX : (X , S) → ((X t Y )⊗ (S ∗ T ),S ∗ T ) maps x 7→ (x , 1),
s 7→ s ∈ S ∗T , and iY : (Y ,T )→ ((X tY )⊗ (S ∗T ),S ∗T ) maps
y 7→ (y , 1), t 7→ t ∈ S ∗ T .
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Outline of Proof for Coproduct of Permutation Groups

Rewrite elements of (X tY )× (S ∗T ) to equivalent elements in canonical
form, a ∈ X t Y , w ∈ S ∗ T : Move letters s and t from w to the left
when action of the s or t is defined on a in the factor until impossible .
Action (a,w) · w ′ = (a,ww ′), a ∈ X t Y , w ,w ′ ∈ S ∗ T is well-defined
on equivalence classes.
Action is faithful, so we have a (faithful) permutation group
((X t Y )⊗ (S ∗ T ),S ∗ T ).
Existence of unique morphism to any (Z ,U) making diagram commute:
let ϕ : S ∗ T → U be the unique homomorphism (for the coproduct
S ∗ T ).
For states: Map (a,w) to jX (a) · ϕ(w) if a ∈ X or to jY (a) · ϕ(w) for
a ∈ Y .
This is well-defined on equivalence classes: if we apply an equivalence
rule this gives same member of Z . E.g.,
(x , sw) 7→jX (x) · ϕ(sw) = jX (x) · ϕ(s)ϕ(w) = (jX (x) · ϕ(s)) · ϕ(w) =
(jX (x) · jS(s)) · ϕ(w) = jX (x · s) · ϕ(w), which is where (x , sw) maps.
The diagram commutes as required. Uniqueness of state-map follows
easily since it is determined where (x , 1) and (y , 1) must go, and hence

where (x ,w) = (x , 1) · w and (y ,w) = (y , 1) · w go . �
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Theorems for Coproducts of Transformation Monoids &
Semigroups, and with basepoints and/or parital

Coproducts for transformation monoids are constructed in exactly
the same way.

Coproducts of transformation semigroups are constructed the same
way, semigroup acting is S ∗ T , but for states S ∗ T in
(X t Y )× (S ∗ T ) is augmented to (S ∗ T ) ∪ {λ} , where λ in 2nd
coordinate serves the same role 1 did in the permutation group
case. (Works for |X |, |Y | ≥ 1.)

With basepoints, one also obtains a canonical form for states,
adding one more rule (x0,w) ∼ (y0,w), where x0 is the basepoint of
X , y0 is the basepoint of Y , and w ∈ S ∗ T . In the semigroup case,
we allow w = λ, the empty word. Coproduct exists for |X |, |Y | > 1.

For partial transformation semigroups, coproduct is very different.
States are just the disjoint union. Semigroup acting is just union of
S and T which are undefined if they act on the state of the other
component. Similarly for partial transformation semigroups with
basepoint.
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Theorems for Coproducts of Automata

Theorem (Coproduct for Automata). For complete deterministic
reachable automata with initial state, and with distinct inputs
‘faithful’ (give distinct maps on the state set), the states of the
coproduct of automata A = (QA,X , iA, δX : QA × X → QA) and
B = (QB ,Y , iB, δY : QB × B → QB) are the states of the coproduct
of the pointed transformation semigroups of the transformation
semigroups of its factors, taking the initial states as basepoints.

That is, the coproduct is the complete deterministic reachable
automaton,

A t B = ((QA t QB)⊗ (S(A) ∗ S(B))λ,X t Y , i , δ)

with intitial state i = iX ⊗ λ = iY ⊗ λ, δ(a⊗ w , z) = a⊗ wz for all
a ∈ QA t QB ,w ∈ (S(A) ∗ S(B)) ∪ {λ}, z ∈ X t Y .

For partial automata, just put the automata next to each other,
identifying their initial states, use disjoint union of input alphabets.

For nondeterministic partial automata, the states are as for partial
transformation semigroups, initial states identified, and input
alphabet is joint union of the input alphabets.
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(Slides on Details)
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Coproduct of Transformation Semigroups

Let (X ,S) and (Y ,T ) be in TS with X ,Y 6= ∅. Then, the coproduct state
Q is given by,

((X t Y )⊗ (S ∗ T )λ, S ∗ T ) := ((X t Y )× (S ∗ T )λ)/ ≡, (3)

where ≡ is the symmetric reflexive, transitive closure of ∼, where ∼ is defined
by,

(a, sw) ∼ (a · s,w), if a ∈ X , s ∈ S ,

(a, tw) ∼ (a · t,w), if a ∈ Y , t ∈ T .
(4)

Write a⊗ w for the equivalence class of (a,w).

Each element of Q can be written in a canonical form [a, v ] where v = λ
or a shortest member of S ∗ T in canonical form, and a is either

a ∈ X and v does not start with a member of S , or,

a ∈ Y and v does not start with a member of T .
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Coproduct of Transformation Semigroups

Then u ∈ S ∗ T acts on Q as determined by

(a⊗ w) · u = a⊗ wu. (5)

The action is well-defined. Indeed, if (x , sw) ∼ (x · s,w), then,
(x , sw) · u = (x , swu) ∼ (x · s,wu) = (x · s,w) · u.

S ∗ T acts faithfully on Q. To show this, we exhaustively consider
different cases where u 6= u′ can happen and find a state in Q where
they disagree:

1 If u = sw ,w = λ or starts with t and u′ = s ′w ′ where w ′ = λ or
starts with t ′ and s 6= s ′,
then since (X , S) is faithful, ∃x ∈ X , x · s 6= x · s ′. Thus,

[x , λ] · u = [x · s,w ] 6= [x · s ′,w ′] = [x , λ] · u′.
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Coproduct of Transformation Semigroups

2 If u = sw and u′ = sw ′. Then, u 6= u′ ⇒ w 6= w ′. Thus,

[x , λ] · u = [x · s,w ] 6= [x · s,w ′] = [x , λ] · u′.

3 If u = tw and u′ = t ′w ′, then it is similar to cases 1 and 2.

4 If u = sw and u′ = tw ′ and ∃x ∈ X , x · s 6= x , then

[x , λ] · u = [x · s,w ] 6= [x , tw ′] = [x , λ] · u′.

5 If u = sw and u′ = tw ′ and ∀x ∈ X , x · s = x but w 6= tw ′, then

[x , λ] · u = [x · s,w ] = [x ,w ] 6= [x , tw ′] = [x , λ] · u′.

6 If u = stw ′ and u′ = tw ′ and ∀x ∈ X , x · s = x , then

[y , λ] · u = [y , stw ′] 6= [y · t,w ′] = [y , λ] · u′.
This establishes faithfulness for all non-trivial cases (X 6= ∅ and Y 6= ∅).
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Then the coproduct is given by the natural inclusions (X , S) and
(Y ,T ) in (Q,S ∗ T ):

(Q,S ∗ T )

(X ,S) (Y ,T )

(Z ,U)

i
(X ,S)

i
(Y ,T )

j
(X ,S)

j
(Y ,T )

ϕ

(6)
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Coproduct of Transformation Semigroups

i(X ,S) and i(Y ,T ) are defined by x 7→ [x , λ] and y 7→ [y , λ], respectively,
on states, and by s 7→ s ∈ S ∗ T and t 7→ t ∈ S ∗ T , respectively, on
semigroup elements s ∈ S , t ∈ T .

i(X ,S) and i(Y ,T ) are injective. Indeed [x1, λ] = [x2, λ] implies x1 = x2

since both are in canonical form.

Considering the semigroup component only first, since S ∗ T is the
coproduct of semigroups S and T , i.e. their free product, we take
ϕOperator : S ∗ T → U to be the unique semigroup homomorphism
making the semigroup part of the diagram commute.

The state morphism ϕState : Q → Z is defined by,

[a,w ] 7→


j(X ,S)(a), if a ∈ X ,w = λ,

j(Y ,T )(a), if a ∈ Y ,w = λ,

j(X ,S)(a)ϕOperator (w), if a ∈ X ,w 6= λ,

j(Y ,T )(a)ϕOperator (w), if a ∈ Y ,w 6= λ.

Well-defined: If (a,w) ∼ (a′,w ′) then ϕState maps them to same z ∈ Z .
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Coproduct of Transformation Semigroups

ϕ is a morphism.

ϕ([a,w ] · u) = ϕ([a,wu])

= j(a)ϕ(wu)

= j(a)ϕ(w)ϕ(u)

= ϕ([a,w ]) · ϕ(u).

The diagram commutes since the semigroup part commutes and
∀x ∈ X , x 7→ [x , λ] 7→ j(X ,S)(x) and ∀y ∈ Y , y 7→ [y , λ] 7→ j(Y ,T )(y),

ϕ is unique. Indeed, if there is another morphism ϕ2 that commutes
the diagram, then,

ϕ2([a,w ]) = ϕ2([a, λ] · w)

= ϕ2([a, λ]) · ϕ2(w)

= ϕ2(i(a)) · ϕ2(w)

= j(a) · ϕ(w) = ϕ([a,w ]).
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For permutation groups and transformation monoids, the argu-
ments are the same except we interpret λ to denote the identity
of M, N and M ∗ N, or G , H, G ∗ H, respectively.

Theorem

Let (X ,M) and (Y ,N) be in the category of transformations
monoids TM. Then their coproduct is (X tY )⊗M ∗N,M ∗N) :=
((X t Y )× (M ∗ N))/ ≡,M ∗ N), where M ∗ N is the free product
of monoids and ≡ is the symmetric, reflexive, transitive closure of
∼ defined by,

(a, sw) ∼ (a · s,w), if a ∈ X , s ∈ M,

(a, tw) ∼ (a · t,w), if a ∈ Y , t ∈ N.
(7)

Theorem

In the category of permutation groups PermGrp, given permutation
groups (X ,G ) and (Y ,H), their coproduct is
((X tY )⊗G ∗H,G ∗H) := ((X tY )× (G ∗H))/ ≡,G ∗H), where
G ∗ H is the free product of groups and ≡ is defined as above.
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Coproduct of Pointed Transformation Semigroups

Let (X , S) and (Y ,T ) be pointed transformation semigroups with
|X |, |Y | > 1. Then, the coproduct is given by the natural inclusions
(X , S) and (Y ,T ) in (Q,S ∗T ) where the coproduct state set Q is
given by,

(X t Y )⊗ (S ∗ T )λ := ((X t Y )× (S ∗ T )λ)/ ≡ (8)

where ≡ is the transitive closure of ∼, where ∼ is defined by,

(x0,w) ∼ (y0,w), if x0 = ∗X , y0 = ∗Y ,
(a, sw) ∼ (a · s,w), if a ∈ X , s ∈ S ,

(a, tw) ∼ (a · t,w), if a ∈ Y , t ∈ T .

(9)

The base point of Q is the equivalence class x0⊗λ = y0⊗λ. Then,
u ∈ S ∗ T acts on Q as determined by

(a⊗ w) · u = a⊗ wu. (10)

Write [a,w ] for the equivalence class of (a,w).

The base point of Q is the equivalence class [x0,w ] = [y0,w ].
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Coproduct of Pointed Transformation Semigroups

Then u ∈ S ∗ T acts on Q as determined by

(a⊗ w) · u = a⊗ wu. (11)

The action is well-defined. Indeed,

(x0,w) ∼ (y0,w)⇒ (x0,w) · u = (x0,wu) ∼ (y0,wu) = (y0,w) · u,
(x , sw) ∼ (x · s,w)⇒ (x , sw) · u = (x , swu) ∼ (x · s,wu) = (x · s,w) · u,
(y , tw) ∼ (y , ·t,w)⇒ (y , tw) · u = (y , twu) ∼ (y · t,wu) = (y , ·t,w) · u.

If factors are reachable, each a⊗ w ∈ Q is reachable from basepoint
x0 ⊗ λ = y0 ⊗ λ: If a ∈ X , then a ∈ X is reachable from basepoint x0 ∈ X
by some s ∈ S , so

(x0 ⊗ λ) · sw = x0 ⊗ sw = (x0 · s)⊗ w = a⊗ w .

Similarly, if a ∈ Y , which reachable from basepoint y0 ∈ Y by some t ∈ T .
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Coproduct of Pointed Transformation Semigroups

Each element of Q can be written as in a canonical form a⊗w1w2 · · ·wk

where w1w2 · · ·wk = λ or a shortest member of S ∗ T in canonical form,
and a is either

a ∈ X \ {x0} and w1 ∈ T , or,

a ∈ Y \ {y0} and w1 ∈ S .

To show this is true, first we define a reduction system by the following
rewriting rules:

(x , sw) 7→ (x · s,w),

(yt,w) 7→ (y · t,w),

(x0, tw) 7→ (y0, tw),

(y0, sw) 7→ (x0, sw),

where sw and tw are in the S ∗ T canonical form.
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Coproduct of Pointed Transformation Semigroups

According to the rewriting rules and the fact that sw and tw are
in the canonical form of S ∗ T , then each (a,w) can be reduced
to a unique normal form (a′,w ′) where non of the rewriting rules
can be applied anymore. We denote the normal form of (a,w) by
red(a,w)

Then it can be seen that a ⊗ u = a′ ⊗ u′ implies red(a, u) =
red(a′, u′).

Suppose a⊗u = a′⊗u′, then there exists ai ∈ X tY and ui ∈ S ∗T
such that (a, u) ∼ (a1, u1) ∼ · · · ∼ (ak , uk) ∼ (a′, u′).

It is sufficient to show that the neighbouring members (ai , ui ) ∼
(ai+1, ui+1) in an equivalence chain are reduced to the same canon-
ical form.

So it follows that equivalent (a,u)’s have the same canonical form.
(And conversely same canonical form implies equivalence.)

we identify (x0, λ) and (y0, λ) as the new base-point ∗.
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Coproduct of Pointed Transformation Semigroups

1 Case one: suppose that (ai , ui ) = (x0,w) and (ai+1, ui+1) = (y0,w).

If w = λ then red(x0, λ) = red(y0, λ) = ∗.
Otherwise, if w = tw ′ then (x0,w) = (x0, tw

′) 7→ (y0, tw
′) = (y0,w) i.e.

red(p,w) = red(y0,w).
If w = sw ′, then red(y0,w) = red(y0, sw

′) = red(x0, sw
′) = red(x0,w).

2 Case two: suppose (x , sw) ∼ (x · s,w) where x ∈ X .

If w = λ, then (x , sw) = (x , s) 7→ (x · s, λ) i.e., red(x , s) = red(x · s, λ).
If w is nonempty and the canonical form of it in S ∗ T denoted by
Can(w) = tw ′, then (x , sw) = (x , stw ′) 7→ (x · s, tw ′) = (x · s,w), i.e
red(x , sw) = red(x · s,w).
Otherwise, if Can(w) = s ′w ′′, then (x , sw) = (x , ss ′w ′′) 7→ (x · ss ′,w ′′).
On the other hand, (x · s,w) = (x · s, s ′w ′′) 7→ (x · ss ′,w ′′) therefore,
red(x · s,w) = (x , sw).

3 Case three: suppose (y , tw) ∼ (y · t,w) where y ∈ Y , which is similar to
case two.
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Then the coproduct is given by the natural inclusions (X , S) and
(Y ,T ) in (Q,S ∗ T ):

(Q,S ∗ T )

(X ,S) (Y ,T )

(Z ,U)

i
(X ,S)

i
(Y ,T )

j
(X ,S)

j
(Y ,T )

ϕ

(12)
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Coproduct of Pointed Transformation Semigroups

i(X ,S) and i(Y ,T ) are defined by x 7→ [x , λ] and y 7→ [y , λ], respectively,
on states, and by s 7→ s ∈ S ∗ T and t 7→ t ∈ S ∗ T , respectively, on
semigroup elements s ∈ S , t ∈ T .

The state morphism ϕState : Q → Z is defined by,

[a,w ] 7→


∗Z · ϕOperator (w) if a ∈ {x0, y0},
j(X ,S)(a) · ϕOperator (w), if a ∈ X ,

j(Y ,T )(a) · ϕOperator (w), if a ∈ Y .

It is well-defined since it is constant on equivalence classes. Proof: ϕState

maps ∼ related pairs to the same point.
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Coproduct of Pointed Transformation Monoids

In the category of pointed transformations monoids TM∗ let (X ,M)
and (Y ,N) be two pointed transformation monoids. Then their
coproduct is ((X × (M ∗ N)) t (Y × (M ∗ N)))/≡,M ∗ N), where
M∗N is the free product of monoids and ≡ is the symmetric, reflexive,
transitive closure of ∼ defined by,

(x0,w) ∼ (y0,w), if x0 = ∗X , y0 = ∗Y ,
(a, sw) ∼ (a · s,w), if a ∈ X , s ∈ S ,

(a, tw) ∼ (a · t,w), if a ∈ Y , t ∈ T .

(13)

Coproduct of Pointed Permutation Groups

In the category of pointed permutation groups PermGrp∗, given
pointed permutation groups (X ,G ) and (Y ,H) their coproduct is
((X × (G ∗ H)) t (Y × (G ∗ H)))/ ≡,G ∗ H), where G ∗ H is the
free product of groups and ≡ is defined as above.

Chrystopher L. Nehaniv joint work with Fariba Karimi Coproducts for Permutation Groups, Transformation Semigroups, Automata and Related Categories



Theorem

Let (X ,S) and (Y ,T ) be pointed transformation semigroups
(|X |, |Y | > 1). Then, their coproduct is given by,

((X t Y )× (S ∗ T )λ/ ≡, S ∗ T ), (14)

where ≡ is the transitive closure of ∼, where ∼ is defined by,

(x0,w) ∼ (y0,w), if x0 base point of X , y0 base point of Y ,

(a, sw) ∼ (a · s,w), if a ∈ X , s ∈ S ,

(a, tw) ∼ (a · t,w), if a ∈ Y , t ∈ T .
(15)

Caveat: If |X |, |Y | ≤ 1, then the state set has at most one
element, so S ∗T is infinite and can’t be faithful if both S and
T are non-empty!
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Theorem

In the category of pointed transformations monoids TM∗ let (X ,M)
and (Y ,N) be pointed transformation monoids (X ,Y 6= ∅). Then
their coproduct is
((X t Y )× (M ∗ N))/ ≡,M ∗ N), where M ∗ N is the free product
of monoids and ≡ is the transitive closure of ∼ defined by,

(x0,w) ∼ (y0,w), if x0 base pt of X , y0 base pt of Y ,

(a, sw) ∼ (a · s,w), if a ∈ X , s ∈ S ,

(a, tw) ∼ (a · t,w), if a ∈ Y , t ∈ T .

(16)

It is reachable if both its factors are.

Theorem

In the category of pointed permutation groups PermGrp∗, given
pointed permutation groups (X ,G ) and (Y ,H) coproduct is
((X t Y ) × (G ∗ H))/ ≡,G ∗ H), where G ∗ H is the free product
of groups and ≡ is defined as above. It is reachable if both (X ,G )
and (Y ,H) are.
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Category of Partial Transformation Semigroups (PTS)

Objects: A partial transformation semigroup (X , S) consists of a set
X and S is a semigroup consisting of partial transformations, rather than
fully defined functions on X .

A morphism of partial transformation semigroups ϕ : (X ,S) →
(Y ,T ) consists of two fully-defined functions ϕState : X → Y and
ϕOperator : S \ {∅} → T \ {∅}, satisfying two conditions: A relaxed state
mapping condition

ϕState(x · s) ⊆ ϕState(x) · ϕOperator (s) , ∀x ∈ X , s ∈ S (17)

and a relaxed homomorphism condition

ϕOperator (ss ′) ⊆ ϕOperator (s)ϕOperator (s ′) , ∀s, s ′ ∈ S . (18)

In fact, morphisms are defined just as for transformation semigroups, ex-
cept ϕ(x) · ϕ(s) = ϕ(x · s) is only required to hold when x · s is defined.
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ϕState(x · s) ⊆ ϕState(x) · ϕOperator (s) , ∀x ∈ X , s ∈ S

Following Eilenberg, we write x · s = ∅ when x · s is not defined,
and agree to write ϕState(∅) = ∅.
Also following Eilenberg, we identify an element x with the sin-
gleton set {x}. Note that ss ′ need not be defined anywhere even
if s and s ′ are partial transformations.

We agree that the completely undefined transformation need not
be mapped by the semigroup component of a morphism ϕ: Writ-
ing ∅ for this nowhere defined transformation, we agree to write
ϕOperator (∅) = ∅.
Note ϕOperator is not assumed to be a semigroup homomorphism,
but it will be a homomorphism whenever (X , S) is a (fully-defined)
transformation semigroup, and not strictly partial.

More generally, ϕOperator will be a semigroup homomorphism as
long as S does not contain the empty transformation ∅.
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The composition ψ ◦ ϕ of morphisms

(X ,S)
(ϕState ,ϕOperator )→ (Y ,T )

(ψState ,ψOpeator )→ (Z ,U) (19)

is their componentwise composition as functions

(X ,S)
(ψState◦ϕState ,ψOperator◦ϕOperator )−→ (Z ,U). (20)

Theorem

With the mentioned definitions of objects and morphisms, partial
transformation semigroups comprise a category PTS .

Corollary

The nonempty transformation semigroups TS comprise a full
subcategory of PTS .
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Theorem (Coproducts of Partial Transformation Semigroups)

Let (Xi , Si ) be partial transformation semigroups for each i in some index
set I . (NB: in particular, some or all of the (Xi ,Si ) may be fully defined!).
Then ∐

(Xi ,Si ) = (
⊔

Xi ,
∨

Si ) (21)

is their coproduct, where
⊔
Xi is the disjoint union of sets and

∨
Si is

the semigroup generated by partial transformations s on
⊔
Xi such that s

agrees with some si ∈ Si for some i ∈ I on Xi , and is undefined on the
complement of Xi . That is, the action of elements is

x · s =

{
x · s if x ∈ Xi , s ∈ Si

undefined otherwise
(22)

and multiplication of semigroup elements is

ss ′ =

{
ss ′ ∈ Si s, s ∈ Si ,

undefined otherwise.
(23)
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Consequences for Computer Science / Automata

For partial automata, coproduct is easy:

The coproduct partial automata (state-transition systems without initial
state) in the category of partial automaton is obtained by putting them
side by side and taking the disjoint union of their input alphabets as the
new input alphabet.

The coproduct of partial automata with state state in the category of
paritial automata with start state is obtained by putting them side by side
but identifying their start states and taking the disjoint union of their input
alphabets as the new input alphabet.

(Remark: The same idea works for nondeterministic partial. The

categories of partial nondeterministic automata and labelled directed

multigraphs (of a certain kind) are isomorphic categories, and its easy to

see what coproducts are in the latter [Karimi & Nehaniv 2014].)
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Consequences for Computer Science / Deterministic
Automata

For deterministic complete reachable automata (i.e., not partial) coprod-
uct:

The coproduct of deterministic reachable automata A = (X ,A, δ : X ×
A→ X ) and B = (Y ,B, δ′ : Y × B → Y ) has states

(X × (S(A) ∗ S(B))λ t Y × (S(A) ∗ S(B))λ)/≡

with input alphabet AtB, where S(A) denotes the transition semigroup of
A as in the coproduct for transformation semgroups (using either equiv-
alence relation with basepoint idenitcation if we work in automata with
initial state.

Transitions are exactly as in transformation semigroup coproduct action:
apply just letters (generators), and reduce to canonical form of states!

This takes us out of the finite realm, since in the deterministic world, the
coproduct must account for all possibilities of how transitions can occur
and inputs from the two automata are shuffled!
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Coproduct for PTS

Proof for Partial Transformation Semigroups.
For all i ∈ I , one has inclusion partial transformation semigroup
morphisms ιi : (Xi , Si ) → (

⊔
Xi ,

∨
Si ) such that if ji : (Xi ,Si ) →

(Q,T ) are morphisms for some fixed partial transformation semi-
group (Q,T ), then there is a unique morphism ϕ : (

⊔
Xi ,

∨
Si ) →

(Q,T ) given by defining for x ∈
⊔

i∈I Xi , where x = xi , that
ϕ(xi ) = ji (xi ) and for s ∈

∨
Si \ {∅}, with s agreeing on Xi

with si ∈ Si , that ϕ(s) = ji (si ). Any other member of
∨
Si

must be the empty transformation (which is not in the domain of
ϕOperator ). Clearly, ϕ is a morphism. Then we have ji = ϕ ◦ ιi
holds for all i . Moreover, ϕ is unique since the equation says
ϕ(xi ) = ϕ(ιi (xi )) = ji (xi ), and, similarly for the nonempty semi-
group elements in

∨
Si , uniquely determining ϕ.

Proof for PTS∗ is similar.
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