Synchronization Theory and Links to Combinatorics

Artur Schäfer

University of St. Andrews

LMS Durham Symposia, July 29th

The Setting

Outline

- Synchronization Theory
- e Hulls of Graphs
- Indomorphisms and Combinatorics
- Tilings and Semigroups

Synchronization Theory

Definition: Synchronization

- G synchronizes t, if the semigroup $\langle G, t \rangle$ has a map of rank 1 (size of its image).
- G is synchronizing, if G synchronizes all transformations t.

 $\mathsf{primitive} \Leftarrow \mathsf{almost}\text{-synchronizing} \Leftarrow \mathsf{synchronizing} \Leftarrow \mathsf{2}\text{-transitive}$

The Synchronization Problem

What are the transformations (not) synchronized by G?

We know many examples of synchronizing groups are known.

Which ranks are synchronized by G?

Results

n-1, n-2 and 2, and 3, 4 for non-uniform maps.

Recently (ABCRS) 2015: n - 3, n - 4, and $n - (1 + \sqrt{n - 1}/12)$ (for rank 3 groups)

How did we get the previous results? -> Use Connection to Graphs

Theorem (Cameron-2008)

G does not synchronize the map t, if and only if \exists a graph X with

•
$$G \leq \operatorname{Aut}(X)$$
,

$$(X) = \chi(X) = n, \text{ and }$$

• t is a singular endomorphism of X.

The Programme:

Analyse synchronizing groups G \Leftrightarrow Find endomorphisms (of minimal rank n) of graphs.

Hulls of Graphs

The theorem uses the following graph construction:

Construction: Graph of a Semigroup S

S a semigroup on n points. Then, the graph Gr(S) has vertices $\{1, ..., n\}$, where

two vertices v and w are adjacent, if there is no map $f \in S$ with vf = wf.

Definition (Hull)

Let X be a graph with endomorphism monoid S = End(X). Then, the **hull** of X is

$$Hull(X) = Gr(S).$$

Properties of Gr(S)

- Let $\Gamma = Gr(S)$, then
 - $S \leq \operatorname{End}(\Gamma)$,
 - Γ satisfies $\omega = \chi$,
 - if S is synchronizing, then Gr(S) is the null-graph,
 - if S is a permutation group, then Gr(S) is the complete graph.

Now, we go for the hull Y = Hull(X) of a graph X.

- X is a (spanning) subgraph of Y.,
- $\operatorname{Aut}(X) \leq \operatorname{Aut}(Y)$,
- $\operatorname{End}(X) \leq \operatorname{End}(Y)$,

•
$$Hull(X) = Hull(Y).$$

What makes hulls so important?

We are going to ask 2 question:

- Which graph is a hull? (satisfies X = Hull(X))
- **2** What are the (minimal) generators of Gr(S)?

Graphs which are Hulls

Approach: Find graphs with endomorphisms and check.

Theorem

If X is a graph with non-trivial hull whose automorphism group G has permutation rank 3, then X is a hull.

Further Hulls:

- Multi-partite graphs + Complement
- Hamming graphs + Complement

Non-Hulls:

- Paths, even cycles,
- $C_n \boxdot C_n$, for C_n an odd cycle $n \ge 5$

Generators of Gr(S): Part I

Question: Do we really need all elements of S to obtain Gr(S)?

Lemma

- Kernel class representatives in S (R-Class Reps) generate Gr(S).
- The elements of minimal rank in S (its minimal ideal) generate Gr(S).

Corollary

- **1** The idempotents of S generate Gr(S).
- 2 The generating set can be chosen to form a left-zero semigroup.

Generators of Gr(S): Part II Examples

Monogenic Semigroups

 $S=\langle a
angle$ with index m and period r, then $\{a^m\}$ generates Gr(S) .

Bands (every element is an idempotent)

Generators of the minimal ideal generate Gr(S).

Left-(Right)Zero Semigroups

The generators of S generate Gr(S).

Minimal generating Sets

Lemma: Minimal sets for $L_2(n)$

- If *n* is a prime power, then the minimal generating set is given by a complete set of n 1 MOLS.
- If not, then the minimal generating set contains at most n(n-1) elements.

Lemma

For $\overline{L_2(n)}$ a minimal generating has size 2.

Endomorphisms and Combinatorics

Consider hypercuboids: $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_m}$ In $H^R(n_1, ..., n_m)$ two vertices are adjacent, if their Hamming distance is in $\{1, ..., R\}$. $\rightarrow H^1(n, ..., n) =$ Hamming graph.

Lemma

The endomorphisms of minimal rank of $H^R(n_1, ..., n_m)$ are Latin hypercuboids of class R.

Example R=2

The two layers form a Latin hypercuboid

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, \begin{pmatrix} 5 & 6 & 4 \\ 3 & 1 & 2 \end{pmatrix}$$

They don't exist for all parameters.!!!

Latin hypercuboids of class R have **not appeared in the literature** and have **not** been counted.

Artur Schäfer

Mixed codes

Mixed codes = elements of $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_m}$. (Brouwer et. al considered $n_i \in \{2,3\}$ in '90s, others considered **perfect** mixed codes, but not much known, in general).

Definition (Mixed MDS-code)

A mixed MDS code is a mixed code C with minimum distance δ satisfying the generalized Singleton bound

$$|C| \leq \prod_{i=1}^{m-\delta+1} n_{m-i+1} = n_{\delta} \cdots n_m.$$

Proposition

The Latin hypercuboids (of class R) are (almost) equivalent with and mixed MDS-codes.

Tilings and Semigroups

Idea: Tiling a 2×4 chess board with 2×1 tiles.

{1,3,6,8} and {2,4,5,7} are transversals of all tilings (partitions). \rightarrow Let $f_1, ..., f_{10}$ be the maps constructed from the partition-transversal combinations and $S = \langle f_1, ..., f_{10} \rangle$

Tilings and Semigroups

Theorem

- S satisfies the following
 - **1** *S* is idempotent generated, (and simple in this case)
 - **2** For all $f_1, f_2 \in S$ it holds $ker(f_1f_2) = ker(f_1)$ and $im(f_1f_2) = im(f_2)$,
 - 3 S is non-synchronizing.

Consequences:

- New examples of non-synchronizing semigroups, and
- old examples seen in a new light $\overline{H^1(n,...,n)}$.

Disjoint Decompositions

Def: S is decomposable, if $S = S_1 \uplus S_2 \uplus \cdots \uplus S_n$.

Definition $S = \langle G, T \rangle \setminus G, T \subseteq T_n$ admits a strong decomposition, if for all $T' \subseteq T$ holds $\langle G, T' \rangle \setminus G = \bigoplus_{a \in T'} \langle G, a \rangle \setminus G.$

Theorem

Let S come from the tiling construction. If S is simple, then S admits a strong decomposition.

Question: Where does the group in S come from?

Problems

Problems:

- Find more families of hulls and their minimal generating sets.
- Count Latin hypercuboids.
- How good are mixed (MDS-)codes?
- Do non-synchronizing semigroups always admit some sort of decomposition?

Thank You for Your Attention!