Synchronization Theory and Links to Combinatorics

Artur Schäfer

University of St. Andrews

LMS Durham Symposia, July 29th

The Setting

Outline

(1) Synchronization Theory
(2) Hulls of Graphs
(3) Endomorphisms and Combinatorics
(4) Tilings and Semigroups

Synchronization Theory

Definition: Synchronization

- G synchronizes t, if the semigroup $\langle G, t\rangle$ has a map of rank 1 (size of its image).
- G is synchronizing, if G synchronizes all transformations t.
primitive \Leftarrow almost-synchronizing \Leftarrow synchronizing \Leftarrow 2-transitive

The Synchronization Problem

What are the transformations (not) synchronized by G ?
We know many examples of synchronizing groups are known.
Which ranks are synchronized by G ?

Results

$n-1, n-2$ and 2 , and 3,4 for non-uniform maps.
Recently (ABCRS) 2015: $n-3, n-4$, and $n-(1+\sqrt{n-1} / 12)$ (for rank 3 groups)

How did we get the previous results?
-> Use Connection to Graphs

Theorem (Cameron-2008)

G does not synchronize the map t, if and only if \exists a graph X with
(1) $G \leq \operatorname{Aut}(X)$,
(3) $\omega(X)=\chi(X)=n$, and
(0) t is a singular endomorphism of X.

The Programme:

Analyse synchronizing groups G
\Leftrightarrow Find endomorphisms (of minimal rank n) of graphs.

Hulls of Graphs

The theorem uses the following graph construction:
Construction: Graph of a Semigroup S
S a semigroup on n points. Then, the graph $\operatorname{Gr}(S)$ has vertices $\{1, . ., n\}$, where two vertices v and w are adjacent, if there is no map $f \in S$ with $v f=w f$.

Definition (Hull)

Let X be a graph with endomorphism monoid $S=\operatorname{End}(X)$. Then, the hull of X is

$$
\operatorname{Hull}(X)=\operatorname{Gr}(S)
$$

Properties of $\operatorname{Gr}(S)$

Let $\Gamma=\operatorname{Gr}(S)$, then

- $S \leq \operatorname{End}(\Gamma)$,
- 「 satisfies $\omega=\chi$,
- if S is synchronizing, then $\operatorname{Gr}(S)$ is the null-graph,
- if S is a permutation group, then $\operatorname{Gr}(S)$ is the complete graph.

Now, we go for the hull $Y=\operatorname{Hull}(X)$ of a graph X.

- X is a (spanning) subgraph of Y.,
- $\operatorname{Aut}(X) \leq \operatorname{Aut}(Y)$,
- $\operatorname{End}(X) \leq \operatorname{End}(Y)$,
- $\operatorname{Hull}(X)=\operatorname{Hull}(Y)$.

What makes hulls so important?

We are going to ask 2 question:
(1) Which graph is a hull? (satisfies $X=\operatorname{Hull}(X)$)
(2) What are the (minimal) generators of $\operatorname{Gr}(S)$?

Graphs which are Hulls

Approach: Find graphs with endomorphisms and check.

Theorem

If X is a graph with non-trivial hull whose automorphism group G has permutation rank 3 , then X is a hull.

Further Hulls:

- Multi-partite graphs + Complement
- Hamming graphs + Complement

Non-Hulls:

- Paths, even cycles,
- $C_{n} \boxtimes C_{n}$, for C_{n} an odd cycle $n \geq 5$

Generators of $\operatorname{Gr}(S)$: Part I

Question: Do we really need all elements of S to obtain $\operatorname{Gr}(S)$?

Lemma

- Kernel class representatives in S (R-Class Reps) generate $\operatorname{Gr}(S)$.
- The elements of minimal rank in S (its minimal ideal) generate $\operatorname{Gr}(S)$.

Corollary

(1) The idempotents of S generate $\operatorname{Gr}(S)$.
(2) The generating set can be chosen to form a left-zero semigroup.

Generators of $\operatorname{Gr}(S)$: Part II Examples

Monogenic Semigroups
$S=\langle a\rangle$ with index m and period r, then $\left\{a^{m}\right\}$ generates $\operatorname{Gr}(S)$.
Bands (every element is an idempotent)
Generators of the minimal ideal generate $\operatorname{Gr}(S)$.
Left-(Right)Zero Semigroups
The generators of S generate $\operatorname{Gr}(S)$.

Minimal generating Sets

Lemma: Minimal sets for $L_{2}(n)$

- If n is a prime power, then the minimal generating set is given by a complete set of $n-1$ MOLS.
- If not, then the minimal generating set contains at most $n(n-1)$ elements.

Lemma

For $L_{2}(n)$ a minimal generating has size 2 .

Endomorphisms and Combinatorics

Consider hypercuboids: $\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{m}}$ In $H^{R}\left(n_{1}, \ldots, n_{m}\right)$ two vertices are adjacent, if their Hamming distance is in $\{1, \ldots, R\} . \rightarrow H^{1}(n, \ldots, n)=$ Hamming graph.

Lemma

The endomorphisms of minimal rank of $H^{R}\left(n_{1}, \ldots, n_{m}\right)$ are Latin hypercuboids of class R.

Example $\mathrm{R}=2$

The two layers form a Latin hypercuboid

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right),\left(\begin{array}{lll}
5 & 6 & 4 \\
3 & 1 & 2
\end{array}\right)
$$

They don't exist for all parameters.!!!
Latin hypercuboids of class R have not appeared in the literature and have not been counted.

Mixed codes

Mixed codes $=$ elements of $\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{m}}$. (Brouwer et. al considered $n_{i} \in\{2,3\}$ in '90s, others considered perfect mixed codes, but not much known, in general).

Definition (Mixed MDS-code)

A mixed MDS code is a mixed code C with minimum distance δ satisfying the generalized Singleton bound

$$
|C| \leq \prod_{i=1}^{m-\delta+1} n_{m-i+1}=n_{\delta} \cdots n_{m}
$$

Proposition

The Latin hypercuboids (of class R) are (almost) equivalent with and mixed MDS-codes.

Tilings and Semigroups

Idea: Tiling a 2×4 chess board with 2×1 tiles.

1	2	3	4
5	6	7	8

(1)

1	2	3	4
	6	7	8

(4)

1	2	3	4
	5	7	8

(2)

1	2	3	4
	6	7	8

(3)

1	2	3	4
5	6	7	8

(5)
$\{1,3,6,8\}$ and $\{2,4,5,7\}$ are transversals of all tilings (partitions). \rightarrow Let f_{1}, \ldots, f_{10} be the maps constructed from the partition-transversal combinations and $S=\left\langle f_{1}, \ldots, f_{10}\right\rangle$

Tilings and Semigroups

Theorem

S satisfies the following
(1) S is idempotent generated, (and simple in this case)
(2) For all $f_{1}, f_{2} \in S$ it holds $\operatorname{ker}\left(f_{1} f_{2}\right)=\operatorname{ker}\left(f_{1}\right)$ and $\operatorname{im}\left(f_{1} f_{2}\right)=\operatorname{im}\left(f_{2}\right)$,

- S is non-synchronizing.

Consequences:

- New examples of non-synchronizing semigroups, and
- old examples seen in a new light $H^{1}(n, \ldots, n)$.

Disjoint Decompositions

Def: S is decomposable, if $S=S_{1} \uplus S_{2} \uplus \cdots \uplus S_{n}$.
Definition
$S=\langle G, T\rangle \backslash G, T \subseteq T_{n}$ admits a strong decomposition, if for all
$T^{\prime} \subseteq T$ holds

$$
\left\langle G, T^{\prime}\right\rangle \backslash G=\biguplus_{a \in T^{\prime}}\langle G, a\rangle \backslash G .
$$

Theorem
Let S come from the tiling construction. If S is simple, then S admits a strong decomposition.

Question: Where does the group in S come from?

Problems

Problems:

- Find more families of hulls and their minimal generating sets.
- Count Latin hypercuboids.
- How good are mixed (MDS-)codes?
- Do non-synchronizing semigroups always admit some sort of decomposition?

Thank You for Your Attention!

