Homogeneity of the pseudoarc and permutation groups

Sławomir Solecki

University of Illinois at Urbana–Champaign Research supported by NSF grant DMS-1266189

July 2015

Most of this work is joint with Todor Tsankov.

(日) (同) (日) (日) (日)

Outline of Topics

- The pseudoarc and projective Fraïssé limits
- 2 Projective "types"
- Output Boundary Bo
 - The transfer theorem
- 5 Questions (and comments on Menger compacta)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

the pseudoarc P =

<ロ> (日) (日) (日) (日) (日)

the pseudoarc P = a certain compact, connected, second countable space

< ロ > < 同 > < 三 > < 三

the pseudoarc P = a certain compact, connected, second countable space

the pre-pseudoarc $\mathbb{P} =$

(日) (同) (日) (日)

the pseudoarc P = a certain compact, connected, second countable space

the pre-pseudoarc \mathbb{P} = the Cantor set and a certain compact equivalence relation R on it with $\mathbb{P}/R = P$ and with a certain relationship to a family of finite structures

(人間) トイヨト イヨト

(日) (同) (日) (日)

1. find canonical "models" for interesting topological spaces, for example, the pseudoarc, Menger compacta, etc;

(人間) トイヨト イヨト

1. find canonical "models" for interesting topological spaces, for example, the pseudoarc, Menger compacta, etc;

2. find a unified approach to topological homogeneity results and put these results on firm footing;

- 4 週 ト - 4 三 ト - 4 三 ト

1. find canonical "models" for interesting topological spaces, for example, the pseudoarc, Menger compacta, etc;

2. find a unified approach to topological homogeneity results and put these results on firm footing;

3. resolve topological questions about homeomorphism groups.

- 4 同 6 4 日 6 4 日 6

The pseudoarc and projective Fraïssé limits

Sławomir Solecki (University of Illinois)

Homogeneity of the pseudoarc

July 2015 6 / 34

A (10) A (10) A (10)

The pseudoarc

(日) (周) (日) (日)

$\mathcal{K}([0,1]^2)=\text{compact subsets of }[0,1]^2$ with the Vietoris topology

イロト イヨト イヨト イヨト

 $\mathcal{C} =$ all connected sets in $\mathcal{K}([0,1]^2)$

イロト イヨト イヨト イヨト

 $\mathcal{C}=$ all connected sets in $\mathcal{K}([0,1]^2)$

 $\ensuremath{\mathcal{C}}$ is compact

(日) (同) (三) (三)

 $\mathcal{C}=$ all connected sets in $\mathcal{K}([0,1]^2)$

 $\ensuremath{\mathcal{C}}$ is compact

There exists a (unique up to homeomorphism) $P \in \mathcal{C}$ such that

・ロン ・四 ・ ・ ヨン ・ ヨン

 $\mathcal{C}=$ all connected sets in $\mathcal{K}([0,1]^2)$

 $\ensuremath{\mathcal{C}}$ is compact

There exists a (unique up to homeomorphism) $P \in \mathcal{C}$ such that

 $\{P' \in \mathcal{C} \colon P' \text{ homeomorphic to } P\}$

is a dense G_{δ} in C.

 $\mathcal{C}=\mathsf{all}$ connected sets in $\mathcal{K}([0,1]^2)$

 $\ensuremath{\mathcal{C}}$ is compact

There exists a (unique up to homeomorphism) $P \in \mathcal{C}$ such that

 $\{P' \in \mathcal{C} \colon P' \text{ homeomorphic to } P\}$

is a dense G_{δ} in C.

This *P* is called the **pseudoarc**.

 $\mathcal{K}([0,1]^n) = \text{compact subsets of } [0,1]^n \text{ with the Vietoris topology, } n \ge 2$ $\mathcal{K}([0,1]^n) \text{ is compact, } n \ge 2$

 $\mathcal{C}=$ all connected sets in $\mathcal{K}([0,1]^n)$, $n\geq 2$

 ${\mathcal C}$ is compact

There exists a (unique up to homeomorphism) $P \in \mathcal{C}$ such that

 $\{P' \in \mathcal{C} \colon P' \text{ homeomorphic to } P\}$

is a dense G_{δ} in C.

This *P* is called the **pseudoarc**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

 $\mathcal{K}([0,1]^{\omega}) =$ compact subsets of $[0,1]^{\omega}$ with the Vietoris topology $\mathcal{K}([0,1]^{\omega})$ is compact

 $\mathcal{C}=\mathsf{all}$ connected sets in $\mathcal{K}([0,1]^\omega)$

 $\ensuremath{\mathcal{C}}$ is compact

There exists a (unique up to homeomorphism) $P \in \mathcal{C}$ such that

 $\{P' \in \mathcal{C} \colon P' \text{ homeomorphic to } P\}$

is a dense G_{δ} in C.

This *P* is called the **pseudoarc**.

Continuum = compact and connected

(日) (周) (日) (日)

Continuum = compact and connected

The pseudoarc is a hereditarily indecomposable continuum

(日) (同) (三) (三)

$Continuum = {\sf compact} \text{ and connected}$

The pseudoarc is a **hereditarily indecomposable** continuum, that is, if $C_1, C_2 \subseteq P$ are continua with $C_1 \cap C_2 \neq \emptyset$, then $C_1 \subseteq C_2$ or $C_2 \subseteq C_1$.

(日) (周) (三) (三)

$Continuum = {\sf compact} \text{ and connected}$

The pseudoarc is a **hereditarily indecomposable** continuum, that is, if $C_1, C_2 \subseteq P$ are continua with $C_1 \cap C_2 \neq \emptyset$, then $C_1 \subseteq C_2$ or $C_2 \subseteq C_1$.

It was discovered by Knaster in 1922.

(日) (周) (三) (三)

Projective Fraïssé limits

${\mathcal F}$ a family of finite structures

${\mathcal F}$ a family of finite structures

Consider \mathcal{F} with **epimorphisms** between structures.

< ロ > < 同 > < 三 > < 三

- ${\mathcal F}$ a family of finite structures
- Consider \mathcal{F} with **epimorphisms** between structures.
- \mathcal{F} is called a **projective Fraïssé family** if it has **Joint Epimorphism Property** and **Projective Amalgamation Property**.

${\mathcal F}$ a family of finite structures

Consider \mathcal{F} with **epimorphisms** between structures.

\mathcal{F} is called a **projective Fraïssé family** if it has **Joint Epimorphism Property** and **Projective Amalgamation Property**.

Irwin–S.: If \mathcal{F} is a projective Fraïssé family, then there exists a unique projective limit

$$\mathbb{F} = \varprojlim \mathcal{F}$$

that is projectively universal and projectively homogeneous.

${\mathcal F}$ a family of finite structures

Consider \mathcal{F} with **epimorphisms** between structures.

\mathcal{F} is called a **projective Fraïssé family** if it has **Joint Epimorphism Property** and **Projective Amalgamation Property**.

Irwin–S.: If \mathcal{F} is a projective Fraïssé family, then there exists a unique projective limit

$$\mathbb{F} = \varprojlim \mathcal{F}$$

that is projectively universal and projectively homogeneous.

 \mathbb{F} also has **Projective Extension Property**.

くほと くほと くほと

Connection with the pseudoarc

(日) (同) (三) (三)

$\mathcal{P} =$ all finite, linear, reflexive graphs with graph relation R

(日) (同) (日) (日) (日)

$\mathcal{P}=$ all finite, linear, reflexive graphs with graph relation R

Irwin–S.: \mathcal{P} is a projective Fraïssé family.

< ロ > < 同 > < 三 > < 三
Let $\mathbb{P} = \varprojlim \mathcal{P}$ be the projective Fraïssé limit of \mathcal{P} with relation $\mathbb{R}^{\mathbb{P}}$.

Let $\mathbb{P} = \varprojlim \mathcal{P}$ be the projective Fraïssé limit of \mathcal{P} with relation $R^{\mathbb{P}}$. $R^{\mathbb{P}}$ is a compact equivalence relation on \mathbb{P} , whose equivalence classes have at most 2 elements each.

Let $\mathbb{P} = \varprojlim \mathcal{P}$ be the projective Fraïssé limit of \mathcal{P} with relation $R^{\mathbb{P}}$. $R^{\mathbb{P}}$ is a compact equivalence relation on \mathbb{P} , whose equivalence classes have at most 2 elements each.

Irwin–S.: $\mathbb{P}/R^{\mathbb{P}}$ is the pseudoarc.

イロト イヨト イヨト

Let $\mathbb{P} = \varprojlim \mathcal{P}$ be the projective Fraïssé limit of \mathcal{P} with relation $R^{\mathbb{P}}$. $R^{\mathbb{P}}$ is a compact equivalence relation on \mathbb{P} , whose equivalence classes have at most 2 elements each.

Irwin–S.: $\mathbb{P}/R^{\mathbb{P}}$ is the pseudoarc.

There is a natural continuous homomorphism

 $\operatorname{Aut}(\mathbb{P}) \to \operatorname{Homeo}(\mathbb{P}/\mathbb{R}^{\mathbb{P}})$

with dense range.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Bing: The pseudoarc is homogeneous

Bing: The pseudoarc is homogeneous, that is, for any $x, y \in P$, there exists $f \in \text{Homeo}(P)$ such that f(x) = y.

Projective "types"

Sławomir Solecki (University of Illinois)

Homogeneity of the pseudoarc

▲ ■ ◆ ■ ◆ へへの July 2015 16 / 34

<ロ> (日) (日) (日) (日) (日)

M is a **structure** if

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

M is a structure if

- M is a compact, 0-dimensional, second countable space,
- R^M is a closed binary relation on M,
- each continuous function $M \to X$, with X finite, factors through an epimorphism $M \to A$ for some $A \in \mathcal{P}$.

- 4 同 6 4 日 6 4 日 6

Let $f: M \to X$ be continuous, with X finite.

Let $f: M \to X$ be continuous, with X finite. So f is a "projective tuple."

・ロン ・日ン ・ヨン・

Let $f: M \to X$ be continuous, with X finite. So f is a "projective tuple." Let $p \in M$.

• • • • • • • • • • • •

Let $f: M \to X$ be continuous, with X finite. So f is a "projective tuple." Let $p \in M$.

Define

$$t_{(M,p)}(f) = \{f(K) \colon p \in K \subseteq M, K \text{ a structure}\}.$$

Let $f: M \to X$ be continuous, with X finite. So f is a "projective tuple." Let $p \in M$.

Define

$$t_{(M,p)}(f) = \{f(K) \colon p \in K \subseteq M, K \text{ a structure}\}.$$

 $t_{(M,p)}(f)$ is a family of subsets of the finite set X.

c is a **chain at** *x* if *c* is a maximal family of subsets of *X* linearly ordered by inclusion and with $\{x\} \in c$.

c is a **chain at** *x* if *c* is a maximal family of subsets of *X* linearly ordered by inclusion and with $\{x\} \in c$.

 $t_{(M,p)}(f)$ is called

(日) (同) (三) (三)

c is a **chain at** *x* if *c* is a maximal family of subsets of *X* linearly ordered by inclusion and with $\{x\} \in c$.

 $t_{(M,p)}(f)$ is called minimal if $t_{(M,p)}(f)$ is a chain at f(p);

(日) (周) (三) (三)

c is a **chain at** x if c is a maximal family of subsets of X linearly ordered by inclusion and with $\{x\} \in c$.

 $t_{(M,p)}(f)$ is called minimal if $t_{(M,p)}(f)$ is a chain at f(p); almost minimal if $t_{(M,p)}(f) = c_1 \cup c_2$, for some chains c_1 and c_2 at f(p).

Sławomir Solecki (University of Illinois)

イロト 不得 トイヨト イヨト 二日

Homogeneity for points with minimal types

Sławomir Solecki (University of Illinois)

Homogeneity of the pseudoarc

July 2015 20 / 34

A (10) F (10)

Lemma

Let $p \in \mathbb{P}$, $f : \mathbb{P} \to X$ continuous, X finite.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Lemma

Let $p \in \mathbb{P}$, $f : \mathbb{P} \to X$ continuous, X finite. Then $t_{(\mathbb{P},p)}(f)$ is almost minimal.

Sławomir Solecki (University of Illinois)

$p \in \mathbb{P}$ has minimal types if $t_{(\mathbb{P},p)}(f)$ is minimal for each continuous $f \colon \mathbb{P} \to X$ with X finite.

イロト イポト イヨト イヨト

 $p \in \mathbb{P}$ has minimal types if $t_{(\mathbb{P},p)}(f)$ is minimal for each continuous $f : \mathbb{P} \to X$ with X finite.

Theorem (S.–Tsankov, 2015)

Let $p, q \in \mathbb{P}$. Assume that $R^{\mathbb{P}}(p) = \{p\}$ and $R^{\mathbb{P}}(q) = \{q\}$ and p and q have minimal types.

・聞き くほき くほき 二日

 $p \in \mathbb{P}$ has minimal types if $t_{(\mathbb{P},p)}(f)$ is minimal for each continuous $f : \mathbb{P} \to X$ with X finite.

Theorem (S.–Tsankov, 2015)

Let $p, q \in \mathbb{P}$. Assume that $R^{\mathbb{P}}(p) = \{p\}$ and $R^{\mathbb{P}}(q) = \{q\}$ and p and q have minimal types. Then there exists $f \in Aut(\mathbb{P})$ such that f(p) = q.

Sławomir Solecki (University of Illinois)

・聞き くほき くほき 二日

Lemma

Sławomir Solecki (University of Illinois)

Lemma

Given: $p \in \mathbb{P}$ with minimal types and $R^{\mathbb{P}}(p) = \{p\}$, $A, B \in \mathcal{P}, a \in A, b \in B$; $f : \mathbb{P} \to A, g : B \to A$ epimorphisms with f(p) = a, g(b) = a.

Sławomir Solecki (University of Illinois)

Lemma

Given: $p \in \mathbb{P}$ with minimal types and $R^{\mathbb{P}}(p) = \{p\}$, $A, B \in \mathcal{P}, a \in A, b \in B$; $f : \mathbb{P} \to A, g : B \to A$ epimorphisms with f(p) = a, g(b) = a. **Conclusion**: there exists an epimorphism $h : \mathbb{P} \to B$ such that h(p) = b.

イロト イポト イヨト イヨト 二日

The transfer theorem

Sławomir Solecki (University of Illinois)

▲ ■ ► ■ つへの July 2015 24 / 34

(日)

Aim: transfer partial homogeneity from \mathbb{P} to full homogeneity of $\mathbb{P}/\mathbb{R}^{\mathbb{P}}$.

Theorem (S.-Tsankov, 2015)

For each $y \in \mathbb{P}/R^{\mathbb{P}}$, there exists $x \in \mathbb{P}/R^{\mathbb{P}}$ and a homeomorphism $\phi \colon \mathbb{P}/R^{\mathbb{P}} \to \mathbb{P}/R^{\mathbb{P}}$ such that

イロト イヨト イヨト イヨト

Theorem (S.–Tsankov, 2015)

For each $y \in \mathbb{P}/R^{\mathbb{P}}$, there exists $x \in \mathbb{P}/R^{\mathbb{P}}$ and a homeomorphism $\phi \colon \mathbb{P}/R^{\mathbb{P}} \to \mathbb{P}/R^{\mathbb{P}}$ such that (i) $x = p/R^{\mathbb{P}}$ for some $p \in \mathbb{P}$ having minimal types and with

$$R^{\mathbb{P}}(p) = \{p\}$$

くほと くほと くほと

Theorem (S.–Tsankov, 2015)

For each $y \in \mathbb{P}/R^{\mathbb{P}}$, there exists $x \in \mathbb{P}/R^{\mathbb{P}}$ and a homeomorphism $\phi \colon \mathbb{P}/R^{\mathbb{P}} \to \mathbb{P}/R^{\mathbb{P}}$ such that (i) $x = p/R^{\mathbb{P}}$ for some $p \in \mathbb{P}$ having minimal types and with $R^{\mathbb{P}}(p) = \{p\};$ (ii) $\phi(x) = y.$

- 御下 - 戸下 - 戸下 - 戸

Theorem (S.–Tsankov, 2015)

For each y ∈ P/R^P, there exists x ∈ P/R^P and a homeomorphism φ: P/R^P → P/R^P such that
(i) x = p/R^P for some p ∈ P having minimal types and with R^P(p) = {p};
(ii) φ(x) = y.

An important ingredient of the proof is a notion of **weak commutation** of diagrams.

(本間) (本語) (本語) (語)

Weak commutation of diagrams

・ロト ・聞ト ・ヨト ・ヨト

Weak commutation of diagrams

Given $A \in \mathcal{P}$, define the pre-dual $\widehat{A} \in \mathcal{P}$ of A with a bijection $A \ni a \to \widehat{a}$ an edge in \widehat{A} .
Weak commutation of diagrams

Given $A \in \mathcal{P}$, define the pre-dual $\widehat{A} \in \mathcal{P}$ of A with a bijection $A \ni a \to \widehat{a}$ an edge in \widehat{A} .

Weak commutation for epimorphisms $f: \mathbb{P} \to A, g: \mathbb{P} \to B \text{ and } h: \widehat{A} \to \widehat{B}:$

Weak commutation of diagrams

Given $A \in \mathcal{P}$, define the pre-dual $\widehat{A} \in \mathcal{P}$ of A with a bijection $A \ni a \to \widehat{a}$ an edge in \widehat{A} .

Weak commutation for epimorphisms $f: \mathbb{P} \to A, g: \mathbb{P} \to B \text{ and } h: \widehat{A} \to \widehat{B}:$

$$h[\widehat{f(p)}] \subseteq \widehat{g(p)}$$
 for each $p \in \mathbb{P}$.

Sławomir Solecki (University of Illinois)

July 2015 27 / 34

From partial homogeneity of ${\mathbb P}$ and the above transfer theorem we get the following corollary.

< ロ > < 同 > < 三 > < 三

From partial homogeneity of ${\mathbb P}$ and the above transfer theorem we get the following corollary.

Corollary (Bing) The pseudoarc is homogeneous.

Questions (and comments on Menger compacta)

Sławomir Solecki (University of Illinois)

Homogeneity of the pseudoarc

July 2015 29 / 34

・ロト ・聞 ト ・ ヨト ・ ヨト

```
S(x, y) if and only if x, y \in K for some substructure K \subsetneq \mathbb{P};
```

イロト イポト イヨト イヨト

S(x, y) if and only if $x, y \in K$ for some substructure $K \subsetneq \mathbb{P}$;

T(x, y, z) if and only if $x, y \in K$ and $z \notin K$ for some substructure $K \subseteq \mathbb{P}$ with R(K) = K.

(日) (周) (三) (三)

S(x, y) if and only if $x, y \in K$ for some substructure $K \subsetneq \mathbb{P}$;

T(x, y, z) if and only if $x, y \in K$ and $z \notin K$ for some substructure $K \subseteq \mathbb{P}$ with R(K) = K.

Theorem (S.–Tsankov, 2015)

Let $F_1, F_2 \subseteq \mathbb{P}$ be finite sets whose points have minimal types and whose points p are such that $R(p) = \{p\}$.

イロト 不得下 イヨト イヨト 二日

S(x, y) if and only if $x, y \in K$ for some substructure $K \subsetneq \mathbb{P}$;

T(x, y, z) if and only if $x, y \in K$ and $z \notin K$ for some substructure $K \subseteq \mathbb{P}$ with R(K) = K.

Theorem (S.–Tsankov, 2015)

Let $F_1, F_2 \subseteq \mathbb{P}$ be finite sets whose points have minimal types and whose points p are such that $R(p) = \{p\}$. Let $f : F_1 \to F_2$ be a bijection preserving S and T.

イロト 不得下 イヨト イヨト 二日

S(x, y) if and only if $x, y \in K$ for some substructure $K \subsetneq \mathbb{P}$;

T(x, y, z) if and only if $x, y \in K$ and $z \notin K$ for some substructure $K \subseteq \mathbb{P}$ with R(K) = K.

Theorem (S.–Tsankov, 2015)

Let $F_1, F_2 \subseteq \mathbb{P}$ be finite sets whose points have minimal types and whose points p are such that $R(p) = \{p\}$. Let $f: F_1 \to F_2$ be a bijection preserving S and T. Then f extends to an element of $Aut(\mathbb{P})$.

イロト イポト イヨト イヨト 二日

Is there a maximal homogeneity of \mathbb{P} ?

Is every element of $\operatorname{Homeo}(\mathbb{P}/R)$ conjugate to an element of $\operatorname{Aut}(\mathbb{P})$?

Is every element of $\operatorname{Homeo}(\mathbb{P}/R)$ conjugate to an element of $\operatorname{Aut}(\mathbb{P})$?

Can orbits of the natural action of $Aut(\mathbb{P})$ on \mathbb{P} be characterized by types or sequences of types?

Is every element of $\operatorname{Homeo}(\mathbb{P}/R)$ conjugate to an element of $\operatorname{Aut}(\mathbb{P})$?

Can orbits of the natural action of $Aut(\mathbb{P})$ on \mathbb{P} be characterized by types or sequences of types?

Can $t_{(M,p)}(f)$ be viewed as actual types?

イロト イポト イヨト イヨト

<ロ> (日) (日) (日) (日) (日)

 $\mathbb{N} \cup \{\infty\} \ni n \to \mu_n$ a compact, second countable space

 $\mathbb{N} \cup \{\infty\} \ni n \to \mu_n$ a compact, second countable space

 $\mu_0 = Cantor set$

 $\mu_\infty = \mathsf{Hilbert} \ \mathsf{cube}$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

 $\mathbb{N} \cup \{\infty\} \ni n \to \mu_n$ a compact, second countable space

 $\mu_0 = Cantor set$

 $\mu_{\infty} = \mathsf{Hilbert} \mathsf{ cube}$

 μ_n is *n*-dimensional, universal for *n*-dimensional second countable spaces, highly homogeneous

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

イロト イヨト イヨト イヨト

There exists a projective Fraïssé family \mathcal{M}_1 such that if $\mathbb{M}_1 = \varprojlim \mathcal{M}_1$ is taken with the binary relation R_1 , then

(日) (同) (三) (三)

There exists a projective Fraïssé family \mathcal{M}_1 such that if $\mathbb{M}_1 = \varprojlim \mathcal{M}_1$ is taken with the binary relation R_1 , then

 $\mathbb{M}_1/R_1=\mu_1$

(日) (周) (三) (三)

There exists a projective Fraïssé family \mathcal{M}_1 such that if $\mathbb{M}_1 = \varprojlim \mathcal{M}_1$ is taken with the binary relation R_1 , then

 $\mathbb{M}_1/R_1 = \mu_1$

 \mathbb{M}_1 is highly homogeneous.

(日) (周) (三) (三)

In fact, given $n \in \mathbb{N}$, there exists a projective Fraïssé family \mathcal{M}_n analogous to \mathcal{M}_1 .

Is it the case that $\mathbb{M}_n/R_n = \mu_n$?

In fact, given $n \in \mathbb{N}$, there exists a projective Fraïssé family \mathcal{M}_n analogous to \mathcal{M}_1 .

Is it the case that $\mathbb{M}_n/R_n = \mu_n$?

For an answer, we need appropriate homology groups for \mathbb{M}_n .

< ロ > < 同 > < 三 > < 三