

FACULTY OF MATHEMATICS AND PHYSICAL SCIENCES

Introduction to reconstructing the topological monoid of endomorphisms of the rationals.

Edith Vargas García pmtemv@leeds.ac.uk

University of Leeds and (U.A.C.M) México

LMS-EPSRC Durham Symposium, Permutation groups and transformation semigroups

Presenting joint work with...

John K. Truss University of Leeds Professor of Pure Mathematics.

Vargas E.

Durham, July 25, 2015 2 / 33

TH 1.

イロト イロト イヨト イヨト

Durham, July 25, 2015

э

3/33

Outline

Topological Monoids.

Automatic homeomorphicity

Clones

Vargas E.

A B < A B <</p>

Durham, July 25, 2015

4/33

Reconstruction of Topology

Whether we can reconstruct the canonical topology of an endomorphism monoid End (A) from its underlying abstract monoid structure?

Automatic continuity

In which situations are homomorphisms or isomorphisms between transformation monoids automatically continuous?

イロト イポト イヨト イヨト

Durham, July 25, 2015

4/33

Reconstruction of Topology

Whether we can reconstruct the canonical topology of a polymorphism clone Pol (\mathbb{A}) from its underlying abstract clone structure?

Automatic continuity

In which situations are homomorphisms or isomorphisms between function clones automatically continuous?

Transformation monoids

 For a set A, we denote by O_A⁽¹⁾ := A^A the set of all unary functions on A and by

 $\operatorname{Tr}(A)$

the full transformation monoid on A.

• The submonoids

 $M \leq \operatorname{Tr}(A)$

(4) E (4) E (4) E

Durham, July 25, 2015

5/33

are transformation monoids on A.

Durham, July 25, 2015

6/33

If we equip A with the discrete topology, then Tr(A) is a product space of A equipped with the Tychonoff topology.

Pointwise convergence topology

Let *I* be an index set. For every finite $J \subseteq I$ and $u : J \rightarrow A$:

$$U(J, u) := \{f \colon I \to A \mid f \upharpoonright_J = u\}.$$

A basis for the topology of A^{l} can be expressed as

$$\mathcal{B}_{\mathsf{pwc}} = \{\emptyset\} \cup \left\{ U\left(J,u
ight) \mid J \subseteq I ext{ finite } \land \ u \in \mathcal{A}^J
ight\}.$$

Vargas E.

If we equip A with the discrete topology, then Tr(A) is a product space of A equipped with the Tychonoff topology.

Pointwise convergence topology

Let *I* be an index set. For every finite $J \subseteq I$ and $u : J \rightarrow A$:

$$U(J, u) := \{f \colon I \to A \mid f \upharpoonright_J = u\}$$

A basis for the topology of A^{\prime} can be expressed as

$$B_{\mathsf{pwc}} = \{\emptyset\} \cup \left\{ U(J, u) \mid J \subseteq I \text{ finite } \land \ u \in A^J
ight\}.$$

Special case I = A, $J = \{a_1^1, \dots, a_1^m\}$, and we fix *m* elements $a_0^j = u(a_1^j) \in A$ for $1 \le j \le m$.

Vargas E.

Durham, July 25, 2015 6 / 33

イロト イポト イヨト イヨト

Topology on Tr(A)

A non-empty basic open set is:

$$U(J, u) = \left\{ f \colon A \to A \mid \forall \ 1 \leq j \leq m \colon f\left(a_{1}^{j}\right) = u\left(a_{1}^{j}\right) = a_{0}^{j} \right\}.$$

- Topological monoids are abstract monoids which carry a topology under which the composition is continuous.
- A transformation monoid M ≤ Tr (A) is considered as a topological subspace of Tr (A).

The 14 at 14

<ロト < 回ト < 回ト < 回ト

Durham, July 25, 2015

8/33

Given a relational structure
$$\mathbb{A} = \left(A, \left(R^{\mathbb{A}}\right)_{\underline{R}\in\Sigma}\right)$$
, where $R^{\mathbb{A}} \subseteq A^{\operatorname{ar}(\underline{R})}$ for each $\underline{R} \in \Sigma$.

Endomorphism monoids

A function $f \in O_A^{(1)}$ is called an endomorphism of \mathbb{A} if

$$f: \mathbb{A} \xrightarrow{\text{homo}} \mathbb{A}.$$

The set of all endomorphisms on $\mathbb A$ is denoted by

 $\mathsf{End}\left(\mathbb{A}
ight)$.

Vargas E.

Given a relational structure
$$\mathbb{A} = \left(A, \left(R^{\mathbb{A}}\right)_{\underline{R}\in\Sigma}\right)$$
, where $R^{\mathbb{A}} \subseteq A^{\operatorname{ar}(\underline{R})}$ for each $\underline{R} \in \Sigma$.

Polymorphism

A function $f \in O_A^{(k)} := A^{A^k}$ is called a polymorphism of \mathbb{A} if

$$f: \mathbb{A}^k \xrightarrow{\text{homo}} \mathbb{A}.$$

The set of all polymorphisms on \mathbb{A} is denoted by

$$\mathsf{Pol}\left(\mathbb{A}
ight) = igcup_{k\in\mathbb{N}_{+}}\mathsf{Pol}^{(k)}\left(\mathbb{A}
ight).$$

Vargas E.

Durham, July 25, 2015 8 / 33

イロト イポト イヨト イヨト

$$f \in O_A^{(k)}, \operatorname{ar} \left(R^{\mathbb{A}} \right) = m$$

$$f \circ \left(\begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}, \cdots, \begin{pmatrix} a_{1k} \\ \vdots \\ a_{mk} \end{pmatrix} \right) = \begin{pmatrix} f(a_{11} & \cdots & a_{1k}) \\ & \ddots \\ f(a_{m1} & \cdots & a_{mk}) \end{pmatrix}$$

$$\bigcap_{\substack{n \in \mathbb{A} \\ \mathbb{R}^{\mathbb{A}}}} \qquad \bigcap_{\substack{n \in \mathbb{A} \\ \mathbb{R}^{$$

f

Topological closure

Remark

The submonoid $M \leq \text{Tr}(A)$ is closed $\iff M = \text{End}(\mathbb{A})$ for some relational structure \mathbb{A} with domain A.

Vargas E.

Durham, July 25, 2015 10 / 33

・ 同 ト ・ ヨ ト ・ ヨ ト

イロト イロト イヨト イヨト

Durham, July 25, 2015

э

11/33

Outline

Topological Monoids.

Automatic homeomorphicity

Clones

Vargas E.

Definition (M.Bodirsky, M.Pinsker, A.Pongrácz)

A closed monoid $M \leq \text{Tr}(A)$ has reconstruction : \iff for every other closed monoid $M' \leq \text{Tr}(B)$, if there exists a monoid isomorphism between M and M', then there also exists a monoid isomorphism between M and M' which is a homeomorphism.

Definition

A closed monoid $M \leq \text{Tr}(A)$ has automatic continuity : \iff every monoid homomorphism from M into Tr(A) is continuous.

Corollary (D. Lascar (1991))

Any continuous isomorphism between closed subgroups of \mathbb{S}_A is a homeomorphism.

イロト 不得 トイヨト イヨト 二日

イロト 不得 トイヨト イヨト 二日

Durham, July 25, 2015

13/33

Definition (M.Bodirsky, M.Pinsker, A.Pongrácz)

A closed monoid $M \leq \text{Tr}(A)$ has automatic homeomorphicity : \iff every monoid isomorphism from M to a closed $M' \leq \text{Tr}(B)$ is a homeomorphism.

Some monoids with automatic homeomorphicity:

```
\mathsf{Emb}(\mathbb{N},=),\mathsf{Emb}(\Gamma),\mathsf{End}(\Gamma)
```

where $\Gamma = Random graph$.

イロト 不得 トイヨト イヨト 二日

Durham, July 25, 2015

13/33

Definition (M.Bodirsky, M.Pinsker, A.Pongrácz)

A closed monoid $M \leq \text{Tr}(A)$ has automatic homeomorphicity : \iff every monoid isomorphism from M to a closed $M' \leq \text{Tr}(B)$ is a homeomorphism.

Some monoids with automatic homeomorphicity:

```
\mathsf{Emb}\left(\mathbb{N},=\right),\mathsf{Emb}\left(\Gamma\right),\mathsf{End}\left(\Gamma\right),\mathsf{End}\left(\mathbb{Q},<\right),\mathsf{End}\left(\mathbb{Q},\le\right)
```

where $\Gamma = Random graph$.

Definition (M.Bodirsky, M.Pinsker, A.Pongrácz)

A closed monoid $M \leq \text{Tr}(A)$ has automatic homeomorphicity : \iff every monoid isomorphism from M to a closed $M' \leq \text{Tr}(B)$ is a homeomorphism.

Some monoids with automatic homeomorphicity:

 $\mathsf{Emb}\left(\mathbb{N},=
ight),\mathsf{Emb}\left(\Gamma
ight),\mathsf{End}\left(\mathbb{Q},<
ight),\mathsf{End}\left(\mathbb{Q},<
ight)$

where $\Gamma = Random graph$.

For groups, automatic continuity implies automatic homeomorphicity

Let \mathbb{A}, \mathbb{B} be countable. If Aut (\mathbb{A}) has S.I.P., then

 ξ : Aut (\mathbb{A}) \rightarrow Aut (\mathbb{B})

is a homeomorphism.

Vargas E.

We want to investigate the automatic homeomorphicity of

 $\operatorname{End}\left(\mathbb{Q},\leq
ight)$ $\operatorname{End}\left(\mathbb{Q},<
ight)$

Durham, July 25, 2015 14 / 33

I > <
 I >
 I

We want to investigate the automatic homeomorphicity of

 $\mathsf{End}\,(\mathbb{Q},\leq)\qquad \mathsf{End}\,(\mathbb{Q},<)\qquad \mathsf{Pol}\,(\mathbb{Q},<)\qquad \&\qquad \mathsf{Pol}\,(\mathbb{Q},\leq)$

Constants

• For $d \in \mathbb{Q}$

$$c_d \in E := \mathsf{End}\,(\mathbb{Q}, \leq)$$

where $c_d(x) := d$.

• An element $c \in M \leq O_A^{(1)}$ is called a constant : \iff

$$\forall x, y \in A : c(x) = c(y).$$

• The set $C = \{g \in E : (\forall f \in E) | gf = g\}$ is a definable subset of E.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Proposition (M.Bodirsky, M.Pinsker, A.Pongrácz)

Let \mathbb{A} be a structure such that Pol (\mathbb{A}) contains all constant functions, and $\xi : \text{Pol}(\mathbb{A}) \to \mathcal{D}$ be a clone isomorphism to a clone of functions \mathcal{D} . Then ξ is open.

Durham, July 25, 2015 15 / 33

・ 同 ト ・ ヨ ト ・ ヨ ト

イロト イポト イヨト イヨト

Durham, July 25, 2015

15/33

Proposition

Let \mathbb{A} be a structure such that $\mathcal{M}_A := \text{End}(\mathbb{A})$ contains all unary constant operations, and $\xi : \mathcal{M}_A \to \mathcal{M}_B := \text{End}(\mathbb{B})$ be a monoid isomorphism. Then ξ is open.

Proposition

Let \mathbb{A} be a structure such that $\mathcal{M}_A := \text{End}(\mathbb{A})$ contains all unary constant operations, and $\xi : \mathcal{M}_A \to \mathcal{M}_B := \text{End}(\mathbb{B})$ be a monoid isomorphism. Then ξ is open.

Let $a, b \in A$, and $E_{a,b} = \{f \in \mathcal{M}_A \mid f(a) = b\} = \{f \in \mathcal{M}_A \mid f \circ c_a = c_b\}$ be a basic open set. Then, we show that $\xi(E_{a,b})$ is open

$$\begin{split} \xi\left(E_{a,b}\right) &= \{\xi\left(f\right) \mid f \in \mathcal{M}_{A} \land f \circ c_{a} = c_{b}\} \\ &= \{\xi\left(f\right) \mid f \in \mathcal{M}_{A} \land \xi\left(f \circ c_{a}\right) = \xi\left(c_{b}\right)\} & (\text{since } \xi \text{ is inj.}) \\ &= \{\xi\left(f\right) \mid f \in \mathcal{M}_{A} \land \xi\left(f\right) \circ \xi\left(c_{a}\right) = \xi\left(c_{b}\right)\} & (\text{since } \xi \text{ is a hom.}) \\ &= \{g \in \mathcal{M}_{B} \mid g \circ \xi\left(c_{a}\right) = \xi\left(c_{b}\right)\} & (\text{since } \xi \text{ is surj.}) \end{split}$$

э

・ロト ・ 同ト ・ ヨト ・ ヨト

Example

$$A = \{0, 1\}$$
$$M_A := \{id_A, c_0, c_1\}$$
$$c_0(x) = 0$$
$$c_1(x) = 1$$

$$B = \mathbb{N}$$
$$\mathcal{M}_B := \{ \mathrm{id}_B, e_0, e_1 \}$$
$$e_0(x) = \begin{cases} 0 & \text{if } x \equiv 0 \pmod{2} \\ 1 & \text{if } x \equiv 1 \pmod{2} \\ e_1(x) = \begin{cases} 2 & \text{if } x \equiv 0 \pmod{2} \\ 3 & \text{if } x \equiv 1 \pmod{2} \end{cases}$$

- $\xi : \mathcal{M}_A \to \mathcal{M}_B$ does not map constants to constants.
- $U = \{g \in \mathcal{M}_A \mid g(0) = 0\} = \{id_A, c_0\} \text{ and } \xi[U] = \{id_B, e_0\} \text{ are basic open sets in } \mathcal{M}_A \text{ and } \mathcal{M}_B, \text{ respectively.}$

Lemma

Let $S \leq \langle A^A, \circ \rangle$ and $T \leq \langle B^B, \circ \rangle$ be transformation semigroups and $\xi \colon S \to T$ be a semigroup homomorphism, whose im $(\xi) \leq T$ acts transitively on B (by evaluation). That is, for all $x, y \in B$ there exists some $f_{x,y} \in S$ such that $\xi(f_{x,y})(x) = y$. In these circumstances ξ maps any constant operation $c \in S$ to a constant operation on B.

イロト 不得 トイヨト イヨト 二日

Lemma

Let $S \leq \langle A^A, \circ \rangle$ and $T \leq \langle B^B, \circ \rangle$ be transformation semigroups and $\xi \colon S \to T$ be a semigroup homomorphism, whose im $(\xi) \leq T$ acts transitively on B (by evaluation). That is, for all $x, y \in B$ there exists some $f_{x,y} \in S$ such that $\xi(f_{x,y})(x) = y$. In these circumstances ξ maps any constant operation $c \in S$ to a constant operation on B.

Proof.

- If $c \in S$ is constant, $\implies c \circ f = c$ for all $f \in S$.
- For $x, y \in B$: $c \circ f_{x,y} = c$.
- For $x, y \in B$: $\xi(c) \circ \xi(f_{x,y}) = \xi(c \circ f_{x,y}) = \xi(c)$.
- Evaluating at $x \in B$: $\xi(c)(x) = \xi(c)\xi(f_{x,y})(x) = \xi(c)(y)$, $\implies \xi(c)$ is a constant function.

イロト イポト イヨト イヨト

Durham, July 25, 2015

18/33

Corollary

Let $S \leq \langle A^A, \circ \rangle$, $T \leq \langle B^B, \circ \rangle$ and $\xi \colon S \to T$ be a semigroup

homomorphism. Suppose S contains at least one constant operation, then the following facts are equivalent:

- $im(\xi) \leq T$ acts transitively on B (by evaluation).
- 2 $im(\xi)$ contains all unary constants on B.

イロト イポト イヨト イヨト

Durham, July 25, 2015

19/33

Lemma

Assume,

- $C \leq \langle A^A, \circ \rangle$ contains all constant operations,
- $\mathcal{D} \leq \langle B^B, \circ \rangle$ acts transitively,
- $\xi: \mathcal{C} \to \mathcal{D}$ semigroup isomorphism,

then the image of any open subset of C under ξ is open in B^B .

Proof.

Let $a, b \in A$, and $E_{a,b} = \{f \in C \mid f(a) = b\} = \{f \in C \mid f \circ c_a = c_b\}$ be a basic open set. Then, we show that $\xi(E_{a,b})$ is open

$$\begin{split} \xi\left(E_{a,b}\right) &= \{\xi\left(f\right) \mid f \in \mathcal{C} \land f \circ c_{a} = c_{b}\} \\ &= \{\xi\left(f\right) \mid f \in \mathcal{C} \land \xi\left(f \circ c_{a}\right) = \xi\left(c_{b}\right)\} & (\text{since } \xi \text{ is inj.}) \\ &= \{\xi\left(f\right) \mid f \in \mathcal{C} \land \xi\left(f\right) \circ \xi\left(c_{a}\right) = \xi\left(c_{b}\right)\} & (\text{since } \xi \text{ is a hom.}) \\ &= \{g \in \mathcal{D} \mid g \circ \xi\left(c_{a}\right) = \xi\left(c_{b}\right)\} & (\text{since } \xi \text{ is surj.}) \\ &= \{g \in \mathcal{D} \mid g \circ (c_{p}) = c_{q}\}. \\ & (\text{for some constants } p, q \in B, \text{ according to Lemma 5}) \\ &= E_{p,q}. \end{split}$$

イロト イポト イヨト イヨト

Lemma

Assume,

- $\operatorname{Const}_{\mathcal{A}}^{1} \subseteq \mathcal{C} \leq \langle \mathcal{A}^{\mathcal{A}}, \circ \rangle$
- $\mathcal{D} \leq \langle B^B, \circ \rangle$ acts transitively
- $\xi : C \to D$ semigroup isomorphism,

then ξ is continuous.

Corollary

Assume,

- $\operatorname{Const}^1_{\mathcal{A}} \subseteq \mathcal{C} \le \langle \mathcal{A}^{\mathcal{A}}, \circ \rangle$
- $\mathcal{D} \leq \langle B^B, \circ \rangle$ acts transitively
- $\xi: \mathcal{C} \to \mathcal{D}$ semigroup isomorphism,

then ξ is a homeomorphism, moreover, both C and D, contain all constant respective unary operations.

Vargas E

イロト イロト イヨト イヨト

Durham, July 25, 2015

э

22/33

Outline

Topological Monoids.

Automatic homeomorphicity

Clones

Vargas E.

Clone

$F \subseteq O_A := \bigcup_{k \in \mathbb{N}_+} O_A^{(k)}$ is a clone (of operations) on A iff

1
$$J_A \subseteq F$$

2 *F* is closed w.r.t. composition

Definition

A function $\xi: F \to F'$ is a clone isomorphism iff

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Durham, July 25, 2015

24/33

Examples

- J_A Clone of all projections.
- **2** O_A Clone of all operations.
- Solution Arbitratry intersections of clones are clones again. Let $F \subseteq O_A$. The clone generated by F is

$$\langle F \rangle_{\mathsf{O}_{\mathsf{A}}} := \bigcap \left\{ C \text{ is clone } \mid F \subseteq C \right\}$$

and it is the smallest clone containing F.

• Pol (\mathbb{A}) for some relational structure (\mathbb{A}) .

A The local

Durham, July 25, 2015

25/33

If we equip A with the discrete topology, then $O_A^{(n)}$ is a product space of A equipped with the product topology.

Pointwise convergence topology

Let *I* be an index set. For every finite $J \subseteq I$ and $u : J \rightarrow A$:

$$U(J, u) := \{f \colon I \to A \mid f \upharpoonright_J = u\}.$$

A basis for the topology of A^{\prime} can be expressed as

$$\mathcal{B}_{\mathsf{pwc}} = \{\emptyset\} \cup \left\{ U\left(J,u
ight) \mid J \subseteq I ext{ finite } \land \ u \in \mathcal{A}^J
ight\}.$$

Vargas E.

If we equip A with the discrete topology, then $O_A^{(n)}$ is a product space of A equipped with the product topology.

Pointwise convergence topology

Let *I* be an index set. For every finite $J \subseteq I$ and $u : J \rightarrow A$:

$$U(J, u) := \{f \colon I \to A \mid f \upharpoonright_J = u\}$$

A basis for the topology of A^{\prime} can be expressed as

$$\mathcal{B}_{\mathsf{pwc}} = \{\emptyset\} \cup \left\{ U\left(J,u
ight) \mid J \subseteq I ext{ finite } \land \ u \in \mathcal{A}^J
ight\}.$$

Special case $I = A^n$, $J = \left\{ \left(a_1^1, \ldots, a_n^1\right), \ldots, \left(a_1^m, \ldots, a_n^m\right) \right\}$, and we fix m elements $a_0^j = u\left(a_1^j, \ldots, a_n^j\right) \in A$ for $1 \le j \le m$.

Vargas E.

Durham, July 25, 2015 25 / 33

イロト 不得 トイヨト イヨト 二日

イロト 不得 トイヨト イヨト 二日

Durham, July 25, 2015

26/33

Lemma (ϕ is open)

Assume,

- $\operatorname{Const}_{A}^{1} \subseteq \mathcal{C} \leq O_{A}$,
- $\mathcal{D} \leq O_B$,
- $\phi: \mathcal{C} \to \mathcal{D}$ clone isomorphism,
- ξ := φ ↾_{C(1)} semigroup homomorphism, such that im(ξ) acts transitively on B.

Then, for all n > 0 $\phi[U]$ is open in B^{B^n} for all open $U \subseteq C^{(n)}$.

Lemma (ϕ maps any *n*-ary constant to an *n*-ary constant)

Assume,

- $Const_A^1 \subseteq C \leq O_A$,
- $\mathcal{D} \leq O_B$, clone
- $\phi: \mathcal{C} \to \mathcal{D}$ clone isomorphism,

Then, the restriction $\xi := \phi \upharpoonright_{C^{(1)}}$ maps unary constants to unary constants and ϕ maps any n-ary constant to an n-ary constant

Proof

$$f \in O_{\mathcal{A}}^{(1)} \text{ constant,}$$

$$\iff \forall x, y \in \mathcal{A}, \ f(x) = f(y) \iff f \circ \pi_1^{(2)} = f \circ \pi_2^{(2)}. \text{ Hence,}$$

$$\xi(f) \circ \pi_1^{(2)} = \xi(f) \circ \xi\left(\pi_1^{(2)}\right) = \xi\left(f \circ \pi_1^{(2)}\right) = \xi\left(f \circ \pi_2^{(2)}\right) = \xi(f) \circ \pi_2^{(2)}.$$

$$\implies \xi(f) \text{ is constant on } \mathcal{B}.$$

Vargas E.

Lemma (ϕ is open)

Assume,

- $Const_A^1 \subseteq C \leq O_A$,
- $\mathcal{D} \leq O_B$,
- $\phi: \mathcal{C} \to \mathcal{D}$ clone isomorphism,
- ξ : C⁽¹⁾ → D⁽¹⁾ is the restriction of φ to the unary part of the clones and monoid isomorphism.

Then, ξ is open and ϕ is open.

From last lemma we know

 $\phi: \operatorname{Pol}\left(\mathbb{Q},\leq\right) \stackrel{\text{clone iso.}}{\longrightarrow} \mathcal{D}$ is open

Vargas E.

Durham, July 25, 2015 28 / 33

イロト イポト イヨト イヨト

We can apply the automatic homeomorphicity of $\text{End}\,(\mathbb{Q},<)$ and following proposition to show that

$$\xi: \operatorname{Pol}(\mathbb{Q}, <) \stackrel{\mathsf{clone iso.}}{\longrightarrow} \mathcal{C}' \quad \text{is open}$$

イロト イポト イヨト イヨト

Durham, July 25, 2015 29 / 33

We can apply the automatic homeomorphicity of $\text{End}\,(\mathbb{Q},<)$ and following proposition to show that

$$\xi: \mathsf{Pol}\left(\mathbb{Q}, <\right) \overset{\mathsf{clone iso.}}{\longrightarrow} \mathcal{C}' \quad \mathsf{is open}$$

Proposition (32 BPP)

- Let C be a topological clone on A (with the product topology) such that C⁽¹⁾ acts transitively on A,
- let ξ be an injective clone homomorphism from C to a topological clone C' (on another set B).

Suppose that the restriction $\xi \upharpoonright_{\mathcal{C}^{(1)}}^{\mathcal{C}^{\prime(1)}} : \mathcal{C}^{(1)} \to \mathcal{C}^{\prime(1)}$ is open, then so is ξ .

イロト 不得 トイヨト イヨト 二日

イロト 不得 トイヨト イヨト 二日

Durham, July 25, 2015

29/33

We can apply the automatic homeomorphicity of $\text{End}\,(\mathbb{Q},<)$ and following proposition to show that

$$\xi: \mathsf{Pol}\left(\mathbb{Q}, <\right) \overset{\mathsf{clone iso.}}{\longrightarrow} \mathcal{C}' \quad \mathsf{is open}$$

Proposition (32 BPP)

- Let C be a topological clone on A (with the product topology) such that C⁽¹⁾ acts transitively on A,
- let ξ be a clone isomorphism from C to a topological clone C' (on another set B).

Suppose that the restriction $\xi \upharpoonright_{\mathcal{C}^{(1)}}^{\mathcal{C}^{\prime(1)}} : \mathcal{C}^{(1)} \to \mathcal{C}^{\prime(1)}$ is open, then so is ξ .

Lemma (ϕ is continuous)

Assume,

- $\operatorname{Const}_{A}^{1} \subseteq \mathcal{C} \leq O_{A}$,
- $\mathcal{D} \leq O_B$,
- $\phi: \mathcal{C} \to \mathcal{D}$ clone isomorphism,
- ξ := φ ↾_{C(1)} semigroup isomorphism, and suppose D⁽¹⁾ = im (ξ) acts transitively on B.

Then, for all n > 0 $\phi^{-1}[U]$ is open in A^{A^n} for all open $U \subseteq \mathcal{D}^{(n)}$, i.e. ϕ is continuous.

Durham, July 25, 2015 30 / 33

イロト イポト イヨト イヨト

イロト イロト イヨト イヨト

Durham, July 25, 2015

3

31/33

John K. Truss talk

$$\theta: E := \operatorname{End} \left(\mathbb{Q}, \leq \right) \longrightarrow \operatorname{Tr} \left(\Omega \right)$$

may be viewed as semigroup action of E on Ω .

$$\Omega = \bigcup_{i \in I} \Omega_i$$

where
$$\Omega_i = \left\{ oldsymbol{a}_B^i \mid oldsymbol{B} \in [\mathbb{Q}]^{n_i}
ight\}$$
, $[\mathbb{Q}]^{n_i} \coloneqq \{oldsymbol{A} \subseteq \mathbb{Q} \mid |oldsymbol{A}| = n_i \}$

•
$$\theta(g)(a_B^i) = a_{gB}^i$$
 if $g \in G := \operatorname{Aut}(\mathbb{Q}, \leq)$
• $\theta(f)(a_B^i) = a_{fB}^i$ if $f \in M := \operatorname{Emb}(\mathbb{Q}, \leq)$
 $f \in E := \operatorname{End}(\mathbb{Q}, \leq)$ with $|fB| = B$.

Vargas E.

θ is continuous and open

 $\theta: \operatorname{End} (\mathbb{Q}, <) \stackrel{{}_{\operatorname{inj.}}}{\longrightarrow} M' \leq \operatorname{Tr} (\Omega)$ is homeomorphism.

Vargas E.

Durham, July 25, 2015 32 / 33

э

イロト イポト イヨト イヨト

Acknowledgment

Thanks to J. K. Truss for the constant support.

Vargas E.

Durham, July 25, 2015 33 / 33

イロト イロト イヨト イヨト

Thank you :)

Durham, July 25, 2015 33 / 33

3

イロト イロト イヨト イヨト