Semigroups from digraphs

Maximilien Gadouleau
(from across the street)

With Peter J. Cameron, Alonso Castillo-Ramirez, and James D. Mitchell Work in progress!

July 28, 2015

Outline

Arcs, digraphs, and semigroups

Colourings

Length of words

Outline

Arcs, digraphs, and semigroups

Colourings

Length of words

Arcs

- We are in Sing_{n}, the semigroup of singular transformations of $[n]=\{1, \ldots, n\}$.
- An idempotent of defect one is any transformation of the form $(a \rightarrow b)$ for distinct $a, b \in[n]$, such that for any $v \in[n]$:

$$
v(a \rightarrow b)= \begin{cases}b & \text { if } v=a \\ v & \text { otherwise }\end{cases}
$$

We call $(a \rightarrow b)$ an arc.

- Let D be a digraph on $[n]$. We then view $D \subseteq \operatorname{Sing}_{n}$ and we are interested in $\langle D\rangle$.

Example 1

- Let D be the transitive tournament on n vertices.
- Then $\langle D\rangle=\mathrm{OI}_{n}=\{\alpha: v \leq v \alpha\}$.
- E.g. $\alpha=(5,2,4,5,5)=(1 \rightarrow 5)(4 \rightarrow 5)(3 \rightarrow 4)$.

Example 2

- Let D be the undirected path on n vertices.
- Then $\langle D\rangle=\mathrm{O}_{n}=\{\alpha: u \leq v \Rightarrow u \alpha \leq v \alpha\}$.

- Let D be the directed path on n vertices.
- Then $\langle D\rangle=\mathrm{C}_{n}=\{\alpha: v \leq v \alpha, u \leq v \Rightarrow u \alpha \leq v \alpha\}$.

Example 3

- Let $D=K_{n}$ be the clique on n vertices.
- (J. M. Howie '66) Then $\langle D\rangle=$ Sing $_{n}$.

Previous results

(T. You + X. Yang '02, X. Yang and H. Yang '06, X. Yang and H. Yang '09)
Different properties of $\langle D\rangle$, such as:

- $\operatorname{Arcs}(\langle D\rangle)=D \cup\{(a \rightarrow b):(b \rightarrow a)$ lies in a cycle of $D\}$.
- (J. M. Howie '78) $\langle D\rangle=$ Sing $_{n}$ iff D contains a strong tournament.
- Classification of when $\langle D\rangle$ is regular.
- When $\left\langle D_{1}\right\rangle \cong\left\langle D_{2}\right\rangle$.

Outline

Arcs, digraphs, and semigroups

Colourings

Length of words

Improper colourings

Let D be undirected and connected.

- A colouring of D is $\alpha \in \operatorname{Tran}_{n}$.
- A colouring is improper if there exist $u \sim v$ with $u \alpha=v \alpha$.
- The improper colourings form a semigroup IC(D), where

$$
\langle D\rangle \leq \mathrm{IC}(D) \leq \text { Sing }_{n} .
$$

Arcs generating improper colourings

- Let $n \geq 8$ and D be 2-connected (i.e., any two vertices lie on a common cycle).
- (PJC + ACR + MRG + JDM) If D is non-bipartite, then $\langle D\rangle=\operatorname{IC}(n)$. If D is bipartite, then $\langle D\rangle<\mathrm{IC}(n)$ but $\langle D\rangle$ contains all improper colourings of defect 2 or more.
- The proof is based on a theorem in (R. M. Wilson '74): "Graph Puzzles, Homotopy, and the Alternating Group."

The 15-puzzle and (R. M. Wilson '74)

- G_{v} is the "puzzle group" of all permutations of $[n] \backslash\{v\}$ obtained by sliding tiles.
- For any $v, G_{v} \cong G_{n}$.
- If D is non-bipartite, then $G_{n}=\operatorname{Sym}_{n-1}$; otherwise, $G_{n}=\mathrm{Alt}_{n-1}$.

Outline

Arcs, digraphs, and semigroups

Colourings

Length of words

Length of words

- We study the length of words $w \in D^{*}$ that express $\alpha \in\langle D\rangle$.
- For any D and $\alpha \in\langle D\rangle$, let

$$
l_{D}(\alpha):=\min \left\{\operatorname{length}(w): w \in D^{*}, w=\alpha\right\} .
$$

- We are interested in the longest elements:

$$
l_{D}(r):=\max \left\{l_{D}(\alpha): \alpha \in\langle D\rangle, \operatorname{rk}(\alpha)=r\right\} .
$$

Results for the clique K_{n}

- (N. Iwahori '77, J. M. Howie '80)

$$
l_{K_{n}}(\alpha)=n-\operatorname{fix}(\alpha)+\operatorname{cycl}(\alpha),
$$

where $\operatorname{fix}(\alpha)=\{v: v \alpha=v\}$ and $\operatorname{cycl}(\alpha)$ is the number of cyclic components of α.

- Easy to maximise:

$$
\begin{aligned}
l_{K_{n}}(r) & =n+\left\lfloor\frac{r-2}{2}\right\rfloor, \\
l_{K_{n}}(n-1) & =\left\lfloor\frac{3 n-3}{2}\right\rfloor .
\end{aligned}
$$

- Note that $l_{K_{n}}(r)$ increases with r.

Strong tournaments

- We now restrict ourselves to strong tournaments.
- They are the "almighty" ones: the minimal arc generating sets of Sing $_{n}$.
- Question: How does $l_{D}(r)$ behave with D ?
- Two more pieces of notation:
$l_{\text {max }}(r):=\max \left\{l_{D}(r): D\right.$ is a strong tournament on $\left.[n]\right\}$,
$l_{\text {min }}(r):=\min \left\{l_{D}(r): D\right.$ is a strong tournament on $\left.[n]\right\}$.

The "bad" tournament

Let π_{n} be the tournament below.

Conjecture (PJC + ACR + MRG + JDM)
For any n and $r \leq n-1, l_{\pi_{n}}(r)=l_{\max }(r)$. Moreover,

$$
l_{\pi_{n}}(n-1)=\frac{n^{2}+3 n-6}{2},
$$

which is achieved by $\alpha=(n, n-1, \ldots, 2, n)$.

The "good" tournament

Let $n=2 m+1$ and κ_{n} be the circulant tournament $\{(v \rightarrow v+[m])\}$.

Conjecture (PJC + ACR + MRG + JDM)
For any n odd and $r \leq n-1, l_{\kappa_{n}}(r)=l_{\text {min }}(r)$. Moreover,

$$
l_{\kappa_{n}}(2)=n+1 .
$$

What we've got so far

Preliminary results from (PJC + ACR + MRG + JDM):

$$
\begin{aligned}
\forall D \quad l_{D}(1) & =n-1 . \\
l_{\pi_{n}}(r), l_{\max }(r) & =\Theta(r n) . \\
l_{\kappa_{n}}(r), l_{\min }(r) & =n+\Theta(r) .
\end{aligned}
$$

Idea behind the last two results:

- Let

$$
\Delta_{D}(r):=\max \left\{\sum_{i=1}^{r} d_{D}\left(u_{i}, v_{i}\right)\right\},
$$

where u_{1}, \ldots, u_{r} are all pairwise distinct, and so are v_{1}, \ldots, v_{r}.

- Then $\Delta_{\pi_{n}}(r)=\Delta_{\max }(r)$ and $\Delta_{\kappa_{n}}(r)=\Delta_{\min }(r)$.

