Semigroups from digraphs

Maximilien Gadouleau (from across the street)

With Peter J. Cameron, Alonso Castillo-Ramirez, and James D. Mitchell Work in progress!

July 28, 2015

Arcs, digraphs, and semigroups

Colourings

Arcs, digraphs, and semigroups

Colourings

Arcs

- ▶ We are in Sing_n, the semigroup of singular transformations of [n] = {1,...,n}.
- An idempotent of defect one is any transformation of the form (a → b) for distinct a, b ∈ [n], such that for any v ∈ [n]:

$$v(a \to b) = \begin{cases} b & \text{if } v = a, \\ v & \text{otherwise} \end{cases}$$

We call $(a \rightarrow b)$ an arc.

▶ Let *D* be a digraph on [*n*]. We then view $D \subseteq \text{Sing}_n$ and we are interested in $\langle D \rangle$.

Example 1

- Let D be the transitive tournament on n vertices.
- Then $\langle D \rangle = OI_n = \{\alpha : v \le v\alpha\}.$
- E.g. $\alpha = (5, 2, 4, 5, 5) = (1 \rightarrow 5)(4 \rightarrow 5)(3 \rightarrow 4).$

Example 2

- Let *D* be the undirected path on *n* vertices.
- Then $\langle D \rangle = O_n = \{\alpha : u \le v \Rightarrow u\alpha \le v\alpha\}.$

$$1 - 2 - 3 - 4 - 5$$

- ▶ Let *D* be the directed path on *n* vertices.
- Then $\langle D \rangle = \mathbf{C}_n = \{\alpha : v \le v \alpha, u \le v \Rightarrow u \alpha \le v \alpha\}.$

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5$$

Example 3

- Let $D = K_n$ be the clique on *n* vertices.
- (J. M. Howie '66) Then $\langle D \rangle = \operatorname{Sing}_n$.

Previous results

(T. You + X. Yang '02, X. Yang and H. Yang '06, X. Yang and H. Yang '09)

Different properties of $\langle D \rangle$, such as:

- Arcs($\langle D \rangle$) = $D \cup \{(a \rightarrow b) : (b \rightarrow a) \text{ lies in a cycle of } D\}$.
- ► (J. M. Howie '78) (D) = Sing_n iff D contains a strong tournament.
- Classification of when $\langle D \rangle$ is regular.
- When $\langle D_1 \rangle \cong \langle D_2 \rangle$.

Arcs, digraphs, and semigroups

Colourings

Improper colourings

Let D be undirected and connected.

- A colouring of D is $\alpha \in \operatorname{Tran}_n$.
- A colouring is improper if there exist $u \sim v$ with $u\alpha = v\alpha$.
- The improper colourings form a semigroup IC(D), where

 $\langle D \rangle \leq \mathrm{IC}(D) \leq \mathrm{Sing}_n.$

Arcs generating improper colourings

- ▶ Let $n \ge 8$ and *D* be 2-connected (i.e., any two vertices lie on a common cycle).
- (PJC + ACR + MRG + JDM)

If *D* is non-bipartite, then $\langle D \rangle = IC(n)$. If *D* is bipartite, then $\langle D \rangle < IC(n)$ but $\langle D \rangle$ contains all improper colourings of defect 2 or more.

The proof is based on a theorem in (R. M. Wilson '74): "Graph Puzzles, Homotopy, and the Alternating Group."

The 15-puzzle and (R. M. Wilson '74)

- ► G_v is the "puzzle group" of all permutations of [n] \{v} obtained by sliding tiles.
- For any $v, G_v \cong G_n$.
- ► If *D* is non-bipartite, then $G_n = \text{Sym}_{n-1}$; otherwise, $G_n = \text{Alt}_{n-1}$.

Arcs, digraphs, and semigroups

Colourings

Length of words

- We study the length of words $w \in D^*$ that express $\alpha \in \langle D \rangle$.
- For any *D* and $\alpha \in \langle D \rangle$, let

$$l_D(\alpha) := \min \left\{ \operatorname{length}(w) : w \in D^*, w = \alpha \right\}.$$

• We are interested in the longest elements:

$$l_D(r) := \max\{l_D(\alpha) : \alpha \in \langle D \rangle, \operatorname{rk}(\alpha) = r\}.$$

Results for the clique K_n

• (N. Iwahori '77, J. M. Howie '80)

$$l_{K_n}(\alpha) = n - \operatorname{fix}(\alpha) + \operatorname{cycl}(\alpha),$$

where $fix(\alpha) = \{v : v\alpha = v\}$ and $cycl(\alpha)$ is the number of cyclic components of α .

Easy to maximise:

$$l_{K_n}(r) = n + \left\lfloor \frac{r-2}{2} \right\rfloor,$$
$$l_{K_n}(n-1) = \left\lfloor \frac{3n-3}{2} \right\rfloor.$$

• Note that $l_{K_n}(r)$ increases with r.

Strong tournaments

- ▶ We now restrict ourselves to strong tournaments.
- ► They are the "almighty" ones: the minimal arc generating sets of Sing_n.
- Question: How does $l_D(r)$ behave with D?
- Two more pieces of notation:

 $l_{\max}(r) := \max\{l_D(r): D \text{ is a strong tournament on } [n]\},$ $l_{\min}(r) := \min\{l_D(r): D \text{ is a strong tournament on } [n]\}.$

The "bad" tournament

Let π_n be the tournament below.

Conjecture (PJC + ACR + MRG + JDM) For any *n* and $r \le n - 1$, $l_{\pi_n}(r) = l_{\max}(r)$. Moreover,

$$l_{\pi_n}(n-1) = \frac{n^2 + 3n - 6}{2},$$

which is achieved by $\alpha = (n, n - 1, ..., 2, n)$.

17/19

The "good" tournament

Let n = 2m + 1 and κ_n be the circulant tournament { $(v \rightarrow v + [m])$ }.

Conjecture (PJC + ACR + MRG + JDM) For any *n* odd and $r \le n - 1$, $l_{\kappa_n}(r) = l_{\min}(r)$. Moreover,

$$l_{\kappa_n}(2) = n + 1.$$

What we've got so far

Preliminary results from (PJC + ACR + MRG + JDM):

$$\forall D \quad l_D(1) = n - 1.$$

$$l_{\pi_n}(r), l_{\max}(r) = \Theta(rn).$$

$$l_{\kappa_n}(r), l_{\min}(r) = n + \Theta(r).$$

Idea behind the last two results:

► Let

$$\Delta_D(r) := \max\left\{\sum_{i=1}^r d_D(u_i, v_i)\right\},\,$$

where u_1, \ldots, u_r are all pairwise distinct, and so are v_1, \ldots, v_r .

• Then $\Delta_{\pi_n}(r) = \Delta_{\max}(r)$ and $\Delta_{\kappa_n}(r) = \Delta_{\min}(r)$.