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Abstract

We consider two basic aspects of juries that must de-
cide on guilt verdicts, namely the size of juries and
their composition in situations where society consists
of sub-populations. We refer to the actual jury that
needs to provide a verdict as the ‘first jury’, and as
their judgement should reflect that of society, we con-
sider an imaginary ‘second jury’ to represent society.
The focus is mostly on a lower probability of a guilty
verdict by the second jury, conditional on a guilty
verdict by the first jury, under suitable exchangeabil-
ity assumptions between this second jury and the first
jury. Using a lower probability of a guilty verdict nat-
urally provides a ‘benefit of doubt to the defendant’
robustness of the inference. By use of a predictive
approach, no assumptions on the guilt of a defendant
are required, which distinguishes this approach from
those presented before. The statistical inferences used
in this paper are relatively straightforward, as only
cases are considered where the lower probabilities ac-
cording to Coolen’s Nonparametric Predictive Infer-
ence for Bernoulli random quantities [5] and Walley’s
Imprecise Beta Model [24, 25] coincide.

Keywords. Imprecise Beta Model, lower probability,
Nonparametric Predictive Inference, representation of
sub-populations.

1 Introduction

In law, the use of juries is often regarded as a natu-
ral manner for reaching a verdict, mostly used when a
defendant is charged with a serious crime. In such sit-
uations, there is typically uncertainty about the guilt
of the defendant, and most civilized societies only
wish to convict the defendant if there is considered
to be very strong evidence that the defendant com-
mitted the crime: in case there is remaining doubt,
the defendant should normally be given the benefit
of the doubt, and should not be convicted. Due to
the presence of uncertainty, it is natural that proba-

bilistic and statistical methods have been used to an-
alyze several theoretical aspects of juries (e.g. [11]),
and of uncertainty in law more generally (e.g. [12]).
During a trial, an enormous amount of information is
typically presented to a jury. Such information may
consist of many facts brought alight, with different
emphasis on their relevance and circumstances under
which these facts did or might have occurred (or not),
and the manner in which this all is presented can be
very confusing to members of the jury. Clearly, this
makes it difficult to translate all such information into
suitable data for a statistical approach based on a
full model, and the one-off nature of specific court
cases appears to prevent a classical frequentist sta-
tistical approach to support jurors in reaching a ver-
dict. From a Bayesian perspective, it would be ex-
tremely difficult to provide a detailed model a priori,
as one would have to foresee all possible information
that might appear in a court case, in the right order
(as e.g. the defence will often adapt its strategy to
counter arguments presented by the prosecutor), and
based on detailed expert judgements (as, effectively,
only one realization of the whole process is actually
observed, so any prior information is likely to remain
influential). Of course, some aspects of ‘uncertainty in
law’ have been discussed frequently, e.g. the so-called
‘prosecutor’s fallacy’, which is a mistake due to confu-
sion of conditional probabilities [1]. If one would wish
to use Bayesian statistical reasoning to decide on a
defendant’s guilt, one would also require prior prob-
abilities on his guilt. It would not only be very dif-
ficult to assess such prior probabilities meaningfully,
but any explicit quantification of a juror’s prior beliefs
that the defendant is guilty would be considered to be
highly inappropriate. Jurors are typically not trained
in law, statistics or probability, so such an approach
would be deemed to fail even if suggested. It is, there-
fore, very difficult to even consider a suitable general
way in which statistics could assist jurors with their
possibly very difficult task, namely that of deducing
whether or not the defendant is guilty on the basis of



all evidence presented.

In this paper, we are certainly not attempting the
impossible. However, we emphasize the complexity
of the use of statistical methods to support jurors on
deciding their verdict, as any such use of statistics
is explicitly absent in the approach presented in this
paper. We do not propose a method for quantifying
a ‘level of certainty about guilt’, and we do not re-
quire any prior thoughts about the defendant’s guilt.
We focus our attention on juries, and we study size
of juries from a novel perspective, from which we also
consider composition of juries if a population consists
of recognized sub-populations. The main novelty in
our approach is that nowhere any assumptions are
made about the defendant’s guilt, and also no attempt
is made to model the complex stream of information
jurors have to consider during a process. By consid-
ering a predictive criterion, which is introduced and
explained in Section 2, we can still comment mean-
ingfully on appropriateness of jury sizes from a theo-
retical perspective. It is important to emphasize here
that we do not take practicalities of the processes used
by juries to reach an overall verdict into account [14],
we assume throughout this paper that each juror takes
the evidence presented into account and reaches a de-
cision without conferring with other jurors. Actually,
our approach even allows the latter to take place, but
as outcomes of such deliberations might depend on
particular personality characteristics of individual ju-
rors, it would make the appropriateness of the key
exchangeability assumption underlying our approach
(Section 2) less clear.

Section 2 provides a short discussion of a typical sta-
tistical method for inference on jury verdicts and jury
size, as presented in the literature. Then it presents
the main criterion and assumptions underlying our
novel approach, as well as the results of our approach
on jury size. In Section 3 we show how this approach
can be used to decide on optimal representations of
‘independent’ sub-populations in a jury, our approach
as presented here also has some attractive features
when compared to e.g. statistical methods for strati-
fied sampling, which we will discuss briefly in Section
4 together with some further comments. Throughout
this paper, uncertainty is quantified via lower and up-
per probabilities, where it is particularly attractive to
use lower probabilities as, for the events considered,
these effectively ‘give the benefit of doubt’ to the de-
fendant. As we only consider a relatively straightfor-
ward statistical model with lower and upper probabil-
ities, we use these without many further comments.
For the events considered, lower and upper proba-
bilities from Coolen’s Nonparametric Predictive In-
ference for Bernoulli random quantities [5] coincide

with those from Walley’s Imprecise Beta Model [24],
which is the special case of Walley’s Imprecise Dirich-
let Model for the situation with only two categories
[25]1.

2 Jury size

Friedman [11] discusses different jury sizes and criteria
for convictions, focussing on 12 jurors, with either a
12-out-of-12 or 10-out-of-12 criterion (the latter lead-
ing to a guilty verdict if supported by at least 10 of the
12 jurors), and on 6 jurors (6-out-of-6). He empha-
sizes that his analysis is not based on whether or not
a person is actually guilty, and he also does not make
any assumptions about guilt. Instead, he focusses on
the degree to which the person appears to be legally
guilty or the inverse, the degree to which he can de-
fend himself. Friedman suggests that this appearance
of guilt may be considered as equivalent to the proba-
bility that an individual juror would consider the de-
fendant guilty, and assumes that the defendant affects
each of the jurors equally and independently. This al-
lows the use of the Binomial distribution, for given
number of jurors and given degree of apparent guilt,
to calculate the probability of conviction. Friedman
then considers the probability of conviction as a func-
tion of this degree of apparent guilt, and discusses
some characteristics of several jury systems from this
perspective. Clearly, the unanimous 12-out-of-12 sys-
tem has a relatively low probability of conviction for
values of the degree of apparent guilt which are not
close to 1. Friedman’s discussion is in well-known sta-
tistical terms of errors of Type I, i.e. conviction of in-
nocent individuals, and errors of Type II, i.e. failure
to convict guilty individuals. This discussion is some-
what informal due to the change from assumed (non-)
guilt to degree of apparent guilt. Friedman mentions
that this statistical model is based on the assumption
that all jurors are unbiased and equivalent in their
perception. He briefly discusses the possibility of an
atypical juror, which may be a strong argument in
favour of jury systems that do not require unanim-
ity. Essential in this approach is the introduction of
a parameter, φ say, which, although not directly ob-
servable, is assumed to have a meaningful and unam-
biguous interpretation, in Friedman’s work it is the
degree of apparent guilt and φ ∈ [0, 1], with φ = 0
meaning that the defendant is certainly not guilty, in
the sense that his innocense is absolutely certain to
every juror, and φ = 1 meaning that every juror is
absolutely certain of the defendant’s guilt.

1For Walley’s model, the value of a further parameter s in
the notation of [25] must be chosen: throughout this paper we
set s = 1 without further mentioning, as this is the value for
which the lower and upper probabilities for the events consid-
ered coincide with those from Coolen’s NPI approach.



Bayesian methods in statistics provide a framework
for dealing with uncertainty about parameters in a
consistent manner, namely by expressing subjective
beliefs about such parameters, for an assumed statis-
tical model, via prior probability distributions, which
are then combined with observed data to give the pos-
terior probability distribution of the parameters. In
many situations this seems highly sensible, although
it does explicitly require information about the pa-
rameters to be taken into account. Clearly, with the
parameter used by Friedman, representing the de-
fendants degree of apparent guilt, it may be a far
from trivial task to model subjective beliefs about
this parameter via a probability distribution. Never-
theless, it might be considered attractive to attempt
a Bayesian approach to problems on adequate jury
size and composition, with a parameter representing
either the defendant’s guilt, or Friedman’s ‘appear-
ance of guilt’. However, in addition to the need for a
prior distribution on such a parameter, any such an
approach would require further assumed probabilities,
namely for the variety of events which can be summa-
rized as ‘juror gives correct judgement’. Not only is
it extremely difficult to have meaningful information
on such events, let alone to quantify the uncertainty
about them, these events are also (normally) unob-
servable and any assigned probability values will be
influential on the overall inferential results.

In this paper, we present a different approach to con-
siderations of jury size, and jury composition (Section
3). Let us consider the main reason for the very exis-
tence of a jury: it is assumed to represent the popula-
tion in the sense that its final verdict should, ideally,
be in line with that of ‘the population’, if ‘the popula-
tion’ were confronted with the same information from
the whole process. Of course, it is difficult to formu-
late any such a ‘verdict of an entire population’, we
propose the following solution. Throughout this pa-
per, we will refer to the actual jury as JA, and we
consider a second, imaginary jury JI, also selected
from the general population in a similar manner as
JA. We now study aspects of JA by making some
suitable exchangeability assumptions, and consider-
ing predictive inferences on JI’s verdict based on in-
formation from JA’s verdict. In particular, we will
consider the lower probability of a guilty verdict by
JI, given a guilty verdict by JA. We discuss this
idea in more detail at the end of this section, we first
develop the idea further and consider its implications
for jury size considerations.

A first possible approach would be to assume ex-
changeability at the level of the juries, which may be
most natural if JA and JI consist of the same num-
ber of jurors and the same conviction rule (required

number of jurors’ guilty votes to provide an overall
jury guilty verdict) applies for both. In this setting,
the precise conviction rule is of no actual relevance.
We consider the JA verdict as one observation of a
Bernoulli random quantity, and the JI verdict as a
second Bernoulli random quantity which we wish to
predict, and which we assume to be exchangeable with
the JA verdict. Let us denote a guilty verdict of JA
(JI) by JA−G (JI−G). Both Coolen’s NPI approach
for Bernoulli random quantities [5], and Walley’s IBM
[24, 25] give P (JI − G|JA − G) = 1/2, which does
not provide much useful insight in this setting, and
is certainly not very strong evidence that ‘the pop-
ulation’ would consider the guilty verdict appropri-
ate. Of course, by conjugacy the corresponding upper
probability of a not-guilty verdict by JI is 1/2, so one
could argue that this would support a guilty verdict
as a fair representation of the population’s judgement
in such a case, but as it is generally accepted (in soci-
eties that like to consider themselves ‘civilized’) that a
defendant is only convicted in case of strong evidence,
and hence that the defendant should get the benefit
of the doubt, this result based on assumed exchange-
ability at the jury level does not appear to be strong
enough as a basis for decisions. For completeness, let
us also mention the corresponding upper probability
P (JI − G|JA − G) = 1, which seems logical in such
cases where there is no evidence in the available data
(here the single observation JA − G) that there has
to be any level of doubt about the defendants guilt.

A logical alternative approach to this problem is by
focussing on the votes of individual jurors, and to as-
sume exchangeability between jurors in JA and jurors
in JI. From here on, we assume such exchangeability
at the level of individual jurors. Focussing on indi-
vidual jurors’ votes, it becomes important to consider
the conviction rule applied. From a mathematical per-
spective, it might be of interest to study all conviction
rules that can be defined, in relation to real-world law
scenarios it makes sense to restrict attention to k-out-
of-K rules (with k > K/2), where the jury verdict is
‘guilty’ if at least k of the K jurors vote ‘guilty’. Ac-
tually, we will focus on the unanimity conviction rule
(k = K) for guilty verdicts of JA. It will be rele-
vant, however, to consider more general k-out-of-K
rules for JI, as we use JI to reflect the population at
large, and as such it might for example be of interest
to know the lower probability that JI would reach a
guilty verdict under a specific conviction rule, given
that the jurors in JA voted ‘guilty’ unanimously. For
even wider flexibility, we will consider scenarios un-
der which JA and JI are not required to consist of
the same number of jurors, with n jurors in JA and
m jurors in JI. It should be emphasized here that
n = 12 is the present situation in many jury systems,



although studies of effectiveness of juries consisting
of 6 or 8 jurors have been reported [9, 20, 23]. We
will discuss below what unanimous guilty verdicts of
juries JA of some sizes other than 12 imply for juries
JI.

Coolen [5] derived and justified the following general
results for nonparametric predictive inference (NPI)
for m + n exchangeable Bernoulli random quantities.
Suppose that we have a sequence of n + m exchange-
able Bernoulli trials, each with ‘success’ and ‘failure’
as possible outcomes, and data consisting of s suc-
cesses in n trials. Let Y n

1 denote the random number
of successes in trials 1 to n, then a sufficient represen-
tation of the data for our inferences is Y n

1 = s, due to
the assumed exchangeability of all trials. Let Y n+m

n+1

denote the random number of successes in trials n+1
to n + m. Let Rt = {r1, . . . , rt}, with 1 ≤ t ≤ m + 1
and 0 ≤ r1 < r2 < . . . < rt ≤ m, and, for ease of no-
tation, let us define

(
s+r0

s

)
= 0. Then the NPI-based

upper probability for the event Y n+m
n+1 ∈ Rt, given

data Y n
1 = s, for s ∈ {0, . . . , n}, is

P (Y n+m
n+1 ∈ Rt|Y n

1 = s) =
(

n + m

n

)−1

×

t∑
j=1

[(
s + rj

s

)
−

(
s + rj−1

s

)] (
n− s + m− rj

n− s

)
The corresponding lower probability is derived via the
conjugacy property

P (Y n+m
n+1 ∈ Rt|Y n

1 = s) = 1− P (Y n+m
n+1 ∈ Rc

t |Y n
1 = s)

where Rc
t = {0, 1, . . . ,m}\Rt.

For the setting in the current paper, we are only con-
sidering data consisting of a unanimous guilty verdict
of JA, so s = n, in which case we will denote Y n

1 = n
by (n, n), and the event that there are at least y suc-
cesses in the following m observations, so Y n+m

n+1 ≥ y
for which we will use the notation Ym ≥ y, leading to
NPI lower probability, for y = 0, 1, . . . ,m

P (Ym ≥ y|(n, n)) = 1− (n + y − 1)!m!
(y − 1)!(n + m)!

(1)

The corresponding upper probability is equal to 1,
which is fully in line with intuition yet of little rele-
vance for the rest of this paper. For Walley’s impre-
cise Beta model [24], which is the special case of his
Imprecise Dirichlet Model with only 2 categories [25],
the lower probability for this event is identical to (1).
This also coincides with the ‘cautious’ or ‘conserva-
tive’ Bayesian inference advocated by Hartigan [17]
for such cases. It should be emphasized that Coolen’s
NPI and Walley’s imprecise Beta model do not gener-
ally give identical upper and lower probabilities, with

Coolen’s NPI leading to slightly more imprecision for
many events, due to the fact that it only assumes ex-
changeability of the m+n random quantities involved
whereas Walley’s approach stays close to the robust
Bayes framework [3], using a Binomial model which
requires assumed embedding in an infinite sequence
of such exchangeable random quantities [10].

For our jury problem, with the n jurors in JA all vot-
ing guilty and m jurors in JI, (1) provides the lower
probability (according to NPI and Walley’s model)
that JI would also reach a guilty verdict under a
y-out-of-m rule. If m = n and y = m, so JI also
requires a unanimous guilty vote to reach a guilty
verdict, with JI and JA having the same number
of jurors, then this lower probability is 1/2. This
is naturally in agreement with the situation, briefly
described above, where only exchangeability at jury
level is assumed, which holds of course here due to
the assumed exchangeability of jurors, and the same
number of jurors and conviction rules for JA and JI
in this situation2. More generally, if we assume that
unanimity is also required for a guilty verdict of JI
(so y = m), but we do not restrict the value of m,
then the lower probability (1) is equal to n/(n + m),
which is increasing in n and decreasing in m, also in
line with intuition.

Let us consider some numerical values of (1) for situa-
tions of relevance to our discussion on jury size. These
values are explicitly given in the text below, and to
aid the discussion they are also presented in Table 1.

n = 12, m = 12:

y = 11 10 9 8 7
P = .761 .891 .953 .981 .993

n = 6, m = 6:

y = 5 4
P = .773 .909

n = 6, m = 12:

y = 8 7
P = .908 .950

n = 24, m = 24:

y = 23 20 13
P = .755 .975 .99996

n = 24, m = 12:

y = 7
P = .9995

n = 12, m = 100:

y = 100 99 95 51
P = .107 .204 .502 .9995

Table 1: Some values of P = P (Ym ≥ y|(n, n)))

2For simplicity, we assume here that the unanimity rule ac-
tually applied for JA: if this is not the case, then one might
not learn the exact number of jurors in JA that voted ‘guilty’
- both NPI and Walley’s method can, of course, also deal with
information that would appear in such cases, but we do not
discuss this explicitly in this paper.



First of all, for m = n = 12, these lower probabili-
ties for the values y = 11, 10, 9, 8, 7 are 0.761, 0.891,
0.953, 0.981, 0.993, respectively. This means that, if
a 12-person jury JA reaches a unanimous guilty ver-
dict, then the lower probability that the majority of
members of a second 12-person jury, with all 24 in-
dividual jurors involved assumed to be exchangeable
(with regard to their individual votes - a further dis-
cussion of this assumption is provided near the end
of this section), would have reached the same guilty
verdict, is very high indeed (0.993). One can inter-
pret this as a reflection of the strength of evidence
of the information in the JA guilty verdict. However,
one could argue that, ideally, a substantial majority of
the population should (be expected to) agree with the
guilty verdict, so perhaps the values 0.891 (for y = 10)
or 0.953 (y = 9) are more natural to focus on. As
mentioned above, several studies have focussed, both
from theoretical and practical perspectives, on juries
of smaller sizes, in particular 6-person juries have been
considered [9, 20, 23]. For the case where both JA and
JI are 6-person juries, so with m = n = 6, the lower
probability (1) is equal to 0.773, 0.909 for y = 5, 4,
respectively. So, the unanimous guilty vote of the 6-
person jury JA now only implies a lower probability
of 0.909 for the event that a majority of the 6-person
jury JI would agree with this verdict, which is a sub-
stantial reduction from the 0.993 for the correspond-
ing lower probability if both JA and JI consisted of
12 persons. Another method that could be used to
compare actual jury sizes 12 and 6, is by considering
the lower probability (1) for n = 6, but with m = 12
and y = 7, which is equal to 0.950. However, due
to the discrete nature of these events comparisons are
slightly complicated, as m = 6 and y = 4 more nat-
urally relates to the case with m = 12 and y = 8,
for the latter (still with n = 6) the lower probabil-
ity (1) is equal to 0.908, which is very close to the
0.909 for the former case. Studies of the performance
of juries of size 6 are mostly initiated by practical as-
pects of 12-person juries, unfortunately also including
considerations of costs. From such a perspective, the
increased risk of getting a JA guilty verdict under the
unanimity rule for a 6-person jury, which would not
be in line with the verdict of the majority of the larger
population, and when compared to a 12-person jury,
might need to be balanced with such cost consider-
ations, although this would involve consideration of
utilities at a level that many might find ‘unethical’
to do explicitly as it would require balancing between
utilities of an individual (the defendant) and of soci-
ety at large.

It is also interesting to see what could be gained, in
terms of the lower probability (1), by doubling the
JA size to n = 24. For m = 24, (1) is equal to 0.755

for y = 23, 0.975 for y = 20 and 0.99996 for y = 13,
while for m = 12 the lower probability of a majority of
JI jurors agreeing with the guilty verdict (so y = 7)
is equal to 0.9995 (which one may wish to compare
to the corresponding values, as mentioned above, of
0.993 and 0.950 for n = 12 and n = 6, respectively).

When considering the role of JI in representing the
society at large, one can also argue that a substan-
tially larger value of m would be appropriate. In
Section 3, when considering jury composition in case
of a population consisting of subgroups, we will find
the use of size m = 100 for JI convenient. For the
current scenario, m = 100 leads, for n = 12, to
the following values for the lower probability (1): for
y = 100, 99, 95, 51 we get 0.107, 0.204, 0.502, 0.9995,
respectively. Notice that this lower probability for
y = 51, reflecting that a majority of JI will vote
guilty given the unanimous guilty vote of the 12 ju-
rors in JA, is greater than the corresponding lower
probabilities for a majority of guilty votes in JI in
the situations discussed above, with smaller values of
m. Of course, for increasing m, NPI [5] requires an
exchangeability assumption over an increasing num-
ber of random quantities. This raises the question of
what happens if m → ∞. For a meaningful answer,
let us consider the limit of the right-hand side of (1)
with y = θm for 0 < θ ≤ 1:

lim
m→∞

(
1− (n + θm− 1)!m!

(θm− 1)!(n + m)!

)
= 1− θn (2)

In this limiting situation (see [5] for a similar argu-
ment), the exchangeability assumption in NPI be-
comes ‘infinite exchangeability’, for which case De
Finetti’s Representation Theorem [10] shows that one
could represent the random quantities involved as
conditionally independent given a parameter, where
the parameter is also a random quantity. One might
see parallels between such a parameter and the above
θ, but they are different, as our θ only has a meaning
in the predictive inference considered, that is to spec-
ify events of interest, and is not considered to be an
unknown property of the infinite sequence of future
observations considered in this inference. Our infer-
ences do not require the use of a prior distribution for
θ, which would necessarily have required additional
assumptions which we try to avoid. This limit 1− θn

of P (Ym ≥ θm|(n, n)) is decreasing in θ, which makes
immediately clear that θ should not be interpreted as
a limit for the proportion of guilty votes for the m
jurors considered in JI. For illustration, this limiting
lower probability (2) is given in Table 2, for some val-
ues of n and θ. Although these limiting values provide
some insight, we find the actual inferences quite con-
fusing as populations from which juries are selected
will never be of infinite size, so restricting attention



to JI of smaller sizes, as discussed above, seems more
in line with intuition.

n θ = 0.50 0.75 0.90 0.95 0.99

6 0.9844 0.8220 0.4686 0.2649 0.0585
12 0.9998 0.9683 0.7176 0.4596 0.1136
24 1.0000 0.9990 0.9292 0.7080 0.2143

Table 2: Some limiting lower probabilities (2)

Before we consider corresponding inferences on ap-
propriate representative subgroups of different sub-
populations (Section 3), we discuss the underlying ex-
changeability assumption between jurors in a bit more
detail, also from the perspective of NPI [5] and Hill’s
assumption A(n) which is implicit in NPI.

It seems sensible to assume exchangeability of the in-
dividual jurors in JA and JI, as we did above (apart
from the first considerations, when we only assumed
exchangeability of the two juries JA and JI). For
NPI [5], this exchangeability is actually assumed with
regard to an assumed underlying representation of the
Bernoulli random quantities which is very similar to
the representation used by Thomas Bayes [2]. It is
assumed that, corresponding to the Bernoulli ran-
dom quantities, there are real-valued random quan-
tities which are not observable, but which are so that
if they exceed an unknown threshold they are ‘suc-
cesses’, else they are ‘failures’. Coolen’s NPI for
Bernoulli data [5] uses this representation together
with Hill’s assumption A(n)

3, which effectively for
this real-valued setting is a ‘post-data exchangeabil-
ity’ assumption, meaning that the exchangeability as-
sumption on n + m random quantities still holds, for
as far as prediction of m random quantities is con-
cerned, once the values of the first n are known. This
representation might be quite appropriate in a jury
setting, as one could consider an underlying process
where each individual juror reaches a conclusion on
the strength of their believe in the guilt of the con-
victed person, and compares this strength to an indi-
vidual ‘guilt threshold value’ to reach the individual
vote. For the exchangeability assumption used in our
approach, one could assume that the differences be-
tween each individual’s strength of believe in guilt and
corresponding individual guilt threshold value would
be the unobservable real-valued random quantity in
the assumed representation underlying NPI. Hence,
we do not need to assume that all jurors would actu-
ally have the same guilt threshold value, nor that the
strengths of their beliefs of guilt must be comparable.
The fact that such concepts are not measurable in a
meaningful manner supports the appropriateness of

3We use the notation A(n) here generically, for inference
on m future observations the actual assumption made is, in
notation of Hill [18, 19] A(n+m−1), which also implies A(l) for
all l < n + m− 1 [5].

A(n) in this setting [6, 18, 19], as one never gets infor-
mation that could be used to counter the underlying
exchangeability assumption.

The question whether or not the exchangeability as-
sumption is really appropriate here is quite subtle. It
is again important to emphasize that we only assume
exchangeability of the m and n jurors in JA and JI,
which is reasonable if we have no specific informa-
tion on these individuals and if we would assume that
jurors in JI would be selected from the large popula-
tion by the same process as used to select the jurors in
JA. This, however, might not imply that these jurors
are exchangeable with all members of the population,
as the selection process is likely to favour or exclude
some in the population. However, we believe that this
issue is inherent to any selection procedure for juries,
and therefore to any legal system that uses juries, and
we consider it an advantage that our method does not
actually need to assume such exchangeability between
all members of society (the above discussion involv-
ing the limit for m → ∞ was included more for its
theoretical value than for its real-world relevance).

At the beginning of this section, we reviewed the ap-
proach by Friedman [11], which in a classical statisti-
cal manner focusses on errors of Type I and Type II
for jury verdicts, and which makes clear the inherent
difficulty when representing the defendant’s guilt, or a
corresponding ‘degree of apparent guilt’, in the statis-
tical reasoning. The method presented in this section
does not make use of any of these concepts, and only
looks at jury verdicts under assumed exchangeability
of jurors, so it explicitly does not add any assumption
or inference on whether or not the jury is correct. It
is important to emphasize this, as many might con-
sider this a disadvantage. However, in most individ-
ual situations it will by the nature of court cases not
be known whether or not the defendant is guilty, and
avoiding any attempt to quantify beliefs about actual
(or apparent) guilt seems to simplify the discussion in
a straightforward and fair manner. Of course, meth-
ods such as Friedman [11] presented have their merits,
but we believe that our method provides useful addi-
tional insights and possible arguments on appropriate
jury sizes. We have only considered our approach un-
der assumed unanimous guilty verdicts by JA. The
approach is easily extended to also consider more gen-
eral k-out-of-K conviction rules for JA, but as we
have no ambition to propose, or even consider, an op-
timal rule, we do not address such different rules for
JA further in this paper.



3 Jury composition

In this section, we briefly consider the interest-
ing question of how to select representative juries
from populations that consist of known separate sub-
populations, where we assume independence of these
sub-populations with regard to the individual ver-
dicts of jurors from different sub-populations. We as-
sume that the number and (relative) sizes of the sub-
populations are known, and also that for each mem-
ber of the population the sub-population to which
they belong is known. We use the same general ap-
proach as in Section 2, with the actual jury JA and
the imaginary jury JI, where the use of JI provides
a convenient way for taking the relative sizes of the
sub-populations into account. We assume that the
individual verdicts of jurors belonging to the same
sub-population are exchangeable, as before, and per
sub-population we use the same lower (and upper)
probabilities as in Section 2. In most of this section,
we consider only two sub-populations. For more sub-
populations, the general conclusion remains valid.

Let the two sub-populations be denoted by A and B,
with pA ∈ (0, 1) the proportion of the whole popu-
lation that belongs to A. Let jury JA consist of nA

jurors from A and nB from B, with nA + nB = n,
and jury JI of mA jurors from A and mB from B,
with mA + mB = m. An intuitive way to choose
the numbers of jurors from each sub-population in
JA, assuming that n has already been chosen, is by
taking nA as close as possible to pAn, so to achieve
proportional representation of the sub-populations in
JA. However, if again we consider the jurors as rep-
resentatives of the population, and hence of the sub-
populations, this choice might not be optimal from a
similar perspective as used in Section 2, namely when
considering the lower probability that a second jury
JI would also provide a guilty verdict if JA does so.
A natural manner in which to reflect the relative sizes
of the sub-populations is by choosing (approximately)
the same proportions for the numbers of representa-
tives in JI, as throughout our approach the role of
the imaginary jury JI is to reflect the larger popula-
tion. We saw in Section 2 that the actual choice of
the size m of JI affects the predictive inferences of in-
terest, but as we just want to introduce our approach
for this setting, we will use m = 100 for illustrations
in this section. So JI will be assumed to consist of
100pA (rounded to nearest integer to give mA) jurors
from A, and mB = 100−mA jurors from B. For this
JI, which clearly reflects the sub-populations, we now
wish to choose nA and nB , under the assumption that
nA +nB = n and n is predetermined, such that a ver-
dict of guilty by JA leads to maximum lower prob-
ability of a guilty verdict by JI. In this paper, we

only consider unanimity conviction rules for both JA
and JI in this situation, the approach is easily gener-
alized to more general conviction rules for JA, JI or
both. Due to the assumed independence of individual
jurors’ verdicts between jurors from JA and from JI,
the lower probability of the event that all mA + mB

jurors in JI vote guilty, given all nA + nB jurors in
JA voted guilty (and under the same exchangeability
assumptions per sub-population as used throughout
this paper), is equal to

nA

nA + mA
× nB

nB + mB

By a basic exercise one can derive a general expression
for the optimal choices of nA and nB which achieve the
maximum value for this lower probability, but these
do not provide much general insight, apart from the
fact that the optimal fraction nA/n is equal to 1/2 if
pA = 1/2 (this is of course logical by symmetry), but
will be closer to 1/2 than pA is in all other cases. In
other words, the smaller of the two sub-populations
will relatively be over-represented in JA, of course
with this all under the constraint due to the discrete
nature of nA and the fact that n is likely to be small.
For example, the optimal number nA in a n = 20 per-
son jury JA, for m = 100 (under the unanimity con-
viction rule for both juries), is equal to 8 for pA = 0.1,
9 for pA = 0.2 and for pA = 0.3, and 10 for pA = 0.4
and for pA = 0.5. The optimal values of nA for pA

greater than 1/2 follow by symmetry. It might be con-
sidered to be remarkable that, for pA = 0.1 and the
imaginary jury JI consisting of 100 jurors (so 10 from
A and 90 from B), nA = 8 and nB = 12 would give
the optimal 20-person jury according to this predic-
tive criterion. The lower probability optimised here
is actually pretty robust if one varies nA a little from
this optimum, but it is substantially larger than if
one would only select 2 jurors from A and 18 from B
(‘proportional representation’), namely 0.0523 versus
0.0278 for the latter case. Of course, these lower prob-
abilities are pretty small as m is quite large, but if one
relaxes the conviction rule for JI, similar results are
achieved. Overall, this over-representation of smaller
sub-groups is not really surprising, as the additional
information from an extra juror added to a small num-
ber of jurors for a particular subgroup, in terms of the
predictive power of the total information, is stronger
than the corresponding information lost by reducing
a larger number of jurors for the different subgroup
accordingly.

We do not wish to provide a more detailed study of
this approach to decisions on jury composition, as the
main goal here is the introduction of this criterion us-
ing the predictive lower probability of a guilty verdict
by JI, given a guilty verdict by JA, and to emphasize



the attractive role of JI in representing the popula-
tion. Naturally, there are many related topics that
can be studied, and for some of these we did some
preliminary analyses and calculations. For example,
in the situation of two sub-populations, the influence
of particular choices of m and n can be considered
(the over-representation of the smaller sub-population
to achieve optimality holds generally), and more gen-
eral conviction rules can also be studied. We calcu-
lated several cases, only relaxing the conviction rule
of JI, and the over-representation of the smaller sub-
population was always present, be it to a lesser extent
than for the unanimity rule for JI. For example, cor-
responding to the case discussed above with m = 100
and n = 20, if we use the 97-out-of-100 rule for convic-
tion by JI, then for pA = 0.1 the optimal nA is equal
to 6 (instead of 8 for unanimity as discussed above).
This effect seems logical, as the loss of detailed infor-
mation about the sub-population A is less likely to
have a substantial influence on JI’s overall verdict in
the latter situation. We also performed some calcula-
tions for three sub-populations, in which case also the
smallest (largest) sub-population is over-represented
(under-represented) in the optimal jury composition.
For example, again with n = 20 and m = 100, if
sub-populations A, B and C consist of 10, 10 and
80 percent of the population, then the optimal rep-
resentations are 6, 6 and 8, respectively, under the
unanimity conviction rule for both juries JA and JI.

4 Concluding remarks

There is a considerable literature on the use of statis-
tical methods in relation to aspects of law, including
attention to specific problems involving juries which
particularly received much attention in the seventies
[9, 11, 13, 14, 15, 16, 23]. In addition to these mostly
theoretical studies on jury size and conviction rules,
there are also many studies of actual jury behaviour,
see for example Ellsworth [8] who reports on a de-
tailed observational study with attention to a vari-
ety of practical aspects, consideration of which goes
far beyond the theoretical goals of the current pa-
per. However, the use of lower and upper probabili-
ties [24, 26, 27] in law scenarios is, unfortunately, still
pretty rare, whereas it provides an attractive method
to deal with the ‘benefit of doubt to the defendant’ is-
sue which in law seems to be quite generally accepted,
and more appealing than perhaps in many other ar-
eas where uncertainty is quantified to enable infer-
ence and decision making. In the discussion to Wal-
ley’s paper which introduced the Imprecise Dirichlet
Model [25], one discussant remarked that the first ever
recorded use of lower and upper probability was actu-
ally in a law problem, by Ostrogradsky. The current

authors have not been able to verify this claim, yet
it is of interest to mention that Ostogradsky [21, 22]
did consider two types of judge (‘juror’ in our ter-
minology), namely ‘condemning judges’ and ‘acquit-
ting judges’, and assumed different probability distri-
butions for these, considering the propensity to ren-
der a guilty verdict when the person on trial is ac-
tually innocent. He then proceeded to calculate the
probability of erroneous majority judgement, and us-
ing the ‘principle of insufficient reason’ for the prior
probability of guilt, he showed that this probability
of erroneous majority judgement only depends on the
difference between the numbers of condemning and
acquitting judges involved. Although this does not
involve, neither explicitly nor in its nature, lower and
upper probabilities, the idea to study the influence on
different-natured jurors would be of interest to also
study from our perspective, although it could not be
embedded naturally in an NPI approach as such juror
characteristics would typically not be observable.

The major contributions of this paper are the novel
use of an imaginary ‘second’ jury JI to represent
the larger population in a predictive statistical frame-
work, with the corresponding opportunity to study
appropriateness of real jury (JA) sizes and conviction
rules, and the fact that the inferences do not make any
assumptions on actual (or apparent) guilt of the de-
fendant and also do not even attempt to conclude on
such guilt. This work can be extended in many ways,
most clearly of course by studying other conviction
rules for JA, JI or both. In Section 3, the predictive
approach was suggested for decisions on appropriate
representations of sub-populations. This problem can
also be considered from the classical perspective of
‘stratified sampling’ [4], where one often uses criteria
considering the overall variance of a random outcome.
The predictive approach presented here is an attrac-
tive alternative to classical stratified sampling, and
could be studied in detail for more general sampling
scenarios.

This approach could also allow an alternative to tra-
ditional Type I and Type II errors, with the former
formulated as the event that JI would not convict the
defendant when JA does reach a guilty verdict, and
the latter as the event that JI would convict the de-
fendant when JA does not. One would be particularly
interested in the upper probabilities for these events.
In this paper we have focussed on the lower probabil-
ity of a guilty verdict by JI, given a guilty verdict by
JA, which would correspond via the conjugacy prop-
erty to the upper probability of a Type I error, if the
latter was defined as suggested. We have not con-
sidered the Type II error, but we acknowledge that
detailed study of its upper probability could provide



useful insights into this predictive approach to issues
related to juries. The goal of this paper was not to
present such a detailed study, but to propose a new
approach to a classical theoretical problem. The pa-
per was also not aimed at specific real-world jury sce-
narios, where far more complicated issues often play
a role. Nevertheless, we believe that the results from
this theoretical exercise can provide new insights into
practical issues related to the use of juries.

In a study of jury size and composition, one might
expect a general conclusion on ‘best choices’. We do
not pretend to be well placed to give such advice, as
our only ambition has been to introduce a novel man-
ner for study of jury size and composition that has
the advantages described above. Practical limitations
make it unlikely that jury sizes in law would increase,
and of course from the perspective of the defendant it
seems best (under the jurors’ exchangeability assump-
tions) to have the maximum possible number of jurors
and the strictest conviction rule. However, although
we addressed this problem from the perspective of ju-
ries in law, a similar approach can be used for other
decision problems involving representative groups. If
there is not such a clear direction in which ‘benefit of
doubt’ should be applied, one may wish to take both
lower and upper probabilities into account, but even
then the predictive approach proposed in this paper
appears to provide sufficient promise to warrant fur-
ther study.
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