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Abstract This article discusses the author’s views on possible contributions
statistics can make to software testing and reliability. Several difficulties are
highlighted and several research challenges are discussed. Overall, the mes-
sage is that statistical methods cannot provide proper support for software
testing or provide useful inferences on software reliability if the statistical
methods are considered to be an ‘add-on’; careful treatment of the uncer-
tainties and the adequate use of statistical methods have to be right at the
center of the software development and test processes to ensure better tested
and more reliable software. In line with this requirement, the development of
suitable statistical methods requires collaboration of software developers and
testers with statisticians on real-world problems.

1 Introduction

Ten years ago, a paper entitled ‘Bayesian graphical models for software test-
ing’, written by my colleagues David Wooff, Michael Goldstein and me, was
published in IEEE Transactions on Software Engineering [16]. This presented
the pinnacle of a substantial multi-year research project in collaboration with
an industrial partner, in which we explored the possibilities to use statisti-
cal methods to support software testers. As testing software is effectively all
about uncertainty and information, it seemed obvious that statistics, which
may be regarded as the art of dealing with uncertainty and information,
could help testers with their very complex tasks. This project was successful,
particularly in setting a direction for future collaboration between statisti-
cians and software testers; an overview of the project was presented in the
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paper ‘Using Bayesian statistics to support testing of software systems’ (by
the same authors), published in the Journal of Risk and Reliability [8].

After initial difficulties due to very different jargons and cultures between
the academic statisticians and the real-world software testers, very useful
meetings followed during which the software testers explained more and more
which aspects involving uncertainty were really difficult, what their current
practice was with regard to all aspects of software testing, and which specific
aims and restrictions there were for the software testing. It should be empha-
sized that the ‘current practice’ was considered to be good, certainly in line
with the state-of-the-art at the time of the project (late 1990’s), and indeed
that there were quite many and different aims, particularly when managers
with different responsibilities in the company got involved and expressed the
hope that the methodology we were developing in collaboration with the
software testers would also be useful to assist them in their specific duties
related to the software testing process. For example, one such a duty involved
setting the budget for a specific software testing project, well in advance of
the software actually becoming available. I refer the interested reader to the
above cited papers for more details on the specific project, and particularly
on the Bayesian graphical modelling approach we developed. A substantial
monograph that addresses many more aspects of that project, including for
example methodology to predict the time required for software testing in-
cluding considerations of re-testing after failures, and indeed how to do such
re-testing efficiently, is in preparation [17].

In this article, I reflect a bit further on aspects from the mentioned long-
term project, and on research questions that arose from it. Beyond this, I
reflect on several aspects of the interaction between statistics and software
testing and reliability, raising some important challenges for research and
application that, to the best of my knowledge, are still open topics. This
article does not answer many questions, but I hope that it provides some
possible directions towards answers, or at least some issues to reflect upon
and which might steer future developments and collaborations in the field.

2 Statistics, software testing and reliability

The question how statistics can help software testing and be used to assess
software reliability appears, at first, a simple question. However, it is not. To
start, we have to consider what statistics is, and indeed what software testing
and software reliability are. These are all generic terms that encompass many
different activities, problems, methods, theories and so on. Generally speak-
ing, however, statistics can be regarded as the theory of quantification of
uncertainty, which includes the effect of information on uncertainty. As such,
it is natural to use statistics to support all software testing and software re-
liability problems where dealing correctly with uncertainty and information
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is a major issue. It should be emphasized that not all problems in testing
and software require, or can benefit from, the use of statistical methods. For
example, if one is absolutely certain that checking code will reveal all pos-
sible problems, then one has no need to quantify uncertainty and therefore
statistics has nothing to offer. Of course, the moment the ‘absolute certainty’
disappears then one should consider the use of statistical methods.

In statistics, there are two predominant foundational frameworks, which
some might see as competing theories yet they both have their own impor-
tant place in uncertainty quantification in general, hence also with regard to
software testing and reliability. The frequentist framework of statistics gen-
erally provides methods that are calibrated in case of repeated use, under
suitable assumptions. Results are traditionally in terms of e.g. confidence or
significance levels, which are difficult to interpret for specific applications and
indicate an approximate proportion of times that the specific method, if ap-
plied to many different problems, will give the correct answer. While this has
been criticized by many, it is not a bad principle: if one has a tool available
which is known to deliver a good outcome for a specific kind of task approxi-
mately 95 out of 100 times it is being applied, many will consider it a suitable
tool. One problem with many of the classical frequentist approaches is that
uncertainties often involve unobservable quantities such as model parameters,
which add a further level of difficulty to understanding of the results in many
cases.

The Bayesian framework of statistics has very different foundational start-
ing points, with emphasis on subjectivity of probability to quantify uncer-
tainty jointly for all random quantities in a specific application, where infer-
ences follow from probabilistic conditioning on the information that becomes
available. There is no frequency interpretation as a starting point, but in prac-
tice results from Bayesian statistics are often either fully or approximately
in agreement with their frequentist counterparts. This is not surprising when
there is a substantial amount of data and the wish not to let modelling as-
sumptions or additional information in the form of expert opinions influence
the inferences. However, in situations with few data the methods provide
quite differing opportunities, where the explicit inclusion of expert opinions
in the Bayesian framework can be a substantial advantage. It should be re-
marked that both the frequentist and Bayesian methods can be generalized
by the use of sets of probabilities instead of a single one, which provides
more robust inferences and models more adequately any lack of information.
In particular some generalized methods for uncertainty quantification provide
attractive opportunities to take unobserved or even unknown possible out-
comes or risks into account [1, 2, 4, 11]. Such imprecise probabilistic methods
are gaining popularity but have thus far not yet been implemented for soft-
ware testing [9]. For general reliability problems, including a little attention
to basic software reliability, such methods have been developed [10].

Software testing, and related aspects of software reliability, vary widely in
different applications. The number of inputs that can be tested can vary from
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very few to effectively an unlimited number; some functionality might not be
testable; it may be anything from trivial to impossible to know if an output is
correct; the tests may take place on the actual software system or on a special
test system which may resemble but not be identical to the actual system;
the software may be fully open for inspection, it may be entirely black-box
or anything in between, et cetera. Furthermore, the effects of errors in the
output may be anything from neglectable to catastrophic, and may even
be genuinely unknown. Statistical methods can be used to support decision
making in all such scenarios, but it requires a high level of statistical expertise
to ensure correct choice and application of methods. Importantly, it must
be emphasized that statistics is not a miracle cure, it can only deal with
the information that is available and its use should be aimed at supporting
software testers.

The power of statistical methods lies mostly in careful learning from infor-
mation and guidance with regard to further testing, which involve problems
that even for basic test scenarios are soon too complex for the human mind
to solve without the aid of sound statistical methods. Dealing correctly with
uncertainties in applications is, in most cases, difficult and time consuming.
The benefits can be substantial but of course will require justification with
regard to the effort. Such considerations may be used to guide the level of
detail of statistical modelling. This necessarily must be done related to a spe-
cific statistical approach; as an example of such guidance I refer to [7] where
the considerations for deciding an appropriate level of detail in Bayesian
graphical models for software testing are discussed.

In the following section, I will discuss a number of topics on the interface of
statistics and software testing and reliability, which I believe require thought
and attention, and indeed further research. It is crucial that such further re-
search is linked to real-world applications with genuine collaboration between
statisticians and software testers and engineers. These topics are discussed
briefly without attempts to provide a full picture of the problems and state-
of-the-art. It will be followed by a brief personal view on the way ahead in
Section 4.

3 Some topics that require attention

The first thing to consider in software testing is what actually can be tested.
This is particularly important if testing leads to quantification of reliability
of the software system in practical use. Usually, testing is limited in scope
and executed during a relatively short period of time, possibly even without
full linkage of a specific system with other real-world systems, databases et
cetera. Statistical methods using only information from such limited tests
cannot be expected to extrapolate to more practical issues. Software systems
may also fail due to failure modes occurring at the interface between software
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and hardware, e.g. electricity provision might be interrupted during software
processes, or due to background activities (e.g. memory space may slowly fill
up); such aspects often cannot be discovered during practical testing, hence
deducing a level of reliability from test results requires care.

A very basic question which, to our surprise, took quite some time to re-
solve in the aforementioned application of Bayesian graphical models to sup-
port software testing, is what to model? In some applications, particularly
where very many tests can be done, one might simply be able to consider
the input domain and model for each element of it (there may be ‘infinitely’
many, for example if inputs are real-valued quantities) whether or not the
software provides the correct output. The software testing we were involved
with, however, considered integration testing of new or upgraded functional-
ity and code, particularly with regard to communication between databases.
Inputs were typically related to some processes, and customers could possibly
provide all kinds of inputs and in different orders, so it was difficult to define a
theoretical input space. Testers would create scenarios to go through in their
testing, and of course such test scenarios reflected their expertise in detail. We
modelled the testers’ knowledge and beliefs about the software system and its
functioning, in particular how they distinguished between related but differ-
ent inputs and where they believed possible errors in output would originate
from. The software systems were complex and (almost entirely) black-box,
with parts developed over quite many years without detailed knowledge about
the development and core software remaining in the company. The statistical
methodology was then used explicitly to assist the testers in their extremely
complex tasks with regard to selecting efficient tests, ordering these, inferring
what to do if a test outcome was wrong, and indicating when testing could be
stopped1. As the statistical approach clearly modelled the testers’ expertise
and actions and enhanced their expertise, without taking over (and it was
clear to the testers that the approach would not be taking over their roles
in the future, due to the individual aspects of specific software systems and
testing tasks), they understood the supporting role of the statistical method-
ology, helping them to do their job better and more efficiently. This is crucial
for any collaboration, of course, but perhaps particularly so when experts
are sceptical about novel methods that claim to be able to support them
but which they may find difficult to understand. Actually, we found that the
software testers quite quickly got to grips with the Bayesian graphical models
that we built, and with the possibilities of support these gave them. They
also understood well that the method could only provide useful support if
they included useful and honest information on which to base the models. A
lot more research is required on this topic, particularly considering a wide

1 In early papers in the software testing literature the view was sometimes expressed that

testing was of no use if it did not reveal failures. This is quite a remarkable view, as no
failures is of course the ultimate aim. Probably the more important question is when to

stop testing in such cases, this links to the topic of high reliability demonstration where,

of course, statistical methods can also provide guidance [5].
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variety of software testing and reliability scenarios, and it is hard to say which
aspects can and should be modelled without considering a specific scenario.

An important consideration in practical testing is what the consequences
will be of a software error, and indeed if such errors can be recognized. In the
project we were involved with it was not a problem to discover software errors.
Generally, if it is not known with certainty whether or not software output is
correct (think e.g. at complicated computational software, particularly cases
were computation for one input can take a very long time), Bayesian statisti-
cal methods can provide some modelling opportunities, mostly by comparing
results with prior expectations for them and trying to identify if results dif-
fer from expectations by a substantial amount. I have not yet seen detailed
applied research about this, it will be fascinating and important.

Consequences are often, although not necessarily explicitly, grouped into
e.g. cosmetic, minor, major or catastrophic. Typically, under severe time and
costs constraints, tests are not aimed at discovering failures with cosmetic
and perhaps even minor consequences, but any such errors are noted and
dealt with at a possible future opportunity. Test suites designed by testers
normally reflect the severity of consequences of failures, particularly so if such
failures occurred in the (recent) past. Stastical methods can be set up in order
to deal with different consequences of failures, and hence the importance of
discovering such failures. The concept of ‘utility’ is a natural part of the
Bayesian framework and is precisely used to take such consequences into
account. However, in a company with different levels of management, with
several different people responsible for different aspects of the output of the
software system that is being tested, such utilities may not be discussed
explicitly and they may differ based on the personal views and responsibilities
of specific people. What to some people might appear just a failure with minor
consequences, could by others be regarded as a major problem or worse. Such
aspects must be discussed as it is crucial that there is a unified and clear goal
for the software testing. One may be tempted to define ‘delivering fault-free
software’ as such a goal, but this is mostly unrealistic for substantial software
systems and would be extremely difficult to verify from test results, unless
time and budget for testing are extremely generous. When using statistical
methods to support software testing, the utilities related to the outcomes, and
indeed to finding failures in order to prevent future problems with specific
outputs, are important and must be determined at a relatively early stage in
the process as they will guide the focus and level of detail of the testing and
therefore of the statistical modelling process.

An intriguing situation occurs if one may not know (expected) possible
consequences of failures, or may not know what kind of failures can occur.
This is very natural, in particular when testing new black-box systems where
discovering the functionality may be part of the testing aims. Statistical meth-
ods that can support such testing have not really been developed, and hence
this provides very important and interesting research challenges. Imprecise
probabilistic methods, including nonparametric predictive inference [4], have
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some specific features which make them promising for inference on the oc-
currence of unknown events. The theory of decision making with utilities
has also been nearly entirely restricted to known outcomes and known utili-
ties. Recently, a generalization to adaptive utilities has been presented, both
within the Bayesian and nonparametric frequentist statistical frameworks
[13, 14, 15]. In this work, utility is uncertain and one can learn about it,
which of course is quite often a major reason for experimenting and testing
(e.g. to learn about unknown side-effects of medication; there is a suitable
parallel to software). We have ideas to link this work to software testing,
but it would be from theoretical perspective at first; we hope to link it to
real-world test situations in the future.

As mentioned, there may be several managers in an organisation who each
have different responsibilities and hence may have different needs for sta-
tistical methods to support their activities related to software testing and
reliability. For example, someone managing the actual test team will have
quite different specific needs for support compared to someone managing the
overall development and test budgets, and indeed having to make cases to set
such budgets, with the latter typically needing to make decisions quite far in
advance to the actual testing. Statistical methods, in particular the Bayesian
framework, can support all such different decision processes, but again this
may require problem specific modelling, will not be easy and will not be a mir-
acle cure. As part of our industrial collaboration2 we developed an approach
to provide, approximately, an expected value and corresponding variance for
the length of a future testing process, supported by the Bayesian graphical
modelling approach. This approximation took into account re-testing after
corrections of software failures discovered during testing. Of course, this re-
quires substantial input as expected times must be provided for all possible
events together with information on probabilities, not only for failures to oc-
cur but also with regard to success of correcting actions. Managers should
not expect statistical methods to be able to provide answers to such difficult
questions without such inputs, it underlines that careful modelling is difficult
and time consuming, as is generally the case if one wants to deal well with
uncertainty.

In addition to such quite general aspects there are a number of issues that,
quite remarkably, still do not seem to have been solved satisfactorily, or at
least about which there is substantial confusion amongst software testers and
even some researchers who present methods with a suggestion of statistical
expertise. For example, if one can do ample testing and has detailed knowl-
edge of the input profile for the software system in daily practical use, it
tends to be advocated that testing should be according to that input profile.
However, this will rarely be optimal use of test time and budget (unless these
are effectively limitless). Intuition on a most simple example probably suf-
fices to explain this point: suppose that a software system will only have to

2 This will be reported in the monograph [17] that is being prepared
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provide outputs for two groups of inputs, say groups A and B. Suppose that
the input profile from practical use of the system is such that 99% of inputs
are from group A and only 1% from group B. Suppose further that 100 inputs
can be tested. In this case, testing in line with the input profile would lead to
99 inputs from group A and one input from group B to be tested. Intuitively
it will be clear that the 99 tests of inputs from group A probably leave little
remaining uncertainty about the success rate of the software on dealing cor-
rectly with inputs from this group. But the single test from group B is not
so informative for other inputs from this group. Hence, if one wishes to have
high quality software which rarely makes mistakes, then one would probably
wish to do some more tests for group B and reduce the number of tests from
group A accordingly. It is not difficult to prove this mathematically, but the
crucial part is to recognize that the input profile is to be used related to the
optimality criterion, that is proportions of applications in the future, after the
testing, with related utilities for avoiding failures in the outputs. Then the
optimisation variables should be the proportions of inputs from each group
within the test, and this will rarely lead to testing in the same proportions
as the input profile [3].

In this reasoning with regard to profiles there is an aspect that is at the
heart of software testing and the statistical support for it, namely the re-
quired judgements on exchangeability of the different inputs [?, 12]. A key
judgement that software testers have to make, and that must be reflected in
any statistical model and method to support them, is how similar different
inputs are, for a specific software system, with regard to the expected quality
of the corresponding output, and with regard to what knowledge about the
corresponding output quality reveals about such output quality for other in-
puts. One extreme situation would be that the software’s output either will
be incorrect for all inputs or will be correct for all inputs. Under such judge-
ment, clearly a single test suffices if one can correctly classify the output.
The other extreme situation would be that every tested input only reveals
whether or not the software provides the correct output for that specific in-
put value, while not revealing anything about other inputs. In the first case
the software’s performance is identical for all inputs, in the second case it
is independent for all inputs. In practice the truth, and with it the assump-
tions testers are confident to make, tends to be somewhere between these
two extremes. Statistically, the concept of exchangeability (and partial ex-
changeability [12]) provides the opportunity to model such judgements, and
these can be taken into account in a variety of ways in statistical methods.
However, it is not easy to do so, this is often overlooked [3]. In particular,
one might naturally judge that the input space can be divided into a parti-
tion, with all inputs in one element of the partition being more similar than
inputs in different elements, but with neither being identical or independent.
Bayesian graphical models provide a modelling framework for this, but are
not as flexible or easy to deal with in case of learning from many test results
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as some possible alternatives [6]. Further research is required on this crucial
aspect which sits at the heart of uncertainty in software testing.

Practical statistical support for software testing highlights one major re-
search challenge for statistics which, perhaps remarkably, appears not yet to
have attracted much attention. Any decisions on design of test suite (and be-
yond software testing, general design of experiments) depend on modelling as-
sumptions, usually based on expert judgements, experience and convenience
of the corresponding statistical methods. Ideally, one would want to use the
test suite also to confirm the underlying model assumptions, in particular
where tests are performed sequentially this could lead to changes if it was
discovered that the assumptions were not fully adequate. In such cases, one
would still hope that the earlier test results would be of use while one could
adapt further tests in the light of the new information, and so on. This idea
to use test outcomes in case the underlying assumptions were not fully ade-
quate is an issue of robustness of the test suite with regard to aspects of the
model specification. The idea to take this into account is particularly relevant
for sequencing of tests, where at the early stages of testing one may want to
include tests which can indicate whether or not the modelling assumptions
are adequate. It has, to the best of my knowledge, not been considered in the
literature, on software testing and even on general design of experiments. A
small step to this idea is the concept of adaptive utility [13, 14] in Bayesian
methods, where in sequential decision processes it is shown that it can be
optimal to first look for observations that enable one to learn the utilities
better, to the possible benefit of later decisions. Due to the specific features
of software testing, it would be exciting if this aspect of designing suitable
test suites were investigated in direct connection to a real-world application.

4 The way ahead

I should make an important comment about the (mostly academic) research
literature on software testing and reliability: In practice there is often scep-
ticism about the methods presented, and I believe rightly so. Most of these
methods have been developed by mathematicians and statisticians based on
assumptions that are inadequate in many challenging software testing prob-
lems. For example, the many models based on the idea of fault counting and
removal or on assumed reliability growth appear not to have a substantial
impact on practical software testing. Our industrial collaborators, who were
very experienced software testers and engineers, did not even think in terms
of numbers of faults in the software, as it was largely black-box and defining
a fault would be non-trivial.

I believe that the only way ahead is through genuine collaboration between
software testers and statisticians throughout the process of testing, includ-
ing all stages of test preparation. This is difficult and might be expensive,
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so might only be considered feasible for substantial applications, particularly
with safety or security risks in case software failures occur. However, sound
statistical support for the software testing process is likely to lead to both
more efficient testing and more reliable software, as such it will probably
lead to cost reduction, both for the actual test process and with regard to
the consequences of software failures. It would be particularly beneficial to
have long-term collaborations between the same teams of testers and statisti-
cians, both for working on upgrades of some software systems and for working
on a variety of systems. Testing upgrades normally benefits greatly from ex-
periences on testing of earlier versions, while working on a variety of systems
will also provide great challenges for the testers and statisticians, which is
likely to provide useful further insights towards more generic approaches for
statistically supported software testing.

I strongly hope that during the next decade(s) a variety of such long-term
collaborations will be reported in the literature and will lead to important
further methods and insights. Possibly some generic aspects might be au-
tomated, to facilitate easier implementation of sound statistical support for
testing of software with some specific generic features. I am sceptical however
about the possibility to fully automate such statistical support. I am scepti-
cal about the possibility to fully automate software testing, and as dealing
adequately with the uncertainties involved adds substantial complexity to
the problem, full automation is highly unlikely. It is beyond doubt, how-
ever, that thorough long-term collaborations between software testers and
statisticians can lead to very substantially improved software testing, hence
leading to more reliable software which will justify the effort. Clearly, this is
a great field to work in due to the many challenges and opportunities, both
for research and practical applications which have to be developed together.
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