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Abstract

This paper presents several main aspects of Bayesian reliability demonstration,
together with a concise discussion of key contributions to this topic.

1 Introduction

Many systems are required to be highly reliable, and prior to their practical use such

reliability may need to be demonstrated through testing. This requires determination

of the amount and type of testing that is needed in order to demonstrate a certain level

of reliability. In many situations, in particular where high reliability is required, one

would not accept faults occurring during such testing, as these are evidence against

the system’s ability to perform its task well and are likely to lead to rejection of

the system. As such reliability demonstration testing clearly deals with uncertainty,

and information to reduce this uncertainty, statistical methods can provide valuable

insights and can guide such testing. We focus on Bayesian methods, which allow

previous information to be taken into account in a subjective manner via the prior

distribution chosen, and, as such, can lead to reduced test effort. However, when

emphasizing the demonstration of reliability, it might not be considered appropriate to

rely on prior information, be it based on historical data from similar systems or expert

judgement. We will discuss this feature in detail, as it strongly influences the choice

of prior distribution. But first, we provide a brief overview of some key contributions

to the literature on Bayesian reliability demonstration, and we focus on the criterion

used for ‘reliability’.
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In line with the increasing development and popularity of Bayesian statistical infer-

ence in the late 1960’s and 1970’s, many researchers in reliability developed Bayesian

reliability demonstration (BRD) test philosophies and procedures during this period.

An excellent overview of contributions to BRD during this period is Chapter 10 of

Martz and Waller’s well-known book ‘Bayesian Reliability Analysis’ [16]. A key topic

is the choice of BRD criterion. Traditionally [16], criteria considered were closely

linked to those in related statistical areas such as quality control, and mostly used

producer’s and consumer’s risks expressed in terms of acceptance or rejection of a

system after BRD testing, conditional on assumptions on characteristics of the sys-

tem’s failure distribution. Here, we use ‘failure distribution’ as a generic term for

the probability distribution of the random variables of interest in BRD, which might

e.g. include numbers of failures over defined periods of testing (as is typical in so-

called ‘attribute testing’) or times between failures. The characteristics typically used

are a parameter representing the proportion of failures, as a population characteristic

in the standard statistical sense for Bernoulli random quantities (attribute testing) or

Mean-Time-To-Failure (MTTF) or Mean-Time-Between-Failures (MTBF). It is impor-

tant to notice that, although such characteristics have intuitive appeal, they are not

directly observable and only meaningful in combination with additional statistical mod-

elling assumptions (mostly exchangeability of the random quantities of interest). The

Bayesian approach to reliability demonstration distinguishes itself from other statisti-

cal approaches to such problems via the use of prior distributions on these parameters,

which can reflect prior knowledge - a crucial question is, of course, whether or not

such prior knowledge should be included in BRD and, if perhaps not, what role the

Bayesian prior then might have and how it can be chosen (we return to this important

issue in Section 3). Once one accepts the more or less traditional framework for sam-

ple size determination via producer’s and consumer’s risks, a variety of probabilities

can be considered for the detailed specification of the BRD criterion, and all of these

lead to many different solutions, which are however closely related from philosophi-

cal perspectives. Such probabilities include posterior risks, average risks and rejection

probabilities, and study of corresponding BRD approaches led to a significant number

of papers in the literature until the late 1970s [16]. A typical contribution to this liter-

ature is the study of behaviour of some quantities used in BRD tests, by Higgins and

Tsokos [11]. They show that the use of two different priors for MTBF, which cannot

be easily distinguished between at the prior stage, can lead to substantial differences in

the posterior risks in BRD. From this, we can conclude that choice of the prior distri-

bution was known to be crucial and problematic in BRD, yet it has received relatively

little attention in the BRD literature.
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Since the early 1980s, BRD seemed to disappear as a main topic from the reliability

literature, with further development mostly in industry, so less frequently reported in

the academic literature, and often embedded in wider programmes for achieving quality

and reliability. Examples of such progress on methods for reliability demonstration,

including Bayesian approaches, in the automotive industry are presented by Lu and

Rudy [13, 14]. Recently, Yadav, et al., [22] raised interesting issues on reliability

demonstration, emphasizing the need for a comprehensive approach which integrates

reliability demonstration into the product development process. They emphasize that

three dimensions of product design must be considered: physical structure, functional

requirements, and time in service. They propose some statistical methodology for

specific distributions and test plans, but although they mention the importance of

including prior information, they do not formalize this nor do they use a Bayesian

approach. This work, however, provides interesting arguments for renewed interest in

BRD.

In recent years, the current authors have presented, in part jointly with Rahrouh,

a different perspective on BRD, focussing solely on attribute testing [5, 6, 7, 8, 19].

This work has mainly been motivated by the observation that methods presented in

the literature seemed not to take explicitly into account characteristics of the process

in which the system is to be used after BRD testing, nor practical constraints on such

testing. For example, they distinguished between the cases of catastrophic and non-

catastrophic system failure in the process after testing, and they also studied optimal

decisions for both BRD and choice of redundancy level in a system, from overall cost

perspective. They also considered the role and choice of the prior distribution in BRD

in detail, which is crucial yet far from trivial and had not yet received much attention.

We briefly summarize main results in Sections 2 and 3, illustrated by some examples

in Section 4, and discuss some further aspects in Section 5.

2 Zero-failure reliability demonstration

Martz and Waller [15] considered the before mentioned risk-based BRD from the per-

spective of only tests that reveal zero failures. This has two advantages. First, in

practical demonstration of, particularly, high reliability, occurrence of one or more fail-

ures goes against the very nature of reliability demonstration, and is likely to lead

to improvement actions of the system, where possible, followed by renewed reliability

demonstration. This cycle brings with it very important challenges, also called ‘test-

fix-test’, which are beyond the scope of this paper. A second advantage of restricting

attention to inference only valid when testing reveals zero failures, is the relative math-
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ematical simplicity of the resulting Bayesian posterior and corresponding predictive

distributions, enabling these to be embedded in wider decision-theoretic frameworks

involving aspects of the process in which the system is required after testing, and in-

clusion of costs and time considerations and constraints. This and the following two

sections provide some details of such a predictive approach to zero-failure BRD, with

attention restricted to attribute testing [5, 6, 7, 8, 19].

We consider systems which have to deal satisfactorily with tasks of k different

types, where we assume complete independence between tasks of different type (both

in the success probability of the system to deal with such different tasks, and in the

statistical sense). In a standard Bayesian setting [1, 9, 16], we use a Binomial model

for the number of failures in ni tests of tasks of type i, for i = 1, . . . , k, with parameter

θi representing the unknown probability of a failure when the system has to deal with

a task of type i. We assume a Beta(αi, βi) prior distribution for θi, and we further

assume that zero failures will be observed in the ni tests, denoted as data (ni, 0),

so these inferences are only valid for zero-failure BRD. The corresponding posterior

predictive probability of zero failures in mi tasks of type i, in the process after such

testing, is

P (0|mi, (ni, 0)) =

mi∏
j=1

j + βi + ni − 1

j + αi + βi + ni − 1
. (1)

For ni > 0, (1) holds for αi > 0 and βi ≥ 0. Because no failures are observed we cannot

use αi = 0, as the corresponding posterior distribution would be improper [1]. The

hyperparameters αi and βi can be interpreted in terms of results of an imaginary earlier

test of αi +βi tasks of type i, in which the system failed to deal with αi such tasks, but

performed βi such tasks successfully. For BRD, this implies that inferences are quite

insensitive to choice of βi, where an increase in βi means that the minimal required

ni is reduced by the same number. However, such inferences are highly sensitive to

the choice of αi, as effectively the reliability demonstration requires ni tests without

failures to counter the prior information of αi ‘imaginary test failures’. We discuss the

choice of the prior distribution in more detail in Section 3, where we will advocate

the use of Beta prior distributions with αi = 1 and βi = 0. It should be noted that

this chosen value for βi leads to an improper prior distribution, so formally not really

a probability distribution as it does not integrate to one over the parameter space.

No statistical inferences can be based on improper distributions, but in this setting

we assume explicitly that, for posterior inference for demonstrating reliability, the

data contain at least a positive number of observed successes, which ensures that the

corresponding posterior distribution is proper.

We briefly state some results from [7], on required test numbers ni, such that
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zero failures in testing ensures a probability p of no failures in the process, either

for deterministic numbers of tasks or for a stochastic process considered over a fixed

period of time. This setting is, for example, suitable for catastrophic failures, i.e. a

failure leads to break-down of the whole system, in the sense that the clear target

is to demonstrate reliability via an inferred (very) high probability of zero failures in

the process after testing, when the system is actually in service. In such cases (e.g.

alarm systems for chemical plants), it is often difficult to bring cost considerations into

the argument, either due to inherent lack of knowledge of consequences of rare events

or due to ethical issues, so requirements directly on the predictive probability of zero

failures are attractive. Of course, such cost considerations are likely to influence choice

of an appropriate value of p.

For the deterministic case, where the system must perform a known number mi of

tasks of type i in the process, the ni must be such that

P (0|mi, (ni, 0), i = 1, . . . , k) =
k∏

i=1

mi∏
j=1

j + βi + ni − 1

j + αi + βi + ni − 1
≥ p. (2)

If we aim at satisfying this requirement with a minimal total number of tests, there is

no closed-form solution for ni. For the special case with αi = α, si = βi + ni = s and

mi = m, for all i, an approximation for the minimum required value of s to meet this

reliability requirement, with p close to 1, is

p1/(kα)

1− p1/(kα)
×m. (3)

For the case with α = 1 and βi = 0, for all i = 1, . . . , k, which we advocate for use

in reliability demonstration (see Section 3), (3) gives the exact value of the optimal

(real-valued) ni’s [7] (the integer-valued solution is found by checking this probability

value for the neighbouring integer-valued k-vectors). The fact that, to minimise the

total number of zero-failure tests required in this situation, one would indeed wish to

use equal values of si, is proven in [7].

For p close to 1, the expression (3) is close to

p

1− p
× kαm, (4)

which can be proven via the same argument as used in [7] to show that (3) is ap-

proximately linear in k. The expression (4) makes clear that the required number of

zero-failure tests is very sensitive to the choice of α. Clearly, the required value of ni

is less sensitive to small changes in βi, as the sum of ni and βi must be a constant.

The influence of the αi and βi on the required number of zero-failure tests is similar in

more general situations with unequal αi, si and mi.

5



Of course, in many real-world processes the numbers of tasks mi are not deter-

ministic, which is for example typically the case in alarm systems. An important and

interesting result is the following: let Mi be the random number of tasks of type i that

the system has to perform in the process after testing. Then, for all possible probabil-

ity distributions for Mi with the same expected value E(Mi), the most BRD testing

is actually required for the deterministic case with mi = E(Mi) (this is a consequence

of Jensen’s inequality). Hence, as long as one can specify an expected value for the

number of tasks the system will be required to perform (or of course an upper bound

to stay on the safe side), then the amount of testing required by assuming this number

to be deterministic leads to conservative test numbers. It also turned out from many

examples studied, although formal proof was not achieved, that if Mi actually has a

Poisson distribution, which is often suitable to model accidental events, then the opti-

mal numbers of BRD tests of tasks of type i are very close to the corresponding optimal

test numbers in the deterministic case, which in practice means that over-testing would

be prevented in such cases if you based your calculations upon the deterministic case

instead of the Poisson case [7]. Example 1 in Section 4 illustrates this approach.

A different predictive BRD approach was presented in [8], which is suited for non-

catastrophic system failure during the process after testing. This implies that the

system will be able to continue operating in case such a failure occurs, and also that cost

considerations become more important, so both costs of testing and of failure are taken

into account. That approach aims at minimisation of overall expected costs for testing

and the process after testing, and takes constraints on testing (both budget and time)

into account. Optimal BRD plans are derived by solving relatively straightforward

constrained optimisation problems, with several analytical results making clear the

influence of constraints on testing. The reader is referred to [8] for more details, we

wish to emphasize that it is again the predictive nature of this approach, with reliability

criteria explicitly expressed in terms of the system’s performance in the process after

testing, and using only observable random quantities (mostly the number of failures

per type of task), which makes this an attractive solution to BRD.

In [19] a similar approach, yet again more suitable for catastrophic failures, is

considered in which reliability of a system, to be demonstrated, is controlled both by

tests and decisions on in-built system redundancy. This also considers minimisation

of total expected costs, taking into account the costs of additional redundancy which

of course enables fewer zero-failure tests in order to demonstrate a required level of

reliability, the latter typically included as a constraint for the optimisation problem.

We refer to [19] for further details, Example 2 in Section 4 shows the potential of this

approach.
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The important considerations of the role and choice of the prior distribution is sim-

ilar for all the different predictive BRD approaches mentioned here, and is commented

on in the next section.

3 The prior distribution

A main concern in Bayesian statistics is the choice of the prior distribution. In many

applications, if sufficient data are observed then the inferences based on the posterior

distribution are pretty robust with regard to the choice of the prior distribution. In the

zero-failure BRD setting, however, the posterior distribution remains highly sensitive to

some changes in the prior distribution. Hence, it is not straightforward to use so-called

‘non-informative’ priors [1] for such zero-failure testing [6, 7].

Design of experiments within the Bayesian framework is also strongly influenced

by the prior distribution used [1]. It is usually advocated that the main role of the

prior distribution is to take subjective information into account. From this perspective,

the main aim of design of experiments, in Bayesian statistics, is for the person whose

beliefs are modelled, to learn in some optimal manner from the data resulting from

the experiment [3]. In case of testing for high reliability, one would often have quite

strong prior beliefs about the quality of the system, in the sense that one would already

expect the system to be highly reliable, such that one would be somehow surprised if

there were still one or more failures observed during testing. If one takes such beliefs

into account via a prior distribution, then this will lead to relatively few zero-failure

tests being required in order to meet a reliability criterion. Using one’s prior beliefs as

such, the intention of the tests would be to learn, in a way that is dependent on the

subjective input. In the extreme case, if one is already so confident about the system’s

reliability that one judges testing unnecessary, one can choose a corresponding prior

distribution such that indeed no further testing is required. Of course, this may not

convince others. A similar difference between personal learning and convincing others,

affects general Bayesian design of experiments and the role of randomization [2].

We propose that the prior distribution used for Bayesian reliability demonstration,

plays a different, non-subjective, role, as reliability demonstration is not normally

intended to convince only the person whose beliefs are modelled, of the reliability of

a system, but to satisfy externally imposed rules or to convince others of the system’s

reliability. From this perspective, the prior distribution can be regarded as reflecting

neutral, or even pessimistic, prior information, which the test data must counter in

order to demonstrate reliability.

From this perspective of reliability demonstration, we advocate the use of the Beta
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prior for θi, with hyperparameters αi = 1 and βi = 0. The choice of βi = 0 is natural,

given its interpretation and its effect on the required number of zero-failure tests [7].

An appropriate value of αi is more open to discussion, and this choice has great impact

on the number of zero-failure tests required. With the interpretation as ‘having seen

αi tests failing’ before testing, our test criterion demands sufficiently many zero-failure

tests, such that, on the basis of the combined information represented by this prior

distribution and the test results, the reliability requirement is satisfied. The choice

αi = 1 seems reasonable from this perspective, as it asks for sufficient zero-failure tests

to outweigh one suggested earlier failure. We consider αi = 1 a fairly conservative

choice, in the sense that many zero-failure tests are required to demonstrate high

reliability. Hartigan [10] suggested the same prior distribution for similar conservative

inferences. A further argument in favour of this choice of αi and βi results from analysis

of this same problem from a different foundational perspective [5].

4 Examples

Example 1.

This example illustrates the BRD approach from [7], with failures assumed to be catas-

trophic. It considers the optimal test numbers for a system that has to perform k = 4

types of tasks, using prior distributions with αi = 1 and βi = 0 for all i = 1, . . . , 4.

We aim at minimisation of the total number of tests, assuming they reveal no failures,

such that the resulting predictive probability (2) of zero failures in the process is at

least p. For the deterministic case, let m = (1, 2, 4, 9). The corresponding optimal test

numbers are given in Table 1.

p n1 n2 n3 n4

0.90 70 98 139 207
0.95 144 204 287 429
0.99 737 1042 1474 2209
0.995 1479 2091 2956 4433
0.999 9457 10553 13943 21505

Table 1: Optimal test numbers.

This illustrates that very high reliability can only be demonstrated by very many

zero-failure tests. For this setting, if tasks are assumed to arrive according to Poisson

processes, with their expected numbers equal to the mi used above, then the numbers

of zero-failure tests required are indeed nearly identical to those in Table 1. If we
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increase the mi, then the required test numbers increase by about the same factor, for

example optimal testing for m = (10, 20, 40, 90), and p = 0.90, is achieved by taking

n = (699, 985, 1387, 2067).

Example 2.

In this example we briefly illustrate the optimal zero-failure test numbers and numbers

of components, for systems with redundancy [19]. We consider a 2-out-of-y system, so

for the system to function a minimum of 2 out of y components must function, and

we assume components to function independently. We only consider the deterministic

case, with the numbers of tasks of k = 3 independent types required in the process after

testing equal to 1, 3 and 6, respectively. The optimal BRD zero-failure test numbers

and optimal number of components y are presented in Table 2 for several cases. The

cost per component installed is Q, C is the cost incurred if the system does not deal

successfully with all 10 tasks in the process after testing, and c represents the costs of

one test per type of task. Again we use Beta prior distributions with αi = 1 and βi = 0

for all types of tasks, and the optimisation criterion chosen is minimal expected overall

costs, so for testing and the system’s functioning during the process considered after

testing, with the constraint that the posterior predictive probability of zero failures in

those 10 tasks after testing should be at least p = 0.95. The cases considered are:

(1) c = (1, 1, 1), C = 10, 000

(2) c = (20, 50, 50), C = 10, 000

(3) c = (20, 50, 50), C = 1, 000, 000

n, y

Case(s) Q = 300 Q = 1, 000 Q = 3, 000

(1) (47, 68, 86), 3 (47, 68, 86), 3 (201, 347, 489), 3

(2) (8, 9, 10), 5 (12, 12, 15), 4 (26, 28, 35), 3

(3) (14, 14, 16), 8 (20, 21, 23), 6 (41, 43, 51), 4

Table 2: Optimal numbers of zero-failure tests (n) and components (y).

Obviously, higher built-in redundancy (larger y) requires fewer zero-failure tests. Cases

(1) and (2) in Table 2 illustrate the fact that increasing testing cost ci per test of type

i, reduces the optimal number of zero-failure tests ni, and may increase the optimal

y. For Case (2) with Q = 1, 000, Table 2 shows that the optimal solution is to install

y = 4 components with n = (12, 12, 15) zero-failure tests. If we increase the cost per

component to Q = 3, 000 in the same setting, the optimal solution for Case (2) is
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y = 3 components with n = (26, 28, 35) tests. If we consider a 2-out-of-2 system in-

stead (not presented in Table 2), the optimal zero-failure test numbers, in this case, are

(296, 322, 454). This illustrates that the option of building in redundancy can greatly

reduce the test requirements and the corresponding expected costs. Cases (2) and (3)

illustrate that increasing process failure cost C requires an increased number of com-

ponents and/or an increased number of zero-failure tests to minimise the total costs

and to demonstrate the required reliability level.

5 Summary and related topics

Bayesian reliability demonstration is a topic of great interest, both for applications

as from the perspective of foundations of statistics, the latter due to wide variety of

possible reliability criteria and the non-standard role prior distributions play when

test data are required to demonstrate reliability. The predictive approach to BRD,

recently presented by the current authors and discussed above, is promising in its

flexibility with regard to reliability criteria used and the possible inclusion of constraints

in the optimisation problems considered to take practical considerations into account

[18]. As this approach has so far only been developed for attribute testing, there are

important challenges for a similar way for BRD involving (continuous) time random

quantities. This is particularly challenging in zero-failure situations, where observations

would only consist of observed periods without failures, so all observations would be

right-censored (see [4] for a nonparametric predictive approach to a related problem

in probabilistic safety assessment). There are many topics in statistics, quality control

and reliability, which consider problems that are closely related to BRD, for example

software reliability verification and testing [12, 20, 21] and acceptance sampling, as

well as topics such as fault removal and re-testing, and accelerated life testing [17],

and linking these to BRD for large-scale systems and developing engineering projects

is a major challenge, so BRD promises to offer exciting opportunities for research and

applications over the next decades.
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