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Abstract

A new model for learning from multinomial data has
recently been developed, giving predictive inferences
in the form of lower and upper probabilities for a fu-
ture observation. Apart from the past observations,
no information on the sample space is assumed, so
explicitly no assumptions are made on the number of
possible categories. In this paper, we briefly present
the general lower and upper probabilities correspond-
ing to this model, and illustrate their properties via
two examples taken from Walley’s paper [16], which
introduced the imprecise Dirichlet model (IDM). As
our approach is nonparametric, its applicability is
more restricted. However, our inferences do not suffer
from some disadvantages of the IDM.
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1 Introduction

In this paper, we present direct lower and upper prob-
abilities for a future observation, based on observed
multinomial data. We start by introducing notation
used for such multinomial data and for the events
of interest. Then we explain nonparametric predic-
tive inference (NPI) [2], as based on Hill’s assump-
tion A(n) [14], and we introduce the variation of this
assumption suitable for the assumed model on which
our predictive lower and upper probabilities are based.
In Section 2, we present the general lower and upper
probabilities for a future observation in our multino-
mial setting, and we give a brief description of the
assumed model on which these lower and upper prob-
abilities are based. In Section 3, we present two ex-
amples to illustrate our lower and upper probabilities.
In Section 4, we compare our approach with Walley’s
Imprecise Dirichlet Model [16], which has attracted
considerable attention (see [3] for a survey of work

based on the IDM). We end this paper with a brief
discussion of some related aspects, these will be dis-
cussed in far more detail, together with a detailed
justification of the results presented here, elsewhere
[6].

1.1 Multinomial data and notation

In a standard multinomial setting, observations be-
long to categories, with no natural relationships or
orderings between these categories. We will assume
that each observation can be assigned to a category
with certainty, but we do not require these categories
to be defined prior to the observations. Throughout
this paper, we assume that available data consist of
nj observations in category cj , for j = 1, . . . , k, with∑k

j=1 nj = n. If the categories are defined upon
observation, we have that nj ≥ 1, and hence that
1 ≤ k ≤ n. We could include further specifically de-
fined categories to our data description, to which no
observations belong, but doing so will not influence
any of our inferences (as is easily confirmed), so we
will not consider this possibility further. In this paper,
lower and upper probabilities based on such data do
not normally have the data representation on which
they are based explicitly mentioned in the notation,
but in the examples in Section 3, where we consider
different representations of the data, we will include
these explicitly in the notation.

Our inferences in this paper are restricted to a single
future observation, which is assumed to be exchange-
able with the n observations so far, under the assumed
model as discussed in Section 2. We will refer to such
a future observation as the ‘next observation’, and will
denote it by Yn+1. For our general results, presented
in Section 2, and consisting of lower and upper proba-
bilities for all possible outcomes for the next observa-
tion, we must include notation for new, as yet unseen,
categories. We need to distinguish between Defined
New categories, of which we need to take the possi-
bility of having several different such categories into



account, denoted by DNi for i = 1, . . . , l for l ≥ 1,
and the possibility that the next observation belongs
to any not yet observed category (including categories
DNi), which we describe as an Unobserved New out-
come and denote as Yn+1 = UN .

By allowing l ≥ 0 and 0 ≤ r ≤ k in the notation
introduced above, we can define two types of events
that comprise the most generally formulated events
that need to be considered for Yn+1 in our multinomial
setting. These two general events are

Yn+1 ∈
r⋃

s=1

cjs
∪ UN\

l⋃
i=1

DNi, (1)

and

Yn+1 ∈
r⋃

s=1

cjs
∪

l⋃
i=1

DNi. (2)

We wish to emphasize that excluding one or more
defined new categories in the event of interest, as in
(1), can only affect our inferences for events including
UN .

1.2 Nonparametric predictive inference and
interval probability

Hill [14] introduced the assumption A(n) as a basis
for predictive inference in case of real-valued obser-
vations. In his setting, suppose we have n observa-
tions ordered as z1 < z2 < . . . < zn, which parti-
tion the real-line into n + 1 intervals (zj−1, zj) for
j = 1, . . . , n + 1, where we use notation z0 = −∞
and zn+1 = ∞. Hill’s assumption A(n) is that a fu-
ture observation, represented by a random quantity
Zn+1, falls into any such interval with equal proba-
bility, so we have P (Zn+1 ∈ (zj−1, zj)) = 1

n+1 for
j = 1, . . . , n + 1. This assumption implies that the
rank of Zn+1 amongst the n observed data has equal
probability to be any value in {1, . . . , n + 1}. This
clearly is a post-data assumption, related to exchange-
ability [10], which provides direct posterior predictive
probabilities [11]. Hill [14] argued that A(n) is a rea-
sonable basis for inference in the absence of any fur-
ther process information beyond the data set, when
actually predicting a future random quantity. Au-
gustin and Coolen [2] prove that nonparametric pre-
dictive inference (NPI) based only on A(n) has strong
consistency properties in the theory of interval prob-
ability [15, 18, 19].

For circular data A(n) is not suitable, as the data are
not represented on the real-line. A straightforward
variation, again linked to exchangeability of n + 1
observations, is the assumption that we call circular-
A(n) and denote by A(n)© :

Let ordered circular data x1 < x2 < . . . < xn create
n intervals on a circle, denoted by Ij = (xj , xj+1) for
j = 1, . . . , n − 1, and In = (xn, x1). The assumption
A(n)© is that a future observation Xn+1 falls into each
of these n intervals with equal probability, so

P (Xn+1 ∈ Ij) =
1
n

, for j = 1, . . . , n. (3)

Notice that neither the units of the circular data, nor
the chosen 0-point on the circle, are relevant here.
A(n)© is clearly again a post-data assumption, re-
lated to the appropriate exchangeability assumption
for such circular data, in exactly the same way as A(n)

was related to exchangeability of n + 1 values on the
real-line. Hence, nonparametric predictive inference
based on A(n)© has the same consistency properties as
such inference based on A(n) [2].

In this paper, we use A(n)© combined with an assumed
underlying representation of multinomial data as out-
comes of spinning a probability wheel (see Section 2).
As we wish not to make further assumptions about
the probability mass 1/n per interval Ij , our predic-
tive inferences are in the form of interval probabilities
[2, 15, 18, 19], where a lower probability for an event A
is represented by P (A), and the corresponding upper
probability by P (A). Effectively, the lower probability
is the maximum lower bound for the classical proba-
bility for A that is consistent with the probabilities as
assigned by A(n)© , according to De Finetti’s fundamen-
tal theorem of probability [10], and the upper proba-
bility is the minimum upper bound consistent in this
way. From a subjective point of view as advocated by
Walley [15], these can also be interpreted as maximum
buying and minimum selling prices, respectively, for
which one judges gambles on the event A to be de-
sirable. The predictive lower and upper probabilities
presented in this paper lead to F -probability in the in-
terval probability theory of Weichselberger [2, 18, 19],
see the Appendix for more details. This proves that
these predictive interval probabilities, based on a par-
ticular data representation, are internally consistent
in a very strong sense: The resulting limits are in
complete accordance with a non-empty set of clas-
sical (‘precise’) σ-additive probabilities, and so the
bounds make perfectly use of the available informa-
tion; they are neither too wide nor do they add unjus-
tified additional assumptions to our inferences. Ad-
ditionally, the F -probability property also implies co-
herence, and avoiding sure loss, in Walley’s sense [15].
As a consequence, our bounds are also perfectly ra-
tional from the behavioral point of view. Important
properties of F -probability are that the lower and up-
per probabilities contain a classical probability, that
the lower (upper) probability is superadditive (subad-
ditive), and that P (A) = 1 − P (Ā), where Ā is the



complementary event to A.

2 General results

2.1 Predictive lower and upper probabilities

We now present the general results for nonparametric
predictive inference for the next observation, Yn+1,
based on multinomial data, with complete absence of
knowledge on the number of possible categories apart
from the information provided by n > 0 observations,
and based on A(n)© and the probability wheel model
representation which we discuss in some more detail
in Section 2.2 and in [6].

For the first of the general events introduced in Sec-
tion 1, the lower probability is

P (Yn+1 ∈
r⋃

s=1

cjs
∪ UN\

l⋃
i=1

DNi) =

1
n

(
r∑

s=1

njs − r

)
, for k ≥ 2r,

1
n

(
r∑

s=1

njs
− r + max(2r − k − l, 0)

)
,

for r ≤ k ≤ 2r.

(4)

and the corresponding upper probability is

P (Yn+1 ∈
r⋃

s=1

cjs
∪ UN\

l⋃
i=1

DNi)

=
1
n

(
r∑

s=1

njs + k − r

)
. (5)

For the second of these general events, the lower prob-
ability is

P (Yn+1 ∈
r⋃

s=1

cjs∪
l⋃

i=1

DNi) =
1
n

(
r∑

s=1

njs − r

)
, (6)

and the corresponding upper probability is

P (Yn+1 ∈
r⋃

s=1

cjs
∪

l⋃
i=1

DNi) =

1
n

(
r∑

s=1

njs + k − r

)
, for r ≤ k ≤ 2r,

1
n

(
r∑

s=1

njs
+ r + min(k − 2r, l)

)
,

for k ≥ 2r.

(7)

It is easy to confirm that these lower and upper prob-
abilities satisfy P (A) = 1−P (Ā) for all events A con-
sidered for the next observation, for a chosen data rep-
resentation. The classical probability defined as the

relative frequency of A in the data, is always bounded
by these P (A) and P (A). In the Appendix we justify
our claim that these lower and upper probabilities,
based on a particular data set and data representa-
tion, lead to F -probability. In [6] we will present a
detailed study of the properties of these lower and
upper probabilities in the theory of interval probabil-
ity [18, 19], including attention to conditioning and
updating (cf. [2]). It is of interest to consider the
events for which our lower probabilities are equal to
0. For both events (1) and (2), this only occurs if
njs = 1 for all s = 1, . . . , r, but for event (1) a fur-
ther condition is required if k < 2r, in which case
P (Yn+1 ∈

⋃r
s=1 cjs

∪UN\
⋃l

i=1 DNi) = 0 only occurs
if also l ≥ 2r − k.

2.2 Underlying model

The predictive lower and upper probabilities pre-
sented in Section 2.1 are based on an underlying
assumed model, ensuring that they not only make
sense for one specific set of data (and a chosen cor-
responding data representation), which they do being
F -probability and due to the fact that they bound the
observed relative frequencies, but are also consistent
if more observations are added to the data. Such con-
siderations will be discussed in detail in [6], together
with the underlying model and the principles leading
to, and detailed justification of, the above presented
lower and upper probabilities. Here, we give a brief
summary of the key aspects of this model and justifi-
cation.

The model underlying our nonparametric predictive
lower and upper probabilities (4)-(7) is based on a
probability wheel representation, with each observa-
tion category represented by a single segment of the
probability wheel. The idea of such a probability
wheel is as follows (see [12] for use of the same con-
cept as a reference experiment underlying subjective
probability). An arrow, fixed at the center of a circle,
spins around, such that the arrow is equally likely to
stop at any segment of the same size, where a seg-
ment is an area between two lines from the center of
the circle to its circumference. In our model for multi-
nomial data, we assume explicitly that each possible
observation category is represented by only a single
segment on the circle. Even more, we assume that
there is no natural (or assumed) ordering of the ob-
servation categories, and therefore also no such or-
dering of the segments on the circle. Clearly, if we
had perfect knowledge of the sizes of all segments on
the probability wheel, we would have full knowledge
of the probability distribution for future observations
from this multinomial setting. In this paper, we as-
sume that the only information available to us is a



finite number of exchangeable observations. Such ob-
servations define observation categories in the sense
that, on each observation, we know with certainty if
it is from a category not previously observed, or to
which previously observed category it belongs. We
assume to have no further knowledge about the to-
tal number of categories on the probability wheel,
which can conceptually be ‘very large’ - as we are
only interested in prediction for a finite number of
future outcomes (only one in this paper), based on
a finite number of observations, we do not need to
assume whether or not ‘very large’ might include ‘in-
finite’. As this probability wheel is only an abstract
model, we have no information about the configura-
tion of different segments on it. This is important
for our nonparametric predictive inferences based on
A(n)© once we consider unions of two or more cat-
egories, and leads to imprecision of our inferences,
in the sense that our lower and upper probabilities
are optimal bounds over all possible configurations,
including possibly assumed additional unseen cate-
gories.

When we combine this concept of a probability wheel,
with each observation category represented by a single
segment, with the assumption A(n)© , on the basis of n
observations, then we can represent this situation as
if the n observations are represented by n lines, which
partition the circle in n equally sized slices, with the
next observation equally likely to fall into each one
of these slices. The assumption that each observation
category is represented by only one segment on the
probability wheel, implies that the lines representing
observations in the same category are ‘next to each
other’. For example, if precisely two observations fall
into one category, then our current inferences with
regard to the next observation falling into this cat-
egory, are based on the current representation with
two lines next to each other which both represent this
category, and the other lines, in case of more than 2
observations, representing different categories. Under
the assumption A(n)© , the probability 1

n for the line on
the probability wheel corresponding to the next ob-
servation to be in between the two lines representing
these observations in the same category, is the lower
probability that the next observation belongs to that
same category as well. For the upper probability, we
consider all possible configurations of segments on the
probability wheel, which are consistent with the ob-
servations and their corresponding lines on the wheel.
The upper probability is then the maximum amount
of probability, under A(n)© and these data and con-
figurations, that can be assigned to the segment(s)
corresponding to the event of interest.

Our assumption that each observation category is rep-

resented by a single segment on the probability wheel
is crucial to the imprecision in our lower and upper
probabilities, and is essential as without this assump-
tion our model would lead to vacuous lower and upper
probabilities for all non-trivial events.

3 Examples

In this section we illustrate our inferences via two ex-
amples, both taken from Walley [16], but with vari-
ations to emphasize special features of our method.
These examples are also central to the comparison of
our method with Walley’s IDM in Section 4. Fol-
lowing Walley, we use colours as different categories,
but we should emphasize that while this helps pre-
sentation, one should be careful not to link different
categories intuitively, or for example take any natu-
ral ordering or upper bound on the number of colours
into consideration.

Example 1.
Walley [16] advocates the IDM, in particular its
property that IDM-based inferences do not depend
on choice of the sample space. He discusses the fol-
lowing example to motivate this property. Assuming
three observations, Walley considers the event that
the next observation is Red or Yellow. The sample
spaces considered are:
(a) {Red or Yellow, Other observed colours}, with
the data reported as ‘1 Red or Yellow, 2 Other
observed’;
(b) {Red, Yellow, Other observed}, with the data
reported as ‘0 Red, 1 Yellow, 2 Other observed’;
(c) {Red or Yellow, Blue, Green, White, Other
observed}, with the data reported as ‘1 Red or
Yellow, 1 Blue, 0 Green, 1 White, 0 Other observed’.
For our inferences, the most detailed data repre-
sentation corresponding to these observations can
be denoted as Dd = (Y : 1; B : 1; W : 1), where
each colour is represented by its first letter. It is
straightforward to see that, in our model, explicit
reporting of not observed data categories does not
influence our inferences, as they do not affect the
data representation in the underlying probability
wheel model. This data representation Dd was not
explicitly used by Walley. Relating to the three
sample spaces used by Walley, we consider the
following data representations:

(a) Da = (RY : 1; O : 2);

(b) Db = (Y : 1; O : 2);

(c) Dc = (RY : 1; B : 1; W : 1);

(d) Dd = (Y : 1; B : 1; W : 1).



RY denotes the category ‘Red or Yellow’, and O the
category ‘Other observed’, that is here ‘Observed and
not Red or Yellow’. Clearly, O forms a single category
here - it may be the case (as (c) suggests) that the
2 observations in this category could well be distin-
guished, but once recorded to belong to this category,
such information is not used further and hence should
be considered not to be available.

Our NPI-based lower and upper probabilities for the
event that the fourth observation is Red or Yellow
are given below, for the four data representations
above. Depending on the data representation, so
on the definition of the observation categories, this
event is either denoted as Y4 = RY or as Y4 ∈ {R, Y }.

(a)[P , P ](Y4 = RY |Da) = [0, 2/3];

(b)[P , P ](Y4 ∈ {R, Y }|Db) = [0, 2/3];

(c)[P , P ](Y4 = RY |Dc) = [0, 2/3];

(d)[P , P ](Y4 ∈ {R, Y }|Dd) = [0, 1].

In contrast, Walley’s IDM leads to the same lower and
upper probabilities in these 4 cases, 1

3+s and 1+s
3+s , re-

spectively, with s > 0 a constant which Walley em-
phasizes should be chosen independently of the data
representation, and for which Walley suggests that,
for example, values s = 1 or s = 2 may be suitable.
Our method takes the different data representations
explicitly into account, let us consider this in detail.
We must emphasize that, although we could compare
these lower and upper probabilities corresponding to
different data representations from the overall per-
spective of knowing Dd, this does not logically imply
that all these lower and upper probabilities should be
identical. Clearly, once data are recorded in defined
categories, from these recorded data alone one can-
not deduce the more detailed information about the
observations, for example if we only have data rep-
resented as Db, we cannot deduce the more detailed
representation Dd from this anymore.

Our lower probabilities in cases (a)-(d) are all equal to
0. In our model, this is a consequence of only having
one observation in the category {R, Y } or RY , while
our predictive lower probability can only be positive if
the category of interest has been observed more than
once. Observing a category once does not strongly
imply that it can be observed again, unless one wants
to add assumptions on the possible number of cat-
egories [4].1 One might argue that it may be more
likely that the next observation is an outcome which
has been observed once before than a defined new cat-
egory. We would agree with such an intuition, in our
approach this is reflected in different upper probabil-

1See also the more detailed discussion of this aspect at the
end of Section 4.

ities for such events.

Our upper probabilities in cases (a)-(d) vary both
due to the representation of the event of interest, so
whether or not Red and Yellow are combined into a
single category or not, and due to the representation
of the other observations in one or two categories. Let
us consider these upper probabilities from the per-
spective of our assumed probability wheel model, and
the corresponding assumption A(n)© for the fourth ob-
servation. In cases (b) and (d), ‘Red’ is a different cat-
egory to ‘Yellow’, and as there is no ‘Red’ observation
yet, ‘Red’ is a Defined New category in the event of
interest. For case (d), the 3 lines representing the data
on the probability wheel all belong to different cate-
gories. Without further assumptions on the sizes of
the category segments on this wheel, the segment be-
tween the B and W lines could be ‘Red’, and the other
two segments have the Y line as one of its boundaries,
hence these can be all ‘Yellow’, hence the probability
wheel could, effectively, be all either ‘Red’ or ‘Yellow’,
apart from the two observed B and W lines. This
implies that two of the three observations had been
at lines which, if this extreme configuration were the
actual probability wheel, would have had probability
zero to occur. However, any positive lower probabil-
ity for B or for W should correspond to a segment
of the probability wheel which, in the current repre-
sentation, must have a positive size, and on the basis
of a single observation any such a necessarily positive
size can only be based on additional assumptions. For
case (b), we have two undistinguished ‘Other’ obser-
vations, represented on our probability wheel by two
lines belonging to the same segment. Hence, the size
of this ‘Other observed’ segment in the current repre-
sentation is at least 1/3, the other two segments can
be ‘Red’ or ‘Yellow’. The same reasoning applies to
case (a), the only difference being that RY is a single
category, but it can still consist of the two segments
which are not in between the two lines representing
the O observations. For case (c), the area between the
lines representing the observations B and W cannot
belong to the segment RY , as every category is rep-
resented by only a single segment, and it obviously
must contain the line representing the RY observa-
tion. Hence, both segments which have the RY line
as a bound could all belong to the segment RY , giving
upper probability 2/3 again.

This example becomes more interesting if we add a
fourth observation, which is Red, and consider our
NPI-based inferences for the fifth observation. Let
us again compare the lower and upper probabilities
for the event that the next observation is either
Red or Yellow, where we consider the following data
representations:



(e) De = (R : 1; Y : 1; B : 1; W : 1);

(f) Df = (RY : 2; O : 2);

(g) Dg = (R : 1; Y : 1; O : 2);

(h) Dh = (RY : 2; B : 1; W : 1).

These data representations lead to the following
lower and upper probabilities:

(e)[P , P ](Y5 ∈ {R, Y }|De) = [0, 1];

(f)[P , P ](Y5 = RY |Df ) = [1/4, 3/4];

(g)[P , P ](Y5 ∈ {R, Y }|Dg) = [0, 3/4];

(h)[P , P ](Y5 = RY |Dh) = [1/4, 3/4].

The lower probabilities for these events of interest
vary. If data are recorded with ‘Red’ and ‘Yellow’
belonging to one category, then the fact that two ob-
servations have been made in this category causes the
lower probability for the next observation to belong to
the category RY to become positive. If one uses the
combined category RY then the information about
the specific colour of these two observations is not
taken into account. The differences in the upper prob-
abilities in cases (e)-(g) are easily understood by the
same principle with regard to the chosen represen-
tation for the other colours observed. For case (h),
the segment RY on the probability wheel, in our as-
sumed model with this data representation, cannot
contain the area between the lines representing the
observations B and W , which represents predictive
probability 1/4, but the whole remaining area of the
probability wheel could be assigned to RY , leading to
the upper probability 3/4. It is interesting to com-
pare the two extreme data representations, (e) and
(f). In case (f), the data have so far been recorded as
Bernoulli data (‘Red or Yellow’ - yes or no), whereas
in case (e) all 4 observations were distinguished. Case
(e) leads to more predictive imprecision for our event
of interest, which reflects the logical fact that, if we
represent data in more detail, more information would
be required to reduce imprecision than if we represent
data in less detail. This will be discussed, as a basic
principle of inference, in [6]. Related to case (e), so
data De, it is interesting to consider a possible fifth
observation, also in a new category, say G : 1, with
data represented as

Di = (R : 1; Y : 1; B : 1; W : 1; G : 1).

The corresponding predictive lower and upper proba-
bilities for the sixth observation are

[P , P ](Y6 ∈ {R, Y }|Di) = [0, 4/5],

illustrating that with all observations belonging to
different categories, such upper probabilities are less

than one if more than half of all observations belong to
categories not in the event of interest. In such a case
the corresponding lower probabilities remain zero2.
We illustrate the inclusion of such not yet observed
categories in Example 2, emphasizing the important
difference between the next observation belonging to
Defined New categories and, more generally, it just
being an Unobserved New outcome.

Example 2.
Walley [16] discusses an example with 6 observations,
consisting of 1 Red, 3 Blue and 2 Green. He focusses
on the probability that the 7th observation is again
Red. We also use this example to illustrate our NPI-
based method, but consider more events, in particular
events including the possibility that the next obser-
vation belongs to a new category, where we distin-
guish between one or more Defined New categories,
and any Unobserved New outcome. We also consider
some variations to these data, to illustrate important
properties of our method. This example will also be
referred to in Section 4, for the general comparison
between Walley’s IDM and our method.

Let us first represent the 6 available observations by

D1 = (R : 1; B : 3; G : 2),

so the data belong to k = 3 different observed cate-
gories. This leads to

[P , P ](Y7 = R|D1) = [0, 2/6].

When we also take new categories into account, we
get

[P , P ](Y7 ∈ {R,UN}|D1) = [0, 3/6]

and also

[P , P ](Y7 ∈ {R,DN}|D1) = [0, 3/6],

where the upper probabilities are identical as there is
only one segment of the probability wheel available,
in the current representation corresponding to these
upper probabilities, which can be assigned to a new
category, namely the segment bounded by one Blue
and one Green line. Hence, based on D1 we also get
the same lower and upper probabilities if we include
more than one DN in this event of interest.

Let us now suppose that, on reconsideration, one ob-
servation was mistakenly classified as Blue, it should
have been classified as Purple, and let us use data
representation

D2 = (R : 1; B : 2; G : 2; P : 1).
2This is not in conflict with the F -probability requirement

that P (A) = 1−P (Ā), as the complementary event in this case
includes not yet observed categories.



This leads to

[P , P ](Y7 = R|D2) = [0, 2/6],

and lower probabilities

P (Y7 ∈ {R,UN}|D2) = 0

and
P (Y7 ∈ {R,DN}|D2) = 0,

which are the same as for D1. The upper probabilities
for these two events are now

P (Y7 ∈ {R,UN}|D2) = 4/6

and
P (Y7 ∈ {R,DN}|D2) = 3/6,

while for l ≥ 2 we have

P (Y7 ∈ {R} ∪
l⋃

i=1

DNi|D2) = 4/6.

These upper probabilities correspond to the fact that,
under D2, only one out of the six segments in our
current representation is assigned to Blue, and one
to Green, with two different segments still available
for new categories. Clearly, a single Defined New
category can only be assigned to at most one such
segment, causing the difference between these upper
probabilities. For some events of interest including
new categories, also the lower probabilities can be dif-
ferent. For example,

P (Y7 ∈ {R,B,G, P, UN}|D2) = 1,

whereas

P (Y7 ∈ {R,B, G, P,DN}|D2) = 2/6,

as for the latter event 4 of the 6 segments on the prob-
ability wheel, based on data D2, could be assigned to
not yet observed categories other than the one explic-
itly defined, DN , indeed this lower probability would
remain 2/6 for any number of different Defined New
categories DNi included in the event of interest.

Let us now consider the situation that the 6 observa-
tions are actually judged all to belong to different cat-
egories, with the Blue and Green ones distinguished
in light and dark shades, represented by

D3 = (R : 1; LB : 1; DB : 1; LG : 1; DG : 1; P : 1).

We have

[P , P ](Y7 = R|D3) = [0, 2/6],

and the lower probabilities

P (Y7 ∈ {R,UN}|D3) = 0

and
P (Y7 ∈ {R,DN}|D3) = 0

are the same as for D1 and D2. The upper probabili-
ties for these latter two events are now

P (Y7 ∈ {R,UN}|D3) = 1

and
P (Y7 ∈ {R,DN}|D3) = 3/6,

while

P (Y7 ∈ {R} ∪
l⋃

i=1

DNi|D3) = (2 + l)/6,

for l = 2, 3, and

P (Y7 ∈ {R} ∪
l⋃

i=1

DNi|D3) = 1,

for l ≥ 4. These upper probabilities correspond logi-
cally, by P (A) = 1−P (Ā), to the lower probabilities of
the complementary events, which is particularly clear
for the event Y7 ∈ {R,UN} based on D3, for which
the complementary event has

P (Y7 ∈ {LB, DB,LG, DG, P}|D3) = 0,

caused by the fact that none of these categories has
been observed more than once. With this data repre-
sentation, we also have the important difference be-
tween

[P , P ](Y7 = UN |D3) = [0, 1]

and
[P , P ](Y7 = DN |D3) = [0, 1/6].

The upper probability for Y7 = DN is 1/6 for any
data representation, but the upper probability for
Y7 = UN depends on the specific data representation,
and is less than 1 for data representations with two
or more observations belonging to the same category,
and it also becomes 1/6 in case all six observations
are represented by a single category.

4 Comparison with the Imprecise
Dirichlet Model

Walley [16] presented the Imprecise Dirichlet Model
(IDM) for inference from multinomial data. Accord-
ing to the IDM, the lower and upper probabilities,
based on n observations, for the next observation Yn+1

to be in a category C, are

[P , P ]IDM (Yn+1 ∈ C) =
[

nc

n + s
,
nc + s

n + s

]
, (8)



with nc the number of observations in C, and s a pos-
itive constant, independent of the data. Walley states
as important advantage of this model that it satisfies
a ‘Representation Invariance Principle’ (RIP), stat-
ing that such lower and upper probabilities should
not depend on the sample space in terms of which the
event of interest and the data are represented. Our
inferences clearly do not satisfy the RIP. We would
consider the RIP a reasonably logical principle from
the perspective of classical probability, where a pre-
cise probability for such inferences should be close to
the proportion of observations in the categories spec-
ified in the event of interest. However, from the per-
spective of interval probability theory, it is natural
that the difference between corresponding lower and
upper probabilities depends on the amount of infor-
mation available and the data representation. A more
detailed data representation allows more detailed in-
ferences, but since it will imply less information on
one or more categories, the price for such more de-
tailed inferences can be greater imprecision. This fea-
ture of our method is similar in nature to the effects
of increasing the number of parameters in a statis-
tical model, which allows the information from the
data to be taken into account in more detail, hence
leads to improved model fit, but tends to cause loss
of predictive power. In our inferences, this latter as-
pect occurs in the form of more predictive imprecision
in case of a more detailed data representation. It is
crucial here to emphasize that, once a data represen-
tation has been chosen, the corresponding inferences
should not be judged from the perspective of actually
knowing more details of the data.

The discussants to Walley’s paper [16] raised a num-
ber of disadvantages for the IDM, and some of these
were also mentioned and shared by Walley. These
disadvantages of the IDM include the following: (1)
The IDM lower probability for the second observa-
tion to be equal to the first, is 1

1+s . Walley suggests
to use rather small values of s, in particular s = 1 or
s = 2, both of which lead to an intuitively surpris-
ingly high value for this lower probability. (2) The
IDM predictive lower and upper probabilities depend
only on the observed frequency of that category and
the total number of observations. (3) When consider-
ing events including as yet unseen categories, the IDM
does not distinguish between defined new categories
(DN) and any unobserved new outcome (UN), and,
closely related to this; (4) the IDM lower and upper
probabilities for the event that the next observation
is in an as yet unseen category does not depend on
the number of categories seen so far. Our examples in
Section 3 show that our lower and upper probabilities
do not share these disadvantages. In particular, with
regard to (3) and (4), if all n observations belong to

the same category, we have

[P , P ](Yn+1 = UN) = [P , P ](Yn+1 = DN) = [0, 1/n],

whereas if all n observations belong to different cate-
gories, we have

[P , P ](Yn+1 = UN) = [0, 1]

but
[P , P ](Yn+1 = DN) = [0, 1/n],

and, for any data set between these two extremes,
the latter event has these same lower and upper
probabilities, but the upper probability for the event
Yn+1 = UN is increasing as function of the number
of observed categories, while the lower probability for
this event remains zero. The lower and upper prob-
abilities according to the IDM are [0, s

n+s ] for both
these events, independent of other aspects of the data
apart from n. With regard to IDM disadvantage (1),
we wish to emphasize again that our corresponding
lower probability is 0, as our lower probability for the
next observation to belong to a category only becomes
positive if that category has been observed twice. The
difference between events concerning a category with
a single observation, and one not yet observed, is re-
flected in the upper probabilities. One may argue
that, in such a case, the lower probability should also
become positive for the event that the next obser-
vation will belong to a category with a single obser-
vation, but any such a positive value would imply a
subjective judgement on the number of different cate-
gories that can be observed, which our inferences ex-
plicitly avoid. Anyway, if one judges our lower and
upper probabilities not to be in accordance with in-
tuition, we hope that mostly one finds that they are
perhaps too cautious. For the IDM, several discus-
sants [16] made clear that they felt that the IDM was
not cautious enough for several possible events of in-
terest, as mentioned among the disadvantages listed
above, when compared to subjective inferences.

We should point out that the IDM also has some im-
portant advantages. In particular, as it is a paramet-
ric model in the Bayesian framework, it allows a far
wider range of inferences than our approach, and it is
easily adapted to enable prior judgements to be for-
mally taken into account. In our NPI-based method,
inference is necessarily restricted to predictive events,
but quite many inferences of practical interest can be
naturally formulated in a predictive manner, see for
example [7, 9, 13]. A comparison with the currently
developed approach based on logical interval probabil-
ity [20] will be given in [6]. The imprecise Dirichlet-
multinomial model, presented by Walley and Bernard
[17], gives the same lower and upper probabilities (8)



as the IDM, so it does not provide an alternative so-
lution with regard to the above mentioned disadvan-
tages of the IDM.

5 Discussion

This paper briefly presents lower and upper probabil-
ities derived from a new model to reason with multi-
nomial data, with main focus on comparison with
Walley’s IDM. We will present our method in detail
elsewhere [6], including detailed derivations and jus-
tifications of its properties, and discussion of related
general interval probabilistic principles for statistical
inference. We will also discuss updating and condi-
tioning with these lower and upper probabilities, fol-
lowing our earlier results for general A(n)-based non-
parametric predictive inference [2]. The results in this
paper can, in principle, easily be extended to multiple
future observations, by sequential conditioning, but
this requires further detailed attention with regard
to combinatorial aspects and more general definition
of events of interest, in particular as the possibility
of two or more different Unobserved New outcomes
must be taken into account. It is also possible to use
a similar approach in case (an upper bound for) the
number of possible categories is known, but this also
requires further study, in particular with regard to
combinatorial aspects. Including such (assumed) in-
formation on the number of categories would reduce
imprecision when compared to the lower and upper
probabilities presented in this paper.

One may be tempted to apply these inferences to set-
tings where different categories are actually ordered,
for example with regard to lifetime inferences. We
would not normally recommend this, as more suitable
data representations [5, 8] may be available for simi-
lar nonparametric predictive inference, which then are
likely to lead to less imprecision.

If one has opted for a particular data representation,
but is then interested in an event using a subcate-
gory of a category in the data representation, our
method may still be applicable in an obvious man-
ner and without further assumptions, but this would
lead to greater imprecision than if one had used a
more appropriately detailed data representation, and
it would require additional knowledge about the def-
initions of the categories. For example, in relation to
Example 1 in Section 3, suppose one had represented
the data as Da = (RY : 1; O : 2) but was actually
interested in the event Y4 = R, and that one knew
that R could be considered a subcategory of RY and
not of O. One could then still derive lower and up-
per probabilities for this event, consistent with this
data representation, by minimising and maximising,

respectively, over all lower and upper probabilities for
the same event based on the possible corresponding
more detailed data representations which are in agree-
ment with Da, which in this simple case would be
(R : 1; O : 2) and (Y : 1; O : 2).

Walley [16] ended his paper with the challenge to
other researchers to develop and apply other meth-
ods, and to report their numerical answers. With this
paper, we have responded to this challenge, and we
share Walley’s wish that this will lead to a wider dis-
cussion of this interesting and important inferential
problem.

Appendix

For a closer investigation of the claim, in Section 2.1,
that these NPI-based inferences lead to F -probability,
we consider the two steps involved in the construction
of our lower and upper probabilities separately. In
Part a we look at a single configuration of equally
spaced lines on the probability wheel which represent
the observations, under the model assumption that
each observation category is presented by only a
single segment of the probability wheel so that lines
representing observations in one category are ’next to
each other’, and in Part b we discuss the combination
of all the configurations which are in agreement
with our available observations under a given data
representation, and with the assumption A(n)© .

Part a: Let σ be a single configuration, which consists
of a certain ordering of n lines representing k differ-
ent categories on the probability wheel, under the
condition that all the lines representing observations
in the same category lay in one segment. Actually
this means that we place k blocks of different colours
on the probability wheel, where block r contains nr

lines of the corresponding category, for r = 1, . . . , k.
Applying A(n)© to one such a configuration, we obtain

lower and upper limits P (σ)(·) and P
(σ)

(·), for the
predictive probability of interest, which are totally
monotone and totally alternating, and which produce
an F -probability field. To prove this, note that the
proofs of Theorem 1 and Theorem 2 in [2], where
A(n) is considered on the real line, do not use the
ordering of the intervals created by the data on the
real line, and therefore these results can be adopted
directly for the probability wheel representation for
NPI-based inference based on multinomial data, and
the assumption A(n)© , as used in this paper. Note
furthermore, that the fact that the resulting lower
and upper probabilities are interval limits of an
F -probability field, implies coherence and avoiding
sure loss in Walley’s sense [16].



Part b: We now consider all such configurations which
are in agreement with the observations under a given
data representation, and with A(n)© . According to one
of Walley’s lower envelope theorems [15, Thm 2.6.3],
by passing over to the minimal and maximal predic-
tive interval probabilities over all such configurations,
the properties of coherence and avoiding sure loss are
preserved. A similar result is true for F -probability:
With Σ as the set of all such configurations, P (·) :=
minσ∈Σ P (σ)(·) and P (·) := maxσ∈Σ P

(σ)
(·) again

constitute an F -probability field, conform to Weich-
selberger’s concept of the union of F -probability fields
[19, Lemma 2.7.12], see [1, Thm 3.2] for a proof in the
context of total-monotonicity and belief functions.3
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