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Abstract. This paper consists of three main parts. First, we give an introduction
to Hill’s assumption A(n) and to theory of interval probability, and an overview
of recently developed theory and methods for nonparametric predictive inference
(NPI), which is based on A(n) and uses interval probability to quantify uncertainty.
Thereafter, we illustrate NPI by introducing a variation to the assumption A(n),
suitable for inference based on circular data, with applications to several data sets
from the literature. This includes attention to comparison of two groups of circular
data, and to grouped data. We briefly discuss such inference for multiple future
observations. We end the paper with a discussion of NPI and objective Bayesianism.
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1. Introduction

Hill (1968) proposed the assumption A(n) to provide direct probabili-
ties for future observations (Dempster, 1963; Geisser, 1993), based on
data consisting of n observations on the real-line. In later work (Hill,
1988; Hill, 1993), Hill discussed A(n) as a basis for Bayesian nonpara-
metric predictive inference, and proved that A(n) fits into the general
framework of Bayesian statistics by using a, rather complicated, split-
ting process to provide the prior distribution. We give a brief overview
of A(n) in Section 2 of this paper.

This assumption A(n) is not generally sufficient to derive precise pre-
dictive probabilities for events of interest. However, theory of interval
probability (Weichselberger, 2000; Weichselberger, 2001), also known as
‘imprecise probabilities’ (Walley, 1991), generalizes theory of precise (or
‘classical’) probability via the use of lower and upper probabilities, and
provides a suitable framework for A(n)-based nonparametric predictive
inference (NPI) (Augustin and Coolen, 2004). We give a brief overview
of interval probability in Section 3, and of NPI in Section 4.

NPI uses the close relation between A(n) and finite exchangeability,
and can be based on suitable data representations, where either an ex-
plicit or an assumed underlying ordering of the observations is required,
which is combined with assumed exchangeability to enable predictive
inference for future observations. As a novel example of NPI, in Section
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2 F.P.A. Coolen

5 we introduce a variation to A(n) which is suitable for circular data,
and we present NPI for such data in Section 6. In Section 7 we discuss
NPI in relation to objective Bayesianism. Interestingly, depending on
one’s views on either topic, one could both advocate and oppose calling
NPI a particular form of objective Bayesianism.

2. Hill’s assumption A(n)

The assumption A(n) was proposed by Hill (1968; 1988; 1993) for pre-
diction in the case of extremely vague a priori knowledge about the
form of the underlying distribution. Let real-valued x(1), . . . , x(n) be
the order statistics of data x1, . . . , xn, and let Xi be the corresponding
pre-data random quantities, so that the data consist of the realized
values Xi = xi, i = 1, . . . , n. Based on this, A(n) is defined as follows
(Hill, 1993):

1. The observable random quantities X1, . . . , Xn are exchangeable. (In
the original definition of A(n) (Hill, 1968), exchangeability was not
included, allowing slightly more general situations.)

2. Ties have probability 0, so xi 6= xj , for all i 6= j, almost surely.

3. Given data xi, i = 1, . . . , n, the probability that the next obser-
vation falls in the open interval Ij = (x(j−1), x(j)) is 1/(n + 1), for
each j = 1, . . . , n + 1, where we define x(0) = −∞ and x(n+1) = ∞.

If one wishes to allow ties (Hill, 1988), the probabilities 1/(n + 1)
can be assigned to the closed intervals in this partition. This would
also ensure that the empirical probability distribution, which places
probability 1/n at each previous observation, is in agreement with A(n).
As this can be considered as a limiting situation, for which notation can
become more awkward, we use the above definition of A(n) throughout
this paper. It is clear that A(n) is a post-data assumption related to
finite exchangeability (De Finetti, 1974), see Hill (1988) for a detailed
presentation and discussion of A(n), and an overview of related work,
including important contributions by Dempster (1963) and Lane and
Sudderth (1984). Hill (1993) justified A(n) within the finitely additive
Bayesian framework by characterising a corresponding prior process.
The strength of the assumption A(n) can best be indicated by citing
Hill (1988): ‘Let me conclude by observing that A(n) is supported by all
of the serious approaches to statistical inference. It is Bayesian, fiducial,
and even a confidence/tolerance procedure. It is simple, coherent, and
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plausible. It can even be argued, I believe, that A(n) constitutes the
fundamental solution to the problem of induction’.

De Finetti’s (1974) representation theorem provides a Bayesian frame-
work for learning about an underlying parameter, based on infinite
exchangeability and using a probability distribution for that parameter.
While he relies on the assumption that there is an infinite sequence
of random quantities involved, in A(n)-based inference we are mostly
explicitly interested in a single (or a limited number of) future observa-
tion(s). Even more, the Bayesian approach, as justified by De Finetti’s
(1974) important results, explicitly needs a specified prior distribution,
and together with the conditional independence of future observations
(conditional on an unknown parameter) this adds quite a bit more
structure to the data than our A(n)-based inferences. Such inferences
have a predictive and nonparametric nature, and seem suitable if there
is hardly any knowledge about the random quantities of interest, other
than the first n observations, or, which may be more realistic, if one
explicitly does not want to use such information. This may occur, for
example, if one wants to study the (often hidden) effects of additional
structural assumptions underlying statistical models or methods. In-
ferences based on such restricted knowledge have also been called ‘low
structure inferences’ (Geisser, 1993) and ‘black-box inferences’ (Lane
and Sudderth, 1984).

The assumption A(n) is not sufficient to derive precise probabilities
for many events of interest in inference based on such data. How-
ever, it does provide bounds for probabilities, by what is essentially
an application of De Finetti’s ‘fundamental theorem of probability’
(De Finetti, 1974), or Walley’s concept of ‘natural extension’ (Wal-
ley, 1991). The theory of interval probability (Augustin and Coolen,
2004; Walley, 1991; Weichselberger, 1995; Weichselberger, 2000; Weich-
selberger, 2001) makes it clear that such bounds contain valuable in-
formation, both on uncertainty of events and on indeterminacy caused
by restricted information.

3. Interval probability

The idea to use interval-valued probabilities dates back at least to the
middle of the nineteenth century (Boole, 1854). Since then, interval
probabilities, also known as imprecise probabilities, have been sug-
gested in various areas of statistics. For example, they arise naturally
in several approaches to predictive inference such as Dempster’s (1967)
multivalued mappings and Hampel’s (1997) successful bets, in mod-
elling uncertain knowledge in artificial intelligence (Yager et al., 1994),
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in economic decision theory (Chateauneuf et al., 1997), and in robust
Neyman-Pearson testing (Augustin, 2002; Huber and Strassen, 1973).
Furthermore, there is a strong connection to robust Bayesian inference
(Berger, 1990; Rios Insua and Ruggeri, 1997). Recently, there has been
increasing activity in this area by researchers from widely varying back-
grounds, resulting in a series of conferences (Bernard et al., 2003; de
Cooman et al., 1999; de Cooman et al., 2001), (organised by) the So-
ciety for Imprecise Probability Theory and Applications1, and special
issues of journals focussing on this topic (Bernard, 2002; Cozman and
Moral, 2000; de Cooman, 2000).

Fine and collaborators (e.g. (Papamarcou and Fine, 1991; Walley
and Fine, 1997)) established a frequentist theory of interval probability.
Extending De Finetti’s (1974) theory to interval-valued previsions, Wal-
ley (1991) provides a rigorous generalization of the concept of probabil-
ity, based on a behavioural interpretation of subjective lower and upper
probabilities as possibly differing maximum buying price and minimum
selling price, respectively, for gambles on the event of interest. A formal
foundation of interval probability in the spirit of Kolmogorov’s axioms,
relying on σ-additive classical probabilities, is developed by Weichsel-
berger (2001) (see also Weichselberger (1995; 2000) for some selected
aspects). According to Weichselberger (2001), an axiomization of inter-
val probability can be achieved by supplementing Kolmogorov’s axioms.
We briefly present some key aspects of theory of interval probability
(Weichselberger, 2001), as relevant to A(n)-based inference (Augustin
and Coolen, 2004).

Let (Ω,A) be a measurable space. A set-function p(·) on A satisfy-
ing Kolmogorov’s axioms is called a classical probability; the set of all
classical probabilities on (Ω,A) is denoted by K (Ω,A). A function P (·)
on A is called an F-probability with structure M, if P (·) is of the form

P : A →
{
[P ;P ] | 0 ≤ P ≤ P ≤ 1

}
A 7→ P (A) =

[
P (A);P (A)

]
,

(1)

and

M := {p(·) ∈ K(Ω,A) | P (A) ≤ p(A) ≤ P (A), ∀A ∈ A} 6= ∅, (2)

and
inf

p(·)∈M
p(A) = P (A)

sup
p(·)∈M

p(A) = P (A)

 ∀A ∈ A . (3)

Throughout this paper, we use notation P (·) and [P (·), P (·)] for
inter-valued assignments, and p(·) for classical probability. Property

1 www.sipta.org

coolen-jlli.tex; 19/07/2005; 10:08; p.4



On Nonparametric Predictive Inference and Objective Bayesianism 5

(2) is a minimal requirement to ensure that P (·) is not contradicting
classical probability theory. Property (3) goes beyond this, by requiring
a one-to-one correspondence between structure and P (·), guaranteeing
that the intervals [P (A), P (A)], A ∈ A, are not too wide with respect
to the structure. Property (3) has been considered by several authors,
for instance Huber and Strassen (1973), and, if A is finite, it coincides
with Fine’s notion of envelopes (Papamarcou and Fine, 1991; Walley
and Fine, 1997) and with Walley’s (1991) concept of coherence.

Some consequences of the above definitions are that for every F-
probability, P (·) and P (·) are conjugated,

P (A) = 1− P (Ac), ∀A ∈ A ,

which ensures that every F-probability is uniquely characterized by
P (·), and P (·) is superadditive and P (·) is subadditive, i.e.,

P (A ∪B) ≥ P (A) + P (B) and P (A ∪B) ≤ P (A) + P (B),
∀A,B ∈ A, A ∩B = ∅.

In Section 4, an overview of A(n)-based interval probability is pre-
sented, together with the corresponding nonparametric predictive infer-
ential approach. Augustin and Coolen (2004) prove that such interval
probability is F-probability. They also provide further insight into these
interval probabilities, by showing that they are totally-monotone C-
probability (Augustin and Coolen, 2004; Weichselberger, 2001), but
not Choquet capacity (Augustin and Coolen, 2004; Choquet, 1954).

4. Nonparametric predictive inference

It is straightforward to introduce predictive lower and upper probabili-
ties based on the assumption A(n) (Augustin and Coolen, 2004). Let B
be the Borel σ-field over IR. For any element B ∈ B, set-functions P (·)
and P (·) for the event Xn+1 ∈ B, based on the intervals I1, . . . , In+1

created by n real-valued non-tied observations, and the assumption
A(n), are

P (Xn+1 ∈ B) =
1

n + 1
|{j : Ij ⊆ B}| (4)

P (Xn+1 ∈ B) =
1

n + 1
|{j : Ij ∩B 6= ∅}|. (5)

Throughout this paper, we leave the conditioning on data x1, . . . , xn

out of the notation. P (Xn+1 ∈ B) and P (Xn+1 ∈ B) can be understood
as bounds for the probability for the event Xn+1 ∈ B, consistent with
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6 F.P.A. Coolen

the probabilities as assigned by A(n). The lower probability P (Xn+1 ∈
B) is achieved by taking only probability mass into account that is
necessarily within B, which is only the case for the probability mass

1
n+1 per interval Ij , if this interval is completely contained within B.
The upper bound U(·) is achieved by taking all the probability mass
into account that could possibly be within B, which is the case for the
probability mass 1

n+1 , per interval Ij , if the intersection of Ij and B is
non-empty. Remark that, in this reasoning, we do allow positive prob-
ability masses in points. Augustin and Coolen (2004) show that these
bounds fit nicely into the framework of interval probability (Weichsel-
berger, 2000; Weichselberger, 2001). They are F-probability (Augustin
and Coolen, 2004, Thm 2), using all information from A(n) without
adding further assumptions. Augustin and Coolen (2004) prove that
these A(n)-based lower and upper probabilities are totally-monotone,
which implies (so-to-say ‘static’) coherence in Walley’s (1991) sense.
According to Walley’s generalized betting interpretation for lower and
upper probabilities (Walley, 1991), this means that, if we are acting
according to our interval probabilities, nobody can place a Dutch book
against us at any fixed moment in time, and we accept all sure gains.
When using these A(n)-based lower and upper probabilities (4) and (5)
for statistical inference, they have strong internal consistency properties
both from a static and a dynamic point of view (Augustin and Coolen,
2004), where we use ‘static’ referring to conditioning on a further event
for the random quantity Xn+1, and ‘dynamic’ in case of updating on
the basis of further observations.

For examples of the use of these lower and upper probabilities (4)
and (5) for nonparametric predictive inference (NPI) in statistics and
operational research, see (Arts et al., 2004; Coolen, 1996a; Coolen and
Coolen-Schrijner, 2000; Coolen and Coolen-Schrijner, 2003; Coolen and
van der Laan, 2001). In these papers, NPI is also compared with more
established methods, both via examples using data from the literature,
and simulation studies, leading to the conclusion that NPI performs
well. Of course, such applications require inferential problems to be
explicitly formulated in terms of one future observation. This can be
extended to multiple future observations, by sequential conditioning
and, after conditioning on the values of the next j observations, assum-
ing the appropriate assumption A(n+j). Such a procedure tends to lead
to increased imprecision, that is the difference between corresponding
upper and lower probabilities, due to the imprecision involved with
conditioning on the next observation(s). We do not address this further
here, but we return briefly to multiple future observations in Section
6.4.
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Clearly, such inferences require an exchangeability assumption for
the observable random quantities. This idea can also be applied in
less straightforward situations. For example, for data sets containing
right-censored observations, Coolen and Yan (2003a; 2003b; 2004) de-
veloped a generalization of A(n), called ‘right-censoring-A(n)’, and they
illustrated its use in inferential problems, mostly via the corresponding
lower and upper survival functions. This provides a predictive alterna-
tive to the well-known Product-Limit estimator (PLE) of the survival
function for such data, as presented by Kaplan and Meier (1958), and
it also improves on an earlier attempt to apply A(n) for right-censored
data by Berliner and Hill (1988). Coolen and Yan (2004) showed that
the PLE provides a survival function which is always between their
lower and upper survival functions, which will be of interest in our later
discussion on NPI and objective Bayesianism (Section 7), as the PLE
can be interpreted as a generalization of the empirical survival function
in case of right-censored data. Coolen-Schrijner and Coolen (2004) used
right-censoring-A(n) to create highly flexible, fully adaptive methods for
age replacement of technical units. Via extensive simulation studies,
they found that this method performs well when compared to more
established methods for age replacement.

Coolen (1998) used A(n) for NPI in case of Bernoulli data, providing
lower and upper probabilities for the number of successes in m future
trials, based on the number of successes in n observed trials. This was
possible by considering the same representation for such Bernoulli data
as was used by Bayes (1763), namely as balls on a table. However,
Coolen replaced the prior distribution (an imaginary ‘ball 0’ in Bayes’
approach), required to link the observations to future outcomes, by
A(n). We return to this briefly in Section 7. For any event of interest
with regard to m future trials, Coolen’s lower and upper probabilities
create an interval containing the corresponding observed proportion,
again causing such NPI to be consistent with the use of the empirical
probabilities.

Recently, Coolen and Augustin (2005) have presented a similar ap-
proach for multinomial data, using an assumed underlying represen-
tation in terms of a probability wheel, where each observation class is
assumed to be represented by only a single segment. Their method does
not make any assumption on (an upper bound for) the total number of
possible categories, if such information is available their method can be
adapted accordingly. Again, we will return to this briefly in Section 7,
but we should remark that their lower and upper probabilities are again
consistent with the use of the empirical probabilities. The use of an
assumed underlying probability wheel representation for multinomial
data required introduction of a variation of A(n) suitable for prediction
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8 F.P.A. Coolen

with such a representation. This variation was the same as we discuss
in Section 5, where we introduce it directly for NPI for circular data.

Effectively, it has been shown by these methods that NPI can be
used whenever one may judge a suitable exchangeability assumption to
be appropriate, either directly for the observable random quantities, or
via an assumed underlying data representation. Throughout, such infer-
ences are consistent within interval probability theory, in a similar way
as discussed above for the A(n)-based lower and upper probabilities (4)
and (5), and they are particularly suitable in situations where very little
information about random quantities of interest is available, or where,
perhaps more appropriately, one wishes not to use such information in
addition to data.

To illustrate the possibility to develop and apply such NPI to other
data situations, we consider circular data in Section 6. First, we present
a variation to A(n) which is suitable for nonparametric prediction in
case of circular data, which we call ‘circular-A(n)’ and denote by A©(n).
We illustrate NPI for circular data via 3 examples, using data from the
literature. Discussing such data, and generalizations in more dimensions
also known as ‘directional data’, Jammalamadaka and SenGupta (1998)
call prediction of a future occurrence based on empirical evidence the
single most important aim of statistics. They present general methods
for predictive inference with directional data, including circular data,
but their methods require parametric distributions to be assumed.

Useful introductions to circular data, and the more general con-
cept of directional data, together with overviews of common statistical
methodology, are for example the books by Mardia (1972), Batschelet
(1981), and Fisher (1993). Other recent contributions to theory of cir-
cular data, and more generally spherical data, include focus on tests
of independence of two responses (Johnson and Shieh, 2002) and on
asymptotical properties of nonparametric tolerance regions (Mushku-
diani, 2002).

5. Circular A(n)

For circular data, A(n) in its standard form is not suitable, as the
data are not represented on the real-line. However, a straightforward
variation, linking again to exchangeability of n + 1 observations, is the
assumption that we call circular-A(n), and denote by A©(n):

Suppose that ordered circular data x1 < x2 < . . . < xn create n
intervals on a circle, namely Cj = (xj , xj+1) for j = 1, . . . , n − 1, and
Cn = (xn, x1). Then we propose assumption A©(n) to be that a future
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random quantity Xn+1 falls into each of these n intervals with equal
probability, so

p(Xn+1 ∈ Cj) =
1
n

, for j = 1, . . . , n.

Notice here that neither the units of the circular data, nor the chosen
0-point on the circle, are relevant. This is clearly again a post-data
assumption, related to the appropriate exchangeability assumption for
such circular data in exactly the same way as A(n) was related to
exchangeability of n + 1 values on the real-line. Hence, nonparamet-
ric predictive inference based on A©(n) will have the same consistency
properties as such inference based on A(n) has (Augustin and Coolen,
2004; Geisser, 1993; Hill, 1993).

In Section 6, we illustrate NPI for circular data based on A©(n).
As we wish not to make further assumptions about the probability
mass 1/n per interval Cj , such inferences are mostly again in the form
of lower and upper probabilities (Walley, 1991; Weichselberger, 2000;
Weichselberger, 2001).

6. NPI for circular data

In this section, we first present the lower and upper probabilities for
a single future observation, based on A©(n) and circular data consisting
of n observations. This is a straightforward variation to the A(n)-based
interval probabilities in Section 4. Thereafter, we illustrate such NPI
by considering the comparison of two groups of circular data, and by
presenting how this method can deal with grouped circular data. This
latter problem is relatively straightforward due to the use of lower
and upper probabilities, which means that no additional assumptions
are required. We illustrate all these inferences via examples with data
taken from the literature. At the end of this section, we briefly com-
ment on the generalization of NPI for circular data to multiple future
observations.

6.1. Interval probabilities for a single future observation

The probabilities for Xn+1 as defined in A©(n) directly lead to lower
and upper probabilities for events of the form Xn+1 ∈ B, with B a
segment (or a union of segments) of the circle on which the data are
represented, following a similar procedure as presented in Section 4 re-
lated to A(n) (Augustin and Coolen, 2004). Hence, the lower probability
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10 F.P.A. Coolen

P (Xn+1 ∈ B) is again derived by summing only the probability masses
assigned to intervals Cj that are fully contained within B, and the
upper probability P (Xn+1 ∈ B) is derived by summing all probability
masses assigned to intervals Cj that have non-empty intersection with
B. Here, we explicitly use the fact that we have not added any further
assumptions on the distribution of the probability 1/n within each
interval Cj . It is easy to see that strong consistency results for such
inferences, as presented by Augustin and Coolen (2004), also hold for
these A©(n)-based inferences for circular data, in particular consider-
ing updating in the light of new observations, and conditioning (as
illustrated briefly in Example 1). These lower and upper probabilities
are again F-probability, which follows from the fact that the proofs
of Theorem 1 and Theorem 2 in (Augustin and Coolen, 2004) do not
use the ordering of the intervals created by the data on the real-line,
and therefore these results can be directly adopted for the assumption
A©(n) and these corresponding lower and upper probabilities. Notice
that, if B is a segment of the circle not containing any observed xj ,
then the lower probability of the event Xn+1 ∈ B is 0, but the upper
probability for this event is equal to 1/n. We illustrate this procedure
using data from an example by Batschelet (1981), which were also used
by Jammalamadaka and SenGupta (1998).

Example 1: In a city, 21 major traffic accidents were recorded during
several days, the times are shown in Table 1 represented as circular
data where the circle represents the daily cycle of 24 hours, which is
an appropriate representation if one is only interested in the time of
day of accidents, and not in the variation of such data over a longer
period. We choose to represent these data in ‘minutes after midnight’,
where the full cycle is equal to 1440 minutes. Jammalamadaka and
SenGupta (1998) represent these times using angles of the circle, out of
360 degrees, their data values are equal to our data in minutes divided
by 4, using angles would make no difference to our inferences.

56 728 1044
188 808 1088
292 856 1096
436 980 1136
488 1004 1172
600 1024 1252
684 1040 1328

Table 1: Traffic accident data, in minutes
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On the basis of these data, assumption A©(21) provides predictive
probabilities for X22, the time of the day at which a future accident
will occur. It provides precise probabilities 1/21 for the intervals be-
tween two previous observations, and interval probabilities for other
events. For example, for the event of a future accident happening ‘in the
evening’, we have lower probability P (X22 ∈ (1080, 1440)) = 5/21 =
0.238, and upper probability P (X22 ∈ (1080, 1440)) = 7/21 = 0.333.
Alternatively, one could define the traffic ‘rush hours’ as being between
7 and 9 in the morning, and between 5 and 7 in the evening. The lower
and upper probabilities for the event X22 ∈ (420, 540) ∪ (1020, 1140)
are 6/21 = 0.286 and 10/21 = 0.476, respectively, according to A©(21)

and these data.
One could also be interested in the conditional probability that such

a future accident would take place during the morning rush hours, given
that it happens during either the morning or the evening rush hours.
Generally, when the event on which we condition does not have a precise
probability assigned to it by A©(n), the conditional lower and upper
probabilities follow the intuitive concept (Augustin and Coolen, 2004;
Weichselberger, 2000; Weichselberger, 2001), and in this case these are
equal to

P (X22 ∈ (420, 540) |X22 ∈ (420, 540) ∪ (1020, 1140)) =
1/21

1/21 + 7/21
= 1/8 = 0.125,

and

P (X22 ∈ (420, 540) |X22 ∈ (420, 540) ∪ (1020, 1140)) =
3/21

3/21 + 5/21
= 3/8 = 0.375.

6.2. Comparison of two groups of circular data

Statistical inferential problems often involve comparison of two or more
independent groups of data. Traditionally, such comparisons are often
formulated in terms of hypotheses about equality of characteristics of
underlying population distributions, for example equal mean values.
From predictive perspective, similar comparisons can be performed, yet
these necessarily are restricted to comparisons formulated in terms of
future observations from the different groups. For observations on the
real-line, such comparisons in NPI have been presented for two groups
of data (Coolen, 1996a) as well as for multiple comparisons (Coolen
and van der Laan, 2001), for both cases lower and upper probabilities
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12 F.P.A. Coolen

were derived for the event that the next observation from one group
exceeds the next observations from the other groups. For circular data,
formulation of such comparisons is perhaps less straightforward, due to
absence of a unique ordering. However, with a predictive formulation
such comparison might naturally be more directly defined in terms of
events of particular interest. For example, if one wants to check if there
is a reason to believe that the next observation from one group is more
likely to belong to a segment B of the circle than the next observation
from another group, one can compare the interval probabilities for these
events, as based on the appropriate A©(n)-assumptions per group, where
in particular non-overlapping interval probabilities indicate a relevant
difference within theory of interval probability (Walley, 1991; Weich-
selberger, 2001). In Example 2 we illustrate this, using data from an
example by Batschelet (1981), concerning two groups of data from
an experiment on orientation of pigeons. Although we do not address
it explicitly, multiple comparisons with circular data can be treated
similarly (Coolen and van der Laan, 2001).

Example 2: Two groups of pigeons were carried from their loft near
Siena to Rome. During transport, one group (‘controls’ - for these we
add an index ‘c’ to notation) experienced the natural air along the road,
the other group (‘experimentals’ - index ‘e’) received only pure air. At
the release site, the correct direction back to Siena was 325 degrees,
where North was set at 0 degrees with the angle measured clock-wise.
The control group consisted of nc = 8 pigeons, the experimental group
of ne = 10 pigeons. The observed vanishing bearings are given in Table
2.

Experimentals Controls

4 117 24 247
82 121 153 264

107 131 192 333
109 171 202
110 186 228

Table 2: Pigeon data; experimentals and controls, in degrees

For NPI based on these data, we focus on random quantities which
represent the vanishing bearings for ‘the next pigeon’ for each group,
i.e. Xe,11 and Xc,9, for which we assume A©(10) and A©(8) in combination
with the data per group, respectively. For such inferences, we can indeed
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think in terms of there being actually one more pigeon for both groups,
transported and released with the others, but for which the data value
has not yet been given, with such pigeons being selected randomly from
all the pigeons per group (independent of their actual data value).

For such a study, one may be interested in whether or not the pigeons
vanish in ‘more or less the right direction’, say for this example whether
or not the pigeons vanish in directions between 235 and 55 degrees,
representing maximum 90 degrees difference from the actual direction.
The relevant lower and upper probabilities are:

P (Xe,11 ∈ (235, 55)) = 0 and P (Xe,11 ∈ (235, 55)) =
2
11

for the experimentals, and

P (Xc,9 ∈ (235, 55)) =
3
11

and P (Xc,9 ∈ (235, 55)) =
5
11

for the controls. These values suggest a clear difference between these
two groups of data with regard to the event specified, as P (Xc,9 ∈
(235, 55)) > P (Xe,11 ∈ (235, 55)). For example, from a subjective point
of view (Walley, 1991), this implies that there are prices at which one
would be willing to buy the bet for Xc,9 yet sell the bet for Xe,11 on
this event, implying quite a strong preference for the bet involving
the controls for this event. Alternatively, one could also base such
inferences on NPI-based lower and upper probabilities for the event
‘|Xe,11 − 325| < |Xc,9 − 325|’, using the natural metric on a circle. It
can be remarked that classical analysis (Batschelet, 1981) also indi-
cated that these two samples deviate significantly from each other, in
the sense that there appears to be a shift in the mean directions. We
think that both such analyses can be useful together, as they address
quite different questions. In particular when one is really interested in
a predictive inferential question, our approach seems more appealing.
Also, our approach appears to be more flexible as it does not require
problems to be formulated as testable hypotheses.

6.3. Grouped circular data

Statistical data are frequently presented as grouped data, e.g. via his-
tograms, in particular if there are quite a lot of data. Coolen and Yan
(2003a) present the use of NPI for grouped lifetime data, including
right-censored observations, as typically appears in the case of life
tables used in life insurance. For grouped circular data, NPI is also
easily adapted by considering the different possible configurations on
the circle which are in agreement with the grouped data information,
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14 F.P.A. Coolen

in which case the lower and upper probabilities tend to correspond to
extreme situations with regard to the number of data values that could
actually be within a circle segment of interest. We illustrate NPI for
grouped circular data using data from an example by Mardia (1972).

Example 3: Table 3 shows the frequencies of vanishing angles (in
degrees) of 714 nonmigratory British mallards with 0 as the North
(measured clockwise). Mardia (1972) presents these data in a variety of
ways, including a useful circular histogram which also makes clear that
the majority of these birds vanish in directions West to North-West.

Direction Number Direction Number

0- 40 180- 3
20- 22 200- 11
40- 20 220- 22
60- 9 240- 24
80- 6 260- 58

100- 3 280- 136
120- 3 300- 138
140- 1 320- 143
160- 6 340- 69

Table 3: Mallards data; vanishing angles, in degrees

As these data are grouped in intervals of 20 degrees, but we do
not have further information about the exact data values, lower and
upper probabilities for a random quantity X715 representing a future
vanishing angle for such a mallard, based on the assumption A©714, are
derived by taking the extreme configurations of the data per interval
with regard to a specified event of interest. For example, suppose we
are interested in the event X715 ∈ (270, 360), so such a mallard van-
ishing in a direction between West and North. Using the probabilities
assigned by A©714, there are 486 observed values in (280, 360), implying
that the probabilities for the 485 intervals between these values are all
necessarily also in (270, 360), hence the lower probability is

P (X715 ∈ (270, 360)) = 485/714 = 0.679.

However, the observed values in (260, 280) could also all have fallen in
(270, 280), as we have no information on this, and do not wish to add
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further assumptions, we have to take this into account when calculating
the upper probability. So, we now need to consider the extreme case
that 544 values may actually be in (270, 360). To derive the upper
probability for this interval, we must also think about the probabilities
1/714 assigned to the intervals which include the values 270 and 360,
as without further assumptions these probability masses could actually
also be in (270, 360). This leads to upper probability

P (X715 ∈ (270, 360)) = 545/714 = 0.763.

The difference between these upper and lower probabilities is mostly
due to the uncertainty about the exact location of the data values
on the circle, caused by the grouped manner in which the data are
reported. We consider it an attractive feature of this NPI approach,
using interval probability, that no further assumptions are required for
such inferences. Of course, if one would wish to add further assumptions
on the distribution of observations within the intervals used for the
data representation, one can immediately see the effect of such further
assumptions through the reduction of the imprecision in these interval
probabilities.

6.4. Multiple future observations

While A©(n) is an assumption that provides a predictive probability for
only a single future observation, it can be extended to m future observa-
tions, represented by random quantities Xn+1, . . . , Xn+m, by effectively
assuming simultaneously A©(n), A©(n+1), . . . , A©(n+m−1), similarly as was
done by Hill (1968) for A(n), and as was also derived by Dempster
(1963) from slightly different perspective. Let Sj be the number out
of these m future observations that fall into Cj , then these combined
assumptions lead to probabilities

p(
n⋂

j=1

{Sj = sj}) =
(

n + m− 1
m

)−1

,

where sj , for j = 1, . . . , n, are any non-negative integers with
∑n

j=1 sj =
m. These probabilities allow NPI for multiple future observations simul-
taneously, and the results in the previous sections can fairly straight-
forwardly be generalized to m future observations, where however the
differences between upper and lower probabilities tend to increase with
m, see Coolen (1998) for a similar study of NPI for m future obser-
vations in case of Bernoulli random quantities. To calculate lower and
upper probabilities for an event of interest, e.g. for the event that, based
on n observations, at most b out of m ≥ 2 future observations belong
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16 F.P.A. Coolen

to a segment B of the circle, one needs to count the number of different
sets {s1, . . . , sn}, with

∑n
j=1 sj = m, for which not more than b future

values can be in B, leading to the lower probability for this event, and
the number for which it is possible that at most b future values can
belong to B, leading to the upper probability. More complex events
of interest may require sophisticated counting methods, but the basic
principle remains the same.

7. NPI and objective Bayesianism

Williamson (2004) presents a detailed overview of objective Bayesian-
ism and its challenges. While Bayesian inference, based on subjec-
tive interpretation of probabilities and decision making (De Finetti,
1974; French and Rios Insua, 2000), requires uncertainty quantification
via probabilities satisfying axioms of probability, objective Bayesianism
imposes two further norms (Williamson, 2004):

(EN) Empirical: An agent’s knowledge of the world should constrain
her degrees of belief. Thus if one knows that a coin is symmetrical and
has yielded heads roughly half the time, then one’s degree of belief that
it will yield heads on the next throw should be roughly 1/2.

(LN) Logical: An agent’s degrees of belief should also be fixed by her
lack of knowledge of the world. If the agent knows nothing about an
experiment except that it has two possible outcomes, then she should
award degree of belief 1/2 to each outcome.

Walley (1991) discusses ‘objectivity’ in detail, and convincingly ad-
vocates that classical (precise) probability is too restrictive for achiev-
ing objectivity. His arguments even go against the possibility of objec-
tive inference. Nevertheless, he aims at achieving ‘objective inferential’
methods, particularly his imprecise Dirichlet model (IDM) (Walley,
1996) is suggested to be non-subjective. Whereas we mostly support
Walley’s arguments, we acknowledge objective inference as an ideal in
science. However, we strongly feel that this ideal is not fully achievable,
and do not wish to make any claims on the objectivity of NPI-based
lower and upper probabilities.

It is interesting to consider the above norms for objective Bayesian-
ism in more detail. The norm (EN) is explicitly phrased in a predictive
manner, fitting with NPI. When restricted to precise probability, it may
appear to be hard to disagree with (EN). However, the word ‘roughly’
appears both in relation to the observations, and in relation to the
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apparently logically imposed predictive probability, in rather a vague
manner. For example, suppose that 498 out of 1,000 tosses of such
a coin give ‘heads’ (H) as outcome, would one require the predictive
probability of the next toss to give H to be equal to 0.498, or perhaps
equal to 0.500? If one feels that such data would support strong further
knowledge of this particular coin, and the way it is tossed, the latter
may be more logical. What, however, if the coin is spun on its edge
instead of tossed? Student experiments with Dutch (pre-Euro) coins
showed that coins, appearing symmetrical to the naked eye, did not
have a tendency to fall heads up in about half the spins. A possible
explanation of this behaviour was in the production process of coins,
in particular the way they are cut out of large sheets of metal. Suppose
that such a coin leads to 416 H out of 1,000 spins, should the predictive
probability for H on the next spin of the same coin be 0.416? And, what
should the probability distributions be for the number of H’s in the next
100, 1,000, or even 100,000 spins?

Perhaps we may loosely interpret (EN) in the following manner:

(EN’) Objective inferences should not disagree with empirical evi-
dence.

Of course, (EN’) is equally vague, in particular with regard to the
word ‘disagree’. When restricted to precise probability, one could in-
terpret (EN’) as stating that a predictive probability should equal
an observed frequency of a particular outcome category, or, for real-
valued observations, that the predictive distribution function should
equal the empirical distribution function. The latter, of course, may
cause difficulties due to the discrete nature of empirical distribution
functions. The first seems acceptable, but perhaps more so if we have
many observations than if one only has few observations. Also, one may
object to predictive probabilities being 0 for not yet observed outcomes,
both for small and larger data sets. We discuss this in more detail in
Section 7.1.

The intervals created by our lower and upper probabilities, as based
on A(n) and its variations as discussed earlier in this paper, always in-
clude the empirical probabilities according to the data set used. Hence,
such NPI never disagrees with empirical evidence, when we explicitly re-
strict ‘empirical evidence’ to the n observations. Although this property
is not as strong as one may like, as e.g. vacuous interval probabilities
(i.e. P (·) = 0 and P (·) = 1) also trivially satisfy this property, it
should be emphasized that NPI is far from vacuous, with imprecision
decreasing as a function of n.
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The norm (LN), which is also formulated in a predictive manner, also
seems attractive from a classical probability perspective, as it would be
difficult to advocate a different norm. However, an important ques-
tion is whether or not one would impose the agent to act accordingly.
Perhaps even more worryingly, and in line with increasingly popular
use of uncertainty quantifications, is the question whether or not one
should include such a probability of 1/2 in an ‘expert system’, without
further quantification (or description) of the strength of evidence on
which this probability is based. This norm (LN) reflects a strong sym-
metry assumption, probably caused by the restrictive nature of precise
probability (Walley, 1991). For use of uncertainty quantifications in
expert systems, it may be the case that a single number representa-
tion is too restrictive. Bayesian statisticians may argue that one can
reflect such strength of evidence via higher-order probabilities. From
subjective perspective, they may misunderstand De Finetti’s (1974)
case for fair prices of gambles as the concept on which his justification
of Bayesian inference relies: he clearly states that for any gamble one
must have a fair price (whether or not one wishes to report this, either
fairly or not at all, is a different matter). Hence, at worst higher-order
probabilities do not fit in this concept, a defendable point of view for
any probabilities on non-observable events (how to settle the gamble?),
and at best the use of higher-order probabilities significantly compli-
cates storing and using information in expert systems. And, let us not
forget that, if interest is explicitly in the next observation, any higher-
order probabilities are integrated out to derive the required marginal
probability, again leading to a single value which fails to represent the
strength of empirical evidence. Walley (1991) discusses such symmetry
assumptions in detail.

Perhaps we may loosely interpret (LN) in the following manner:

(LN’) If one has no information suggesting that one possible outcome
is more likely than another, then this should be reflected by identical
uncertainty quantifications for these outcomes.

Our formulation (LN’) avoids mentioning explicitly the number of
possible outcomes, which is probably required to be known for (LN)
to be applicable. We discuss this further in Section 7.1. By the use
of lower and upper probabilities, our nonparametric predictive infer-
ences are relatively straightforward to use in expert systems, far easier
than, for example, if higher-order probability distributions would need
to be stored. In the most extreme situation, where one has no data
whatsoever, and where, as explicitly assumed for NPI, one does not
wish to use further information in a subjective manner, we can have
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vacuous interval probabilities for all but trivial events involving the next
observation(s). Indeed, we could not even apply A(n), nor its variations,
in a sensible manner for n = 0, and our NPI framework does not define
any lower and upper probabilities in case n = 0. Nevertheless, the only
values that would be consistent with NPI, if n = 0, are the vacuous
interval probabilities.

Under classical probability, (EN) and (LN) may require to be priori-
tised, for example because conflict may appear, see Williamson (2004)
for a detailed discussion. In addition, there is wide scope with regard
to application of (LN), where for example a variety of information
measures can be used. The use of lower and upper probabilities simpli-
fies such matters enormously, although one still requires assumptions
to support a particular choice of values of such interval probabili-
ties. We suggest that NPI presents such particular values, based on
clearly stated assumptions with regard to a data representation (either
directly on observables, or assumed for an underlying data representa-
tion) and post-data exchangeability. The NPI-based lower and upper
probabilities can be said to be ‘sensible’, in the sense that the empirical
probabilities are always in the intervals created by the corresponding
NPI interval probabilities, and that the length of such intervals de-
creases as a function of n (leading to precise probabilities for n →∞).
Furthermore, the NPI-based interval probabilities can be said to be
‘reasonable’ from practical perspective, as they are not to conservative
(so not creating intervals that are too wide) when based on medium
sized data sets, as typically appear in practical applications, see the
examples in Section 6. A further intuitively attractive property, as
briefly mentioned for Bernoulli data in Section 7.1, is that the difference
between corresponding NPI-based upper and lower probabilities tends
to increase as function of the number of future observations specified
in the event of interest. Hence, NPI on the basis of 1,000 observations
from spinning a coin leads to very little imprecision when considering a
single future observation, but quite much imprecision when considering
100,000 future observations (Coolen, 1998). Walley (1991) explored
the natural relation between imprecision on an event A, defined as
∆(A) = P (A) − P (A), and information, and suggested the intuitively
attractive information measure i(A) = ∆−1(A)−1, so ∆(A) is decreas-
ing as function of i(A), classical probability (∆(A) = 0) corresponds to
i(A) = ∞, and vacuous interval probability (∆(A) = 1) corresponds to
i(A) = 0. When using this information measure for NPI, i(A) is often
quite naturally related to n. Again, we do not wish to make strong
claims about this argument as a proof of suitability of either NPI or
i(A), but it certainly suggests that the relation between imprecision
and information measures is an interesting topic for future research.
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Coolen (1994) explored the use of such a relation explicitly in order
to control imprecision upon updating, in a parametric model context
close to robust Bayesian theory (Berger, 1990; Rios Insua and Ruggeri,
1997).

With any inferential method, it is important to clarify its possible
use in applications. Our position here can be formulated as follows.
We advocate the use of NPI as objective input in subjective decision
processes. Care should be taken that we do not state that the NPI-based
interval probabilities should be used as such, but the ‘input’ suggested is
of the nature ‘NPI, with this particular model, data representation, and
post-data exchangeability assumption, implies these lower and upper
predictive probabilities’. Although we appreciate the ideal of achieving
an objective inferential theory, we do not foresee a possible theory
which convincingly excludes all subjective judgements. In particular,
predictive inference seems to require subjective input with regard to
judgement of relevance of data, and some form of ‘exchangeability-
type judgement’ to link data to predictions for future observations.
In addition, any model assumptions seem to require at least some
subjective elements, for example with regard to the appropriate level
of detail.

With regard to NPI, we wish to emphasize the explicitly post-
data nature of the assumption A(n) and its variations. In the standard
Bayesian approach to statistics, it seems often to be taken for granted
that one can fully assess all relevant aspects of an inferential problem,
all possible related data structures, and all possible observations, at the
prior stage. Goldstein (1983; 1985; 1986; 1994; 1996) addresses such is-
sues in great detail, making clear that the main philosophical issue with
regard to Bayesian statistics is the interpretation of the posterior distri-
bution: there is no logical requirement to use the conditional probability
derived at the prior stage as one’s actual subjective probability after
further data has become available. Indeed, when using a parametric
model one may often decide on summary statistics at the prior stage,
whereas study of data might then suggest further information from
the data to be important. In our NPI setting, one should clearly judge
the post-data exchangeability assumption in the light of the data. For
example, in case of Bernoulli data, suppose that the outcomes of 1,000
spins of a coin are such that the first 416 spins gave heads, followed by
584 tails. One may then not wish to use the post-data exchangeability
assumption for spin 1,001, which effectively assumes that all 1,001
spins involved where similar processes. It is interesting to remark that
Goldstein’s work, as mentioned above, on the foundations of prior and
posterior inferences, supports the elegant and powerful theory of Bayes
linear analysis (Goldstein, 1999; Goldstein and Wooff, 1995), which is
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an explicitly subjective approach to statistics and decision making, in
line with De Finetti’s (1974) theory. Bayes linear analysis uses prevision
(‘expectation’) as the primary concept for quantification of uncertainty.
Generalizing Bayes linear methods to allow interval-valued prevision is
an interesting topic for future research.

An often stated ‘disadvantage’ of the use of lower and upper proba-
bilities, for statistical inference and decision making, is the possibility
of ‘indecision’, see Walley (1991) for a detailed discussion. By empha-
sizing the difference between the actual decisions or inferences, and
the NPI assumptions and results as input to this process, we hope
our position is clear: we strongly prefer to indicate all ‘reasonable
decisions or inferences’ in line with the evidence, over the suggested
clarity of a single ‘optimal’ decision or inference without explicit op-
portunity to appreciate the way in which this is influenced by data and
by assumptions, the latter often hidden and used for mathematical
simplicity. One of the author’s reasons to study and develop NPI has
always been a strong wish to understand precisely those influences of
data and assumptions on the results of statistical analyses. We suggest
to use a variety of statistical models and inferential approaches in
parallel, whenever possible. If inferences based on other models and
approaches strongly conflict with NPI results, we would wish to study
the assumptions underlying the other inferences in detail. Of course,
in many situations, particularly when sufficient data are available, one
would normally expect the actual inferences, based on different statis-
tical approaches, to be roughly in agreement. And, if in such cases the
event of interest enables fairly robust inference (Berger, 1990; Huber,
1981; Rios Insua and Ruggeri, 1997), the outcomes of most established
approaches and NPI will be roughly in agreement, which can provide
strong confidence in the resulting decision or action.

7.1. NPI for Bernoulli and multinomial data

We briefly present the main results on NPI for Bernoulli (Coolen, 1998)
and multinomial data (Coolen and Augustin, 2005), which highlight
some of the comments in the above discussion.

For Bernoulli data, Coolen (1998) presents NPI-based lower and
upper probabilities for general events of interest concerning m future
observations (‘trials’) based on n observations, using an underlying
assumed data representation similar to the thought experiment used by
Bayes (1763), together with the appropriate A(n) assumptions. Here,
we only consider the simple event of r successes occurring in m future
trials, given s successes have occurred in n trials, which we denote by
(m, r)|(n, s), where only the number of future successes r is a random
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quantity as we assume m to be fixed. The NPI-based lower and up-
per probabilities presented by Coolen (1998) for this event, are (for
0 ≤ s ≤ n and 0 ≤ r ≤ m)

P ((m, r)|(n, s)) =



(
s+r−1

r

)(
n−s+m−r−1

m−r

)(
n+m

n

) for 0 < s < n,

n

n + m

for (s = 0 and r = 0)
or (s = n and r = m),

0 for (s = 0 and r > 0)
or (s = n and r < m),

and

P ((m, r)|(n, s)) =

(
m
r

)(
n
s

)(
n+m
s+r

) .

For the special case of a single future observation (m = 1), the
lower and upper probabilities of a success (r = 1) are s

n+1 and s+1
n+1 ,

respectively. We refer to Coolen (1998) for further corresponding re-
sults, in particular lower and upper probabilities for r in subsets of
{0, . . . ,m}. For any event of interest, and for any data set and choice
of m, the interval created by lower and upper probabilities contains the
corresponding empirical probability based on the observed proportion
of successes. Also, it is easy to confirm that imprecision decreases as
function of n, and increases as function of m, as long as the proportions
of successes (both in the data and in the event of interest for the future
trials) remain about constant.

Recently, Coolen and Augustin (2005) have developed an NPI ap-
proach for multinomial data, explicitly assuming no further knowledge
about the number of possible observation categories in addition to the
data representation, and also no natural ordering or other relations
between such categories. They present lower and upper predictive prob-
abilities for a single future observation, Yn+1, based on data consisting
of nj observations in category cj , for j = 1, . . . , k, with

∑k
j=1 nj = n. If

the categories are defined upon observation, we have that nj ≥ 1, and
hence that 1 ≤ k ≤ n. However, adding further specifically defined cat-
egories to this data description, to which no observations belong, does
not influence any of their inferences. To derive results for all possible
events of interest for the next observation, notation is introduced for
new, as yet unseen, categories. It is important to distinguish between
Defined New categories, of which one needs to take the possibility of
having several different such categories into account, denoted by DNi

for i = 1, . . . , l for l ≥ 1, and any as yet Unobserved New observation,
which we denote by UN and includes observations in the categories
DNi. By allowing l ≥ 0 and 0 ≤ r ≤ k in the notation, one can define
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two types of events that comprise the most generally formulated events
that need to be considered for Yn+1 in this multinomial setting. These
two general events are

Yn+1 ∈
r⋃

s=1

cjs ∪ UN\
l⋃

i=1

DNi,

and

Yn+1 ∈
r⋃

s=1

cjs ∪
l⋃

i=1

DNi.

Coolen and Augustin (2005) present the following NPI-based lower
and upper probabilities for these events. For the first of these general
events, the lower probability is

P (Yn+1 ∈
r⋃

s=1

cjs ∪ UN\
l⋃

i=1

DNi) =
1
n

(
r∑

s=1

njs − r

)
, for k ≥ 2r,

1
n

(
r∑

s=1

njs − r + max(2r − k − l, 0)

)
, for r ≤ k ≤ 2r,

and the corresponding upper probability is

P (Yn+1 ∈
r⋃

s=1

cjs ∪ UN\
l⋃

i=1

DNi) =
1
n

(
r∑

s=1

njs + k − r

)
.

For the second of these general events, the lower probability is

P (Yn+1 ∈
r⋃

s=1

cjs ∪
l⋃

i=1

DNi) =
1
n

(
r∑

s=1

njs − r

)
,

and the corresponding upper probability is

P (Yn+1 ∈
r⋃

s=1

cjs ∪
l⋃

i=1

DNi) =
1
n

(
r∑

s=1

njs + k − r

)
, for r ≤ k ≤ 2r,

1
n

(
r∑

s=1

njs + r + min(k − 2r, l)

)
, for k ≥ 2r.
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It is easy to confirm that these lower and upper probabilities satisfy
the conjugacy property P (A) = 1−P (Ac) for all events A considered for
the next observation, for a chosen data representation. In fact, they are
again F-probability (Coolen and Augustin, 2005), and hence strongly
consistent. The empirical probability corresponding to an event A, that
is the relative frequency of A in the data, is always bounded by these
P (A) and P (A). For detailed illustration of these lower and upper prob-
abilities we refer to (Coolen and Augustin, 2005), but it is interesting
to consider these for the event that the next observation belongs to an
as yet unseen category, which is one of the possibly more controversial
inferences in any statistical theory for which objectivity is claimed. If
all n observations belong to one category, then

[P ;P ](Yn+1 ∈ UN) = [P ;P ](Yn+1 ∈ DNi) = [0; 1/n],

whereas if all n observations belong to different categories, we have

[P ;P ](Yn+1 ∈ UN) = [0; 1]

but
[P ;P ](Yn+1 ∈ DNi) = [0; 1/n].

This last uncertainty quantification holds for any chosen DNi, with
no restriction on the number of such different DNi’s, so this clearly
shows a situation where the use of lower and upper probabilities has
an advantage over classical probabilities, as the latter cannot satisfy
(LN’), except if one would assign probability 0 to each such DNi or
would assume an upper bound for the number of such DNi’s.

Also, the lower probability for the event that the next observation
belongs to the same category as a previous observation, only becomes
positive if two previous observations belonged to that category. Of
course, one may consider it more likely that the next observation be-
longs to a category already once observed than to a new category, this is
reflected via different upper probabilities for these events. For further
illustration and discussion of these lower and upper probabilities we
refer to (Coolen and Augustin, 2005), where in particular a detailed
comparison is given of these NPI-based inferences with Walley’s Im-
precise Dirichlet Model (IDM) (Walley, 1996), which was proposed for
similar inferences. In Walley’s model, the lower probability for the next
observation to belong to a once observed category is positive, and can
actually be pretty large (depending on the choice of a further parameter
value that must be specified subjectively, and independently of the
data), which was mentioned as a possible disadvantage by several dis-
cussants of Walley’s paper (Coolen, 1996b; Walley, 1996). In addition,
Walley’s IDM does not distinguish between UN and DNi, and the
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IDM interval probabilities corresponding to the above events, with the
extreme data situations of either all observations belonging to the same
category or all belonging to different categories, are equal, which was
also considered to be a disadvantage of the IDM, both by discussants
and by Walley himself (Walley, 1996).

Clearly, these NPI lower and upper probabilities for Bernoulli and
multinomial data are in line with the reformulated norms (EN’) and
(LN’) above. In particular, for these predictive inferences based on
multinomial data, the actual description of categories is irrelevant once
a particular data representation is chosen. However, such inferences do
depend on the choice of data representation, where imprecision tends
to increase with increased detail of data representation (Coolen and
Augustin, 2005).

7.2. NPI: Bayesian or not? Objective or not?

To judge any possible role for NPI in a theory of objective Bayesianism,
important questions are whether or not NPI is Bayesian, and whether
or not it is objective. We will discuss these issues, without however
resolving them.

One could argue both in favour of, and against, a claim that NPI is
Bayesian. Hill (1968; 1988; 1993) clearly considered A(n) as a suitable
basis for nonparametric Bayesian statistics, and proved its consistency
by developing a prior process (under finite additivity) that results in
the A(n) assignments as posterior predictive probabilities for the next
observation. However, as clearly stated by Hill (1988), A(n) is also a
‘frequentist procedure’. We adhere more strongly to this latter point of
view. Generally, though, both for frequentist and Bayesian approaches,
statisticians are often happy to assume exchangeability at the prior
stage. Once data are used in combination with model assumptions,
exchangeability no longer holds ‘post-data’ due to the influence of
modelling assumptions, which effectively are based on mostly subjective
input added to the information from the data. Hence, we consider A(n),
and its variations such as A©(n) as presented in this paper, as a natural
basis for inference in case one wishes to reduce subjective input.

When using interval-valued uncertainty quantifications, it is clear
that conditioning and updating are explicitly different actions (Au-
gustin and Coolen, 2004; Dubois and Prade, 1994). Hence, it may
appear difficult to call updating in NPI, which simply means extending
the data set by including a further j observations, and adopting, if one
wishes, A(n+j) for further NPI, ‘Bayesian’. However, as our NPI-based
inferences are strongly internally consistent (Augustin and Coolen,
2004), statically coherent in Walley’s sense (Augustin and Coolen,
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2004; Walley, 1991), and also consistent upon updating (Augustin and
Coolen, 2004), we think that, in principle, one could argue that they
may be considered as ‘Bayesian’. For example, if one would bet accord-
ing to the interpretation of these lower and upper probabilities as prices
for which gambles are desirable (Walley, 1991), one cannot be made a
sure loser at any particular moment in time.

Our NPI does not require a prior probability, or a set of prior
probabilities (Berger, 1990; Walley, 1991), so from this perspective one
may not wish to consider NPI to be Bayesian. Of course, with regard to
objective Bayesianism, this nicely avoids the difficult issue of selecting a
‘non-informative’ prior, or even defining what this means. For example,
even for the circular data inferences discussed in Section 6, a variety of
priors could be advocated as being ‘non-informative’, and this is more
complex when considering random quantities on the real-line. Also our
explicit emphasis on A(n) as a post-data assumption is not in line with
Bayesian foundations, where such judgements are required, and only
allowed, at the prior stage.

The second question, whether or not NPI is objective, we leave for
the reader to judge. This is in line with our earlier claim that we con-
sider NPI to be objective input for decision processes which necessarily
depend on subjectivity, where the objectivity must be interpreted with
regard to the entire context including model and data representations,
including the A(n)-type post-data exchangeability assumption used, so
not only with regard to the resulting interval probabilities. It would be
interesting to compare our NPI for circular data, using the examples in
Section 6, with ‘objective Bayesian’ approaches to the same inferential
problems. We would be extremely surprised if any Bayesian approach,
that is claimed to be ‘objective’, would result in predictive probabili-
ties and corresponding inferences which differ noticeable from the NPI
results presented in this paper.
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