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Abstract

In this paper, we present an overview of basic parametric probability distributions

which are frequently used in reliability. We present some main characteristics of

these distributions, and briefly discuss underlying assumptions related to their

suitability as models for specific reliability scenarios.
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1 Introduction

In many applications of reliability theory and quantitative risk assessment, one is in-

terested in random quantities for which one assumes a parametric probability distribu-

tion, as is generally often done in statistics and stochastics. In this paper, we briefly

introduce some of the most commonly used parametric probability distributions in

reliability, restricting ourselves to uni-variate random quantities and the most basic

forms of the distributions. Far more detailed presentations of these distributions, with

historical notes, discussions of properties and applications, and further generalizations,

can be found in the Wiley Encyclopedia of Statistical Sciences [1]. Also key text books

in reliability and related topics tend to present these (and more) parametric probability

distributions in more detail, see e.g. Hougaard [2], Lawless [3], Martz and Waller [4],

∗Contribution to Wiley Encyclopedia of Quantitative Risk Analysis and Assessment
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or Meeker and Escobar [5]. We present these main distributions in a very brief man-

ner, in many other articles in this encyclopedia these distributions are used, providing

examples of their applications.

Parametric probability distributions are used both in stochastic analyses of relia-

bility of systems, where they are mostly assumed to be fully known and corresponding

properties of the system are analyzed, and in statistical inference, where process data

are used to estimate the parameters of the distribution, often followed by a specific

inference of interest. In the latter case, one must take care to also diagnose the assump-

tions underlying the specific parametric distribution assumed, to ensure a reasonable

fit with the empirical data [1].

We present some main probability distributions for both continuous and discrete

random quantities. For the former, parametric probability distributions can be uniquely

specified via the probability density function (pdf) f(t), the cumulative distribution

function (cdf) F (t), the survival function S(t), or the hazard rate h(t). For example, for

a non-negative random quantity, as often used in reliability if one is interested in a ran-

dom lifetime, these functions are related as follows: F (t) =
∫ t

0
f(u)du, S(t) = 1−F (t)

and h(t) = f(t)/S(t). The hazard rate is often considered to be particularly attrac-

tive in reliability, as it represents an instantaneous rate of the occurrence of a failure,

conditioned on no failure until now. For example, wear-out of a unit over time can be

represented by an increasing hazard rate.

In Section 2 we briefly consider the Normal distribution, and some related distribu-

tions, which, although important, play perhaps a less central role in reliability than in

other application areas of statistics. In Section 3 we present the Exponential distribu-

tion, and the Weibull and Gamma distributions which are popular models in reliability

and which can be considered as generalizations of the Exponential distribution. Sec-

tion 4 presents some important distributions for discrete random quantities, in Section

5 some further important distributions for reliability are briefly mentioned, and the

paper is concluded with some further remarks in Section 6.

2 Normal and related distributions

The Normal distribution (also known as ‘Gaussian distribution’) is arguably the most

important probability distribution in Statistics, as it occurs as the limiting distribution

when a sum of random quantities is considered (Central Limit Theorem). In general,

it also plays a big role in quantitative risk assessment, e.g. when risks of portfolios
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of investments are considered, but its role in reliability is somewhat less important.

However, it is frequently used as a suitable probability distribution for the (natural)

logarithm of a random lifetime, in which case the lifetime’s distribution is called ‘Log-

normal’. It is also related to the Inverse Gaussian distribution, which is important in

some processes in reliability.

Normal distribution

The Normal distribution has two parameters, −∞ < µ < ∞ and σ2 > 0, which are

equal to its mean and variance, so its standard deviation is σ, and its pdf is

f(x|µ, σ2) =
1

(2π)1/2σ
exp

(
−(x− µ)2

2σ2

)
for −∞ < x <∞

The cdf of the Normal distribution is not available in closed form, so computations

often used tables of the cdf of the Standard Normal distribution, which has µ = 0

and σ2 = 1, using the fact that (X − µ)/σ is Standard Normally distributed if X is

Normally distributed with parameters µ and σ2. Such tables are included in statistics

text books, but all main statistical and mathematical software nowadays have good

routines for the computation of the Normal distribution cdf. Its direct use in reliability

is often restricted to modelling residual or error terms in regression models, but it plays

an important role as a model for log-transformed lifetimes.

Lognormal distribution

A random quantity T > 0 is Lognormally distributed if X = lnT has a Normal

distribution, so that T = exp(X) has pdf

f(t|µ, σ2) =
1

(2π)1/2σt
exp

(
−(ln t− µ)2

2σ2

)
for t > 0

The mean and variance of T are exp(µ + σ2/2) and [exp(σ2) − 1][exp(2µ + σ2)], re-

spectively. This distribution is quite popular as a model for lifetimes, even though its

hazard rate has the somewhat unattractive property that it increases, from h(0) = 0,

to a maximum, and thereafter decreases to 0 for t → ∞. However, if attention is

particularly to early failure times, yet with a wear-out effect, then this model might

be appropriate. One possible argument justifying the use of this model is related to

the Central Limit Theorem argument for the Normal distribution. Informally stated,

the latter implies that, if a random quantity can be considered to be the sum of many

independent random quantities, then its distribution will be approximately Normal.

Hence, the same property holds for lnT if T has a Lognormal distribution, with the
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log-transform here meaning that T , for this argument, can be interpreted as the prod-

uct of many independent random quantities, which might be attractive in certain types

of failure processes. An obvious argument for the popularity of the Lognormal distri-

bution was always the wide availability of statistical tables for the Normal distribution,

an argument that is less relevant nowadays.

Inverse Gaussian distribution

Contrary to what the name might perhaps suggests, this is not a distribution for a

simple transformation of a Normally distributed random quantity. However, it becomes

ever more important in reliability theory due to the fact that it is appropriate for

stopping times in Brownian motion (‘Gaussian’) processes, and these (and related)

processes are playing an increasingly important role in reliability modelling. Suppose

that a Brownian motion, starting at 0 at time t = 0, has drift ψ ≥ 0 and variance

σ2, then the time to reach the value a > 0 for the first time has an Inverse Gaussian

distribution with parameters β = ψ
2σ2 and α = a

σ
√

2
. The pdf of this distribution is

f(t|α, β) =
α exp(2αβ1/2) exp(−βt− α2/t)

π1/2t3/2
for t > 0

Padgett and Tomlinson [6] present an excellent example of the use of such processes

to describe degradation, providing a model of continuous cumulative damage. They

present a general accelerated test model in which failure times and degradation mea-

sures are combined for inference about system lifetime, with the drift of the process

depending on the acceleration variable. Their paper includes an illustrative example

using degradation data observed in carbon-film resistors.

3 Exponential and related distributions

The probability distributions in this section, for a continuous positive random quantity

T , are very popular models for lifetimes, used in a wide variety of applications in

reliability and beyond. We briefly introduce these distributions in basic forms, they

can be generalized in a variety of ways. The most obvious generalization is inclusion

of a location parameter τ , such that T > τ , so effectively this shifts the start of the

distribution from 0 to τ . Mathematically this is straightforward, but one must be

careful in case of statistical inference based on the likelihood function, as for some

models the maximum likelihood estimator of τ is equal to the smallest observation in

the available data, which is unreasonable from several perspectives.
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Exponential distribution

The Exponential distribution has a constant hazard rate, say h(t|λ) = λ > 0, so its

pdf is

f(t|λ) = λ exp(−λt) for t > 0

It is the unique model, for continuous T , with the so-called ‘memory-less property’,

that is the probability for the event to take place in a future interval does not depend

on the current age of the item or individual considered. This distribution models the

random times between events in homogeneous Poisson processes.

Weibull distribution

The Weibull distribution is a very widely used probability distribution in reliability,

and it has two parameters: scale parameter α > 0 and shape parameter β > 0. It is

easiest introduced via its hazard rate, which is

h(t|α, β) = αβ(αt)β−1 for t > 0

The corresponding survival function is

S(t|α, β) = exp(−(αt)β) for t > 0

For β = 1 this distribution is an Exponential distribution, whereas β > 1 leads to an in-

creasing hazard rate, and hence can be considered to model wear-out, as often deemed

appropriate for mechanical units, and β < 1 leads to decreasing hazard rate, hence

modelling wear-in of a product as often advocated for electronic units. One Weibull

distribution cannot model both wear-in and wear-out at different stages, so e.g. it can-

not resemble a ‘bath-tub shaped hazard rate’, but different Weibull distributions are

often advocated for the different stages of a units’ life. Although its form is mathe-

matically straightforward, statistical inference based on the Weibull distribution is less

trivial due to the fact that there are no reduced-dimensional sufficient statistics for the

shape parameter β. This distribution is routinely available in standard mathematical

and statistical software. The Weibull distribution with β = 2, hence with hazard rate

a linear function of t, is also known as the Rayleigh distribution. Weibull distributions

are also frequently used in regression-type inferences in reliability, enabling information

from covariates to be taken into account. There is also a useful relationship between

the Weibull distribution and an Extreme Value distribution (also called the Gumbel

distribution), which occurs as a limiting distribution for extreme values of a sample
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under some assumptions on the tail of the sample distribution: if T has a Weibull

distribution, then lnT has such an Extreme Value distribution.

Gamma distribution

The Gamma distribution is also a useful lifetime model in many reliability applications,

and has two parameters: scale parameter λ > 0 and shape parameter κ > 0. Its pdf is

f(t|κ, λ) =
λ(λt)κ−1e−λt

Γ(κ)
for t > 0

where Γ(κ) is the Gamma function, which of course equals the integral of the numera-

tor of this pdf over t > 0. Computation of the cdf, survival function and hazard rate is

somewhat awkward as it involves the incomplete Gamma function, yet also this distri-

bution is available in the leading mathematical and statistical software. The Gamma

distribution with κ = 1 is an Exponential distribution, and Gamma distributions with

integer κ are also known as Erlang distributions. The pdf of the Gamma distribution

can have many different shapes, but it is not as commonly used in reliability as the

Weibull distribution, possibly due to the lack of a clearly interpretable hazard rate.

An attractive interpretation, however, occurs for integer κ, in which case a Gamma

distributed lifetime can be interpreted as the sum of κ independent Exponentially dis-

tributed random quantities, which might, for example, be suitable if one wishes to

model the lifetime of a system with spare units. This latter property also makes the

Gamma distribution popular in models for queueing systems. With increased popu-

larity of Bayesian methods in statistics, the Gamma distribution is used frequently

as it is the conjugate prior distribution for both Exponential and Poisson sampling

distributions.

4 Distributions for discrete random quantities

In reliability, as in many other application areas of stochastic modelling and statisti-

cal inference, one is also regularly interested in discrete random quantities, e.g. when

counting the number of components that have performed a task successfully. The Bi-

nomial distribution is probably the most frequently used distribution, whereas also the

Negative Binomial distribution and the Poisson distribution deserve to be mentioned

explicitly. Of course, there are again many variations and generalizations to these

and other distributions for discrete random quantities, for these we refer again to the

literature as mentioned in the introductory section.
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Binomial distribution

Suppose that X denotes the number of successes in n independent trials, where each

trial is a success with probability θ and a failure with probability 1−θ. The probability

distribution of X, for a given value of n, is given by

P (X = x|θ) =

(
n

x

)
θx(1− θ)n−x for x ∈ {0, 1, . . . , n}

The expected value and variance of X are nθ and nθ(1−θ), respectively. Computation

of these probabilities is straightforward if n is not too large, for large values of n two

approximations can be used: for values of x close to 0 or n, the Poisson distribution

with expected value nθ can be used as a reasonable approximation, whereas for other

values of x an approximation based on the Normal distribution with the same expected

value and variance is suitable. A standard ‘text-book’ example for a situation where

the Binomial distribution is appropriate is n tosses of a possibly biased coin, where

the coin lands heads up with probability θ on each toss, and where the number of

tosses with heads up is counted. In situations where the possible outcomes are in

more than two unordered categories, the Multinomial distribution provides a suitable

generalization of the Binomial distribution [1].

Negative Binomial distribution

The Negative Binomial distribution is a variation to the Binomial distribution, with the

total number of trials not a predetermined constant, but instead one counts the number

of trials until a specified number of successes have occurred. Suppose again that trials

are independent, each a success with probability θ and a failure with probability 1− θ,
and let N denote the number of trials required to obtain the r-th success. Then the

probability distribution of N , for fixed r, is given by

P (N = n|θ) =

(
n− 1

r − 1

)
θr(1− θ)n−r for n = r, r + 1, . . .

Sometimes the Negative Binomial distribution is defined slightly differently, namely as

counting the number of trials prior to the r-th success. This distribution is important

in its own right in probabilistic risk assessment, in reliability but also for example

in quality control, but it is also increasingly used in Bayesian statistical inferences

[4], as it occurs as the posterior predictive distribution for Poisson sampling with

a conjugate Gamma prior distribution. The special case of r = 1 is known as the

Geometric distribution, which simply counts the number of trials until the first success

has occurred.
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Poisson distribution

A random quantity X has a Poisson distribution with expected value µ if its probability

distribution is given by

P (X = x|µ) =
e−µµx

x!
for x = 0, 1, 2, . . .

This distribution is particularly important in stochastic processes, where it counts the

number of events in a given period of time. For example, for a Non-Homogeneous

Poisson Process with failure rate function λ(t), the number of events in time interval

[t1, t2) has a Poisson distribution with expected value µ =
∫ t2
t1
λ(u)du.

5 Other distributions

Many other parametric probability distributions play an important role in some specific

reliability applications, we briefly mention some examples but refer to the literature,

e.g. the sources mentioned in Section 1, for more details. Historically, the Log-logistic

distribution was frequently used in reliability, with a lifetime T having a Log-logistic

distribution if Y = lnT has a Logistic distribution with pdf

f(y|µ, σ) =
exp[(y − µ)/σ]

σ(1 + exp[(y − µ)/σ])2
for −∞ < y <∞

with parameters −∞ < µ < ∞ and σ > 0. This distribution is very similar to the

Normal distribution, but its survival function is available in closed form and hence it

makes it easier to deal with right-censored observations, which often occur in reliability

applications.

The Uniform distribution, which simply has a constant pdf over a finite interval, is

also useful in some reliability applications. For example, it models the times of events

in a Homogeneous Poisson Process if the total number of events over a time interval

of pre-determined length is given. It is also frequently used in Bayesian statistics,

as a prior distribution which, as is sometimes argued, can reflect quite limited prior

knowledge being available. The Beta distribution is also popular in Bayesian statistics,

as it is a conjugate prior for Binomial sampling models.

The Gompertz distribution is characterized by an attractive form for the hazard

rate, namely h(t) = λφt for t > 0, with scale parameter λ > 0 and shape parameter φ >

0. Clearly, φ = 1 gives the Exponential distribution, φ > 1 models an increasing hazard

rate (and hence can be used to model wear-out), but for φ < 1, so decreasing hazard rate
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(‘wear-in’), a problem occurs as the corresponding probability distribution is improper

(i.e. its density does not integrate to one for t > 0). This latter aspect could be

interpreted as if a proportion of the population considered cannot experience the event

of interest. We mention this distribution mostly due to its apparently attractive hazard

rate, and to emphasize the complications that can occur already with such rather

simple mathematical forms. The Gompertz distribution has been used in actuarial

mathematics since the early 19th century.

When we presented the Weibull distribution in Section 3, we briefly referred to an

Extreme Value distribution. Generally, there are several Extreme Value distributions (3

main functional forms), which occur for the maximum (or minimum) of n identically

distributed real-valued random quantities if n → ∞, and which often provide good

approximations for the distribution of this maximum (or minimum) if n is large. These

distributions are useful in a variety of reliability applications, for example related to

reliability of systems or to structural reliability and overloads.

In this paper, we have restricted attention to uni-variate random quantities. Of

course, in many reliability applications one is interested in multi-variate random quan-

tities, we refer to Hougaard [2] for an excellent presentation of related statistical theory,

including useful parametric distributions for multi-variate data.

6 Concluding remarks

Basic parametric probability distributions, such as presented in this paper, are also

often used as part of more complex statistical models, such as mixture models, Bayesian

hierarchical models, models with co-variates or parametric models for processes, we

refer to the literature (see Section 1) for further discussion of such models, several

examples are provided in other articles in this encyclopedia. Parametric models are

certainly not always suitable, in particular if one has many data available the use of

non-parametric or semi-parametric methods might be preferable due to their increased

flexibility to adapt to specific features of the data. Due to increased computational

power, applications of non- and semi-parametric methods have become more widely

available, yet parametric distributions are likely to remain important tools in reliability

and risk assessment.

It is often an advantage if the parameters have an intuitive interpretation. Several

of the parametric probability distributions discussed in this paper, including Normal,

Exponential and Gamma (but unfortunately not the Weibull distribution unless its
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shape parameter is assumed to be a known constant), belong to the so-called Expo-

nential Family of distributions [7], for which the parameters can be related to one- or

two-dimensional sufficient statistics which summarize the data, which has the added

benefit of available conjugate priors to simplify computation in Bayesian statistics.

When choosing a parametric distribution as a model in a specific application, one

often has to look for a suitable balance between simplicity of the model and correspond-

ing computational aspects, and how flexible and realistic the model is. As mentioned

before, for trustworthiness of statistical inferences based on an assumed parametric

model, it is important that the model choice is well explained and, where possible,

diagnostic methods (e.g. ‘goodness-of-fit tests’ [1]) are used to check if the model fits

well with the available data.
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