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Abstract

Nonparametric predictive inference (NPI) has been developed for a range of data

types, and for a variety of applications and problems in statistics. In this thesis,

further theory will be developed on NPI for multiple future observations, with

attention to order statistics. The present thesis consists of three main, related

contributions. First, new probabilistic theory is presented on NPI for future order

statistics; additionally a range of novel statistical inferences using this new theory

is discussed. Secondly, NPI for reproducibility is developed by considering two

statistical tests based on order statistics. Thirdly, robustness of NPI is introduced

which involves a first adaptation of some of the robustness theory concepts within

the NPI setting, namely sensitivity curve and breakdown point.

In this thesis, we present NPI for future order statistics. Given data consisting

of n real-valued observations, m future observations are considered and predictive

probabilities are presented for the r-th ordered future observation. In addition,

joint and conditional probabilities for events involving multiple future order stat-

istics are presented. We further present the use of such predictive probabilities

for order statistics in statistical inference, in particular considering pairwise and

multiple comparisons based on future order statistics of two or more independent

groups of data.



This new theory enables us to develop NPI for the reproducibility of statistical

hypothesis tests based on order statistics. Reproducibility of statistical hypothesis

tests is an important issue in applied statistics: if the test were repeated, would the

same conclusion be reached that is rejection or non-rejection of the null hypothesis?

NPI provides a natural framework for such inferences, as its explicitly predictive

nature fits well with the core problem formulation of a repeat of the test in the

future. For inference on reproducibility of statistical tests, NPI provides lower and

upper reproducibility probabilities (RP). The NPI-RP method is presented for two

basic tests using order statistics, namely a test for a specific value for a population

quantile and a precedence test for comparison of data from two populations, as

typically used for experiments involving lifetime data if one wishes to conclude

before all observations are available.

As every statistical inference has underlying assumptions about models and

specific methods used, one important field in statistics is the study of robustness

of inferences. The concept of robust inference is usually aimed at development

of inference methods which are not too sensitive to data contamination or to

deviations from model assumptions. In this thesis we use it in a slightly narrower

sense. For our aims, robustness indicates insensitivity to small changes in the

data, as our predictive probabilities for order statistics and statistical inferences

involving future observations depend upon the given observations. We introduce

some concepts for assessing the robustness of statistical procedures in the NPI

framework, namely sensitivity curve and breakdown point. The classical break-

down point does not apply to our context as the predictive inferences are bounded,

so we change the definition to suit our context. Most of our nonparametric infer-

ences have a reasonably good robustness with regard to small changes in the data.

Traditionally, in the robustness literature there has been quite a lot of emphasis

and discussion on robustness properties of estimators for the location parameters.

Thus, in our investigation of NPI robustness we also focus on differences in ro-

bustness of the mean and the median of the m future observations, and see how

they relate to the classical concepts of robustness of the median and mean.
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Chapter 1

Introduction

Order statistics appear in many statistical problems and are widely applied in

statistical modelling and inference [64]. Thus, a recognizable large body of lit-

erature has been developed to study order statistics [3, 36, 49]. In this thesis,

we present nonparametric predictive inference (NPI) for order statistics of future

observations.

NPI [7, 21] is a statistical framework based on the assumption A(n) by Hill

[55], as introduced in Section 1.2, with inferences explicitly in terms of future

observations. NPI has been developed for a range of data types, and for a vari-

ety of applications and problems in statistics, risk and reliability and operations

research. NPI for real-valued random quantities has thus far been mostly restric-

ted to a single future observation, although multiple future observations have

been considered for NPI methods for statistical process control [4, 5] and system

reliability [22]. In this thesis, further theory is developed on NPI for multiple

future observations with attention to order statistics. The nature of this thesis is

mostly theoretical with the implementation of the developed methods illustrated

by example applications using data from the literature.

This thesis presents a new probabilistic theory of NPI for future order stat-

istics that takes into account their interdependency. The results from these new

predictive probabilities involving order statistics of m future observations enable

the development of new NPI methods for statistical inference. We present pair-

1



1.1. Classical order statistics 2

wise and multiple comparisons based on future order statistics of two or more

independent groups of real-valued data. This generalizes NPI results for a single

future observation [30]. The new probabilistic theory contributes to development

of NPI for test reproducibility, we consider two tests based on order statistics.

The reproducibility of statistical hypothesis tests is an issue of major importance

in applied statistics: if a test were repeated, would the same conclusion be reached

about rejection of the null hypothesis? NPI provides a natural framework for

such inferences, as its explicitly predictive nature fits well with the core problem

formulation of a repeat of the test in the future. Robustness of the NPI is con-

sidered in this thesis. We have introduced some of the concepts of classical robust

statistics to the NPI method.

The outline of this introductory chapter is as follows. Section 1.1 presents

classical order statistics, and related prediction intervals. In Section 1.2, we

present an overview of the NPI framework and imprecise probability. In Section

1.3 we present NPI for comparing groups. A detailed outline of this thesis is given

in Section 1.4.

1.1 Classical order statistics

Order statistics are important tools in nonparametric statistical inference. If

X1, . . . , Xn are random quantities, their order statistics are arranged in non-

decreasing order and denoted by X(1) ≤ X(2) ≤ . . . ≤ X(n). Classical results deal-

ing with order statistics often assume that the Xi are independent and identically

distributed (iid) with continuous cumulative distribution function (CDF) F (x)

and probability density function (PDF) f(x) [3], although we will not make this

assumption. Order statistics appear in many practical cases, including robust

location estimates, detection of outliers, goodness-of-fit tests, analysis of censored

data and reliability analysis [3]. Order statistics deal with the properties and

applications of ordered random quantities X(.) and the functions involving them.

These statistics have many applications, such as extremes that arise in the stat-
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istical study of floods and droughts, or in the problems of breaking strength and

fatigue failure [36].

In this thesis we consider nonparametric predictive inference for order statistics.

This topic has also been presented from a different perspective, in the classical

literature, which we briefly introduce now.
In classical order statistics, it is assumed that X(1) ≤ X(2) ≤ . . . ≤ X(n)

represent data observations, and Y(1) ≤ Y(2) ≤ . . . ≤ Y(m) represent future obser-
vations, where the underlying X and Y populations are assumed to consist of iid
random quantities with the same continuous CDF F (x). A prediction interval
(X(j1), X(j2)), for j1, j2 ∈ {1, . . . , n} with j1 < j2 is an interval in which future
observations will fall, with a certain probability. Major interest in prediction
intervals was first mentioned in the context of exceedances, such as to answer
the question what is the probability that X(j), the j-th in magnitude of n annual
maximum flows at a point in a river, is exceeded u times, u = 1, . . . ,m, in m

future years [36, 49]? If R(j) is the number of future observations greater than
X(j), then

P (R(j) = u) = n

(
n− 1
j − 1

)∫ 1

0
(F (x))j−1(1− F (x))n−j

(
m

u

)
(1− F (x))u(F (x))m−udF (x)

= n

(
n− 1
j − 1

)(
m

u

)∫ 1

0
(F (x))j−1+m−u(1− F (x))n−j+udF (x)

Thus, u is the number of exceedances and is a positive integer where 0 ≤ u ≤ m.

This distribution of exceedances depends on the variate u and the parameters n, j

and m but not on the CDF F (x). The exceedances probability P (R(j) = u) is;

P (R(j) = u) =

(
n−j+u

u

)(
m−u+j−1

j−1

)
(
m+n
n

) (1.1)

This result also provides the probability that at least u Y ’s fall between X(j1)

and X(j2) (1 ≤ j1 < j2 ≤ n). If C(j1, j2) is the number of future observations in

X(j1), X(j2), then P (C(j1, j2) = u) is derived by replacing j by n+ 1 + j1 − j2 in

Equation (1.1), [36], to give

P (C(j1, j2) = u) =

(
j2−j1−1+u

u

)(
m−u+n+j1−j2

m−u

)
(
m+n
n

) (1.2)
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Note here that, in the classical approach, X(j1) and X(j2) are also considered to

be random quantities.

Recent work by Volterman, et al. [83] considered nonparametric prediction

of a subset of order statistics that was based on one or more independent type-

II right censored samples. They were interested in predicting the unobserved

failures from a type-II censored sample. They assumed two independent type-II

right censored samples X1:m, . . . , Xr:m, and Y1:n < . . . < Yd:n where 1 ≤ r < m

and 1 ≤ d ≤ n. They assumed that the X and Y values come from the same

absolutely continuous distribution with CDF F and PDF f . They considered

a nonparametric interval for a single X(s) (r < s ≤ m) and two order statistics

X(s1) and X(s2) (r < s1 < s2 ≤ m) using the independent Y sample, where all

prediction intervals must be conditional on X(r) < Y(k) for any 1 ≤ k ≤ d. For

the missing s-th order statistic of group X, where r < s ≤ m, the exceedance

probability of two order statistics from independent samples, X(s) < Y(k) is equal

to

P (X(s) < Y(k)) =
k−1∑
i=0

(
s−1+i
i

)(
m−s+n−i

n−i

)
(
n+m
m

) (1.3)

Volterman, et al. [83] have predicted the s-th order statistic of right-censored

observations in a sample X using the information provided from the independent

sample Y , where all the prediction intervals must be conditional on Xr:m < Yk:n

for any 1 ≤ k ≤ n. In the classical order statistics methods, they regard future

order statistics on the sample X and the observations on group Y both as random

quantities [36, 49].

For two sided intervals, the probability of X(r) < Y(a) < X(s1) < X(s2) < Y(b)

[83] is equal to

P (X(r) < Y(a) < X(s1) < X(s2) < Y(b)) =
s1−1∑
i1=r

m−s2∑
i2=0

(
a−1+i1
i1

)(
m−i1−i2+b−a−1

m−i2−i1

)(
n−b+i2
i2

)
(
m+n
m

)
(1.4)



1.2. Nonparametric predictive inference 5

1.2 Nonparametric predictive inference

Hill [55, 56] proposed the assumption A(n) for prediction of a future observation.

This assumption is suitable for situations in which there is extremely vague

prior knowledge about the characteristics of the underlying distribution of the

observations or, which may be more realistic, in situations in which one explicitly

does not want to use such information. This may occur, for example, if one wants

to study the (often hidden) effects of additional structural assumptions underlying

statistical models or methods. Inferences based on such restricted knowledge have

also been called ’low structure inferences’ [45].

To introduce the assumption A(n), we first need to intrduce some notation.

Suppose that X1, . . . , Xn, Xn+1 are real-valued exchangeable random quantities.

Let the ordered observed values of X1, . . . , Xn be denoted by x1 < x2 < . . . < xn.

For ease of notation, let x0 = −∞ and xn+1 = ∞ (or when dealing with non-

negative random quantities, we set x0 = 0) [58]. Note that xn+1 does not denote

an observed value for Xn+1. These n observations divide the real-line into n+ 1

intervals Ij = (xj−1, xj), where j = 1, . . . , n + 1. For a future observation Xn+1,

the assumption A(n) is

P (Xn+1 ∈ Ij) = 1
n+ 1 for each j = 1, . . . , n+ 1 (1.5)

It is clear that A(n) is a post-data assumption related to exchangeability

[39]. A natural interpretation of the assumption A(n) is that it is conditional on

X1, . . . , Xn and, thus, the next observation Xn+1 is equally likely to fall in any of

the open intervals between the sequential order statistics of the given sample [57].

If one wishes to allow ties [56], the probabilities 1
n+1 can be assigned to the closed

intervals [xj−1, xj] instead of the open intervals Ij. Alternatively, ties can also be

dealt with by assuming that such observations differ by a very small amount, a

common method to break ties in statistics [56]. To keep presentation simple we

will assume throughout this thesis that ties do not occur.

The assumption A(n) is not sufficient to derive precise probabilities for many

events of interest. However, it does provide bounds for probabilities by what is
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essentially an application of De Finetti’s fundamental theorem of probability [39]

or Walley’s concept of natural extension [84]. Weichselberger [87] developed a

formal foundation of interval probability, which is also known as imprecise probab-

ility, in the spirit of Kolmogorov’s axioms. A(n) can provide predictive probability

bounds for a future observation without assuming any further assumptions about

the probability distribution. These bounds are lower and upper probabilities in

imprecise probability theory [7, 8]. The lower and upper probabilities for event A

are denoted by P (A) and P (A), respectively [21], and can have several interpret-

ations. From a subjective perspective [84], the lower and upper probabilities for

an event can be interpreted as supremum buying price and infimum selling price,

respectively, for a gamble that pays one if the event occurs and zero if the event

does not occur. From a classical perspective, lower and upper probabilities can

be interpreted as bounds on precise probabilities because of the constrained or

limited knowledge available, or because one wishes not to add further assumptions.

Throughout this thesis, and in the NPI approach in general, the classical inter-

pretation is used [21]. The NPI lower and upper probabilities are the maximum

lower bound and minimum upper bound for the event of interest, based on the

A(n) assumption. For example, the NPI lower and upper probabilities for the

event that Xn+1 ∈ B, given the past data x1, . . . , xn, where B ⊂ R, are

P (Xn+1 ∈ B) =
n+1∑
j=1

1{Ij ⊆ B}P (Xn+1 ∈ Ij) (1.6)

P (Xn+1 ∈ B) =
n+1∑
j=1

1{Ij ∩B 6= ∅}P (Xn+1 ∈ Ij) (1.7)

where 1{E} is an indicator function which is equal to 1 if event E occurs and

0 else. The lower probability (1.6) is derived by summing only the A(n)-based

probabilities that must be in interval B; similarly, the upper probability (1.7) is

obtained by summing all the A(n)-based probabilities that can be in B.

The theory of imprecise probability [7, 84, 85, 86, 87] makes it clear that

bounds provide valuable information on uncertainty of events caused by restricted

information. For an event A, the precise classical probability is just a special
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case of imprecise probability, when P (A) = P (A) (i.e. the point probability case).

However, the case in which P (A) = 0 and P (A) = 1 represents a complete lack of

information about the event A (the vacuous case). We briefly present some key

aspects of the theory of imprecise probability as relevant to A(n)-based inference

[7]. Generally, in imprecise probability theory, 0 ≤ P (A) ≤ P (A) ≤ 1, the lower

and upper probabilities are conjugated, i.e. P (A) = 1 − P (Ac), where Ac is the

complementary event of A, and P (.) is super-additive and P (.) is sub-additive,

i.e. for events A and B such that A ∩B = ∅:

P (A ∪B) ≥ P (A) + P (B)

P (A ∪B) ≤ P (A) + P (B)

These properties hold for the NPI lower and upper probabilities, as proven by

Coolen and Augustin [7].

NPI has been developed for a range of data types and a variety of applications.

For example, NPI has been presented for Bernoulli data [20, 26], real-valued data

[28, 30, 70], data including right-censored observations [31, 32], circular data [21],

multinomial data [9, 24] and bivariate data [33].

NPI for such inferences requires an exchangeability assumption for the ob-

servable random quantities. This assumption can also be applied in less straight-

forward situations [21]. For example, in case a data set contains right-censored

observations, Coolen and Yan [31, 32] developed a generalization of A(n), called

‘right-censoring-A(n)’, and they illustrated its use in inferential problems, mostly

by the corresponding lower and upper survival functions. NPI for Bernoulli ran-

dom quantities [20, 26] is based on a latent variable representation of Bernoulli

data as real-valued outcomes of an experiment in which there is a completely

unknown threshold value, such that outcomes to one side of the threshold are

successes and to the other side failures. The use of A(n) provides lower and upper

probabilities for the number of successes in m future trials, based on the number

of successes in n observed trials. NPI for the next observation in case of mul-

tinomial data, with complete absence of knowledge on the number of possible
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categories apart from the information provided by n > 0 observations, is presented

by Coolen and Augustin [24].

1.3 NPI for comparing groups

The NPI approach has been developed for a variety of applications, such as

comparing random quantities that correspond to two or more groups. In classical

statistics comparisons of two or multiple independent groups tend to be formulated

as tests of hypothesis. However, NPI comparisons are explicitly predictive so one

or more future observations for each group can be compared. Throughout this

thesis, and in NPI in general [19, 30], we use the word ’quantity’ instead of

’variable’ following De Finetti [56], and the term ’group’ instead of the more

common term ’population’ since the common view for observations from a single

population is that these are independent and identically distributed (iid), which is

an assumption that we do not make in the NPI framework. In Chapter 3, we show

how pairwise and multiple comparisons can be based on future order statistics

as presented in Chapter 2. Note that, in this thesis we use the term ’multiple

comparison’ for the comparisons of multiple groups, in line with the use of this

term by Bechhofer [13].

The comparison of two groups of real-valued data within the NPI method

was proposed by Coolen [19], considering one future observation for each group.

Similar inferences for lifetime data, including right-censored observations, were

presented by Coolen and Yan [32], and Maturi [69] introduced NPI for comparison

of multiple groups of data including right-censored observations. Further work by

Maturi, Coolen-Schrijner and Coolen [70] presented NPI for comparison of two

groups of real-valued data where the tails of the data were possibly terminated,

leading to small values being left-censored and large values being right-censored.

As an alternative to classical nonparametric precedence tests considering a hypo-

thesis of equal lifetime distributions [10, 43, 73], Coolen-Schrijner, Maturi and

Coolen [35] proposed NPI precedence testing for two groups.
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In many applications of statistics, the purpose is to compare multiple groups of

data or to select the best group. Different methods that are designed particularly

for the problem of selecting the best treatment or the optimal member of some

group are known as selection procedures [47]. Selecting one or more best groups

out of multiple groups under consideration, is a problem that often occurs in

practice. For example, in terms of multinomial data, the researcher might be

interested in selecting the category that has the largest probability of occurrence

[12, 13]. Selection procedures have wide applications in many fields [47]. The first

application of selection procedures was reported in the area of poultry science,

particularly about poultry stocks offered for sale, to breeders, hatcherymen and

potential buyers of chicks. The problem of selecting was first considered by

Becker [14] to select the best chicken stock which has the largest hen-house egg

production. Further, in drug development, a researcher might wish to select the

drug that provides the best response. In advertising applications, specifically

in relation to the problem of selecting a medium for advertising some product,

the decision maker might want to select the most efficient media which reaches

the highest proportion of potential purchasers of that product [47]. Most of the

existing methods for selection are based on hypothesis testing and do not consider

predictive inference [88]. Selection methods based on NPI use predictive inferences

based on past observations and make use of Hill’s assumption A(n). Such methods

have been developed by Coolen and van der Laan [30] and Coolen and Coolen-

Schrijner [26]. The NPI method for selection problems has been applied to many

inferences, such as the selection between sources if observations are real-valued

[30], selection of an optimal group of Bernoulli data [26, 27] and selection of a

best category of multinomial data [9].

Coolen and van der Laan [30] proposed the NPI selection method for real-

valued random quantities from different independent sources. Their aim was to

select the source that provides the maximum next observation. This was done by

comparing one future observation from each source. They considered two methods

of selecting a subset of sources. The first method involved the selection of a subset
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of best sources, which is considered to be successful if the next observation from

each source in the specific selected subset of sources is greater than the next

observation from all sources that are not included in the subset. The second

method involved the selection of a subset to include the best source, which is

considered to be successful if the next observation from at least one of the selected

sources is greater than the next observation from all sources that are not selected.

In this thesis, we present similar NPI selection methods but based on the order

statistics of multiple future observations.

1.4 Outline of the thesis

This thesis is organized as follows. In Chapter 2, we present probabilities for

any collection of one or more future order statistics over the intervals Ij created

by n data observations, and we derive some properties of these distributions.

The use of these distributions for a variety of inferential problems is presented

in Chapter 3 with main focus on pairwise and multiple comparisons. A paper

presenting the results in Chapters 2 and 3 has been accepted for publication in

Communications in Statistics - Theory and Methods [29]. These chapters have

also been presented at several seminars and conferences, including the Northern

Postgraduate Mini-Conference in Statistics in June 2015 in Durham, a lecture

event on Nonparametric Predictive Inference in Durham in December 2015, and

at the International Conference of the Royal Statistical Society at Manchester

University in September 2016.

In Chapter 4, we develop NPI for reproducibility of two basic statistical

tests based on order statistics, namely a population quantile test and a basic

precedence test. A paper based on this chapter has been accepted for publication

in REVSTAT [23]. This chapter has been presented at a research seminar in

Durham in March 2017 and at the Research Students’ Conference in Probability

and Statistics in Durham in April 2017.

Robustness of NPI is considered in Chapter 5. This involves adapting some of
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the concepts of classical robust statistics within the NPI setting. A journal paper

on this research topic is in preparation.

There are many interesting opportunities to develop and extend the research

presented in this thesis. Some of these are mentioned in the final sections of

Chapters 2 to 5 and in Chapter 6.



Chapter 2

NPI for future order statistics

2.1 Introduction

The development of NPI for real-valued random quantities has thus far mostly

been restricted to a single future observation, although multiple future observa-

tions have been considered for NPI methods for statistical process control [4, 5]

and system reliability [22]. In this thesis, we present several new contributions to

the theory of NPI for future order statistics. We consider m future real-valued

observations, given n data observations, and we focus on the order statistics of

these m future observations.

This chapter derives the core probability results of NPI for future order stat-

istics. These results will enable statistical inference involving order statistics for

m future observations, presented in Chapters 3 and 4, as well as the development

of NPI methods for a range of problems in probability, statistics and related topic

areas, which will be explored in future research. We present the joint probability

distribution for any collection of future order statistics over the intervals created

by the partition of the real-line formed by n data observations. We derive some

properties for this probability distribution and we present its use for several infer-

ential problems. Without making further assumptions, some of these inferences

require the use of lower and upper probabilities, as such this work fits in the

theory of imprecise probability [8, 84] and interval probability [86, 87].

12
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Assume that we have real-valued ordered data x1 < x2 < . . . < xn, with n ≥ 1.

For ease of notation, define x0 = −∞ and xn+1 =∞. The n observations create

a partition of the real-line into n+ 1 intervals Ij = (xj−1, xj) for j = 1, . . . , n+ 1.

We assume throughout this thesis that ties do not occur. We are interested in

m ≥ 1 future observations, Xn+i for i = 1, . . . ,m. It should be emphasised

that the future observations Xn+i are assumed to come from the same data

collecting process as the n data observations. Note that the use of the indices

n+ i does not imply that the Xn+i are ordered in any way, so they are also not

assumed to exceed the largest data observation xn. We link the data and future

observations via Hill’s assumption A(n) [55], or more precisely, via consecutive

application of A(n), A(n+1), . . . , A(n+m−1). We refer to these generically as the

A(.) assumptions, which can be considered as a post-data version of a finite

exchangeability assumption for n+m random quantities. The A(.) assumptions

imply that all possible orderings of n data observations and m future observations

are equally likely, where the n data observations are not distinguished among

each other and neither are the m future observations. Let the random quantity

Sij be defined as the number of m future observations in Ij = (xj−1, xj) given a

specific ordering, which is denoted by Oi, of the m future observations among n

data observations, for i = 1, . . . ,
(
n+m
n

)
, so that Sij = #{Xn+l ∈ Ij, l = 1, . . . ,m}.

Then the A(.) assumptions lead to [28]

P (
n+1⋂
j=1
{Sij = sij}) = P (Oi) =

(
n+m

n

)−1

(2.1)

where sij are non-negative integers with ∑n+1
j=1 s

i
j = m. Equation (2.1) implies

that all
(
n+m
n

)
orderings Oi of the m future observations among the n data

observations are equally likely. Another convenient way to interpret the A(.)

assumptions with n data observations and m future observations is to think

that n randomly chosen observations out of all n+m real-valued observations are

revealed, which allow one to make inferences about the m unrevealed observations.

The A(.) assumptions then imply that one has no information about whether

specific values of neighbouring revealed observations make it less or more likely
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that a future observation falls in between them. For any event involving the

m future observations, Equation (2.1) implies that we can count the number

of such orderings for which this event holds. Generally in NPI, as discussed in

Section 1.2 the lower probability for the event of interest is derived by counting

all the orderings for which this event has to hold, while the corresponding upper

probability is derived by counting all the orderings for which this event can hold

[7, 21].

NPI is close in nature to predictive inference for the low structure stochastic

case as briefly outlined by Geisser [45], which is in line with many earlier non-

parametric test methods where the interpretation of the inferences is in terms of

confidence levels or intervals. In NPI the A(.) assumptions justify the use of these

inferences directly as predictive probabilities. Using only precise probabilities or

confidence statements, such inferences cannot be used for many events of interest,

but in NPI we use the fact, in line with De Finetti’s Fundamental Theorem of

Probability [39], that corresponding optimal bounds can be derived for all events

of interest [7]. NPI provides frequentist inferences which are exactly calibrated in

the sence of Lawless and Fredette [66], and it has strong consistency properties

in the theory of interval probability [7].

In NPI the n observations are explicitly used through the A(.) assumptions,

yet as there is no use of conditioning as in the Bayesian framework, we do not use

an explicit notation to indicate this use of the data. It is important to emphasize

that there is no assumed population from which the n observations were randomly

drawn, and hence also no assumptions on the sampling process. However, the m

future observations must result from the same sampling method as the n data

observations in order to have full exchangeability. NPI is totally based on the A(.)

assumptions, which however should be considered with care as they imply e.g. that

the specific ordering in which the data appeared is irrelevant, so accepting A(.)

implies an exchangeability judgement for the n observations. It is attractive that

the appropriateness of this approach can be decided upon after the n observations

have become available. NPI is always in line with inferences based on empirical
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distributions, which is an attractive property when aiming at objectivity [21].

This chapter is organised as follows. Section 2.2 provides an initial result

which was presented in [28], which only includes the predictive probability for

a single future order statistic. Section 2.2 provides NPI for the r-th future

order statistic to be in any subset of the real values. In Section 2.3, we present

the probability distributions for multiple future observations, while conditional

probabilities given some future order statistics are derived in Section 2.4 along

with some of the properties of these distributions. Section 2.5 presents NPI for

the mean and median of the m future observations and some related inferences.

Section 2.6 presents some concluding remarks.

2.2 NPI for the r-th ordered future observation

The probability distribution of a single order statistic of m future observations

is useful for many inferences, e.g. pairwise and multiple comparisons which will

be presented in Chapter 3. Let X(r), for r = 1, 2, . . . ,m, be the r-th ordered

future observation, thus X(r) = Xn+i for one i = 1, 2, . . . ,m and X(1) < X(2) <

..... < X(m). In order to derive the probability distribution for the event that X(r)

belongs to an interval Ij = (xj−1, xj), we count the relevant orderings and use

Equation (2.1). For j = 1, . . . , n+ 1 and r = 1, 2, . . . ,m, this leads to

P (X(r) ∈ Ij) =

(
r+j−2
j−1

)(
n−j+1+m−r

n−j+1

)
(
n+m
n

) (2.2)

The RHS of (2.2) can be derived as follows, and as illustrated in Figure 2.1. To

the left of X(r), we count the number of ways of ordering r−1 future observations

among j−1 past observations. This is multiplied by the number of ways of ordering

the remaining m−r future observations among n−(j−1) past observations to the

right of X(r). The denominator is the total number of ways of ordering m future

observations among n past observations. For this event, NPI provides a precise

probability, since each of the
(
n+m
n

)
equally likely orderings of n past and m future

observations has the r-th ordered future observation in precisely one interval Ij.
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I j I j

x j−1 x j

X (r )
r−1 future obs .

−∞ ∞
j−1obs.

.. m−r future obs .

n−( j−1)obs .

Figure 2.1: Locations of future and past observations correspond-
ing to the event X(r) ∈ Ij

As Equation (2.2) only specifies the probabilities for the events thatX(r) belongs to

interval Ij, it can be considered to provide a partial specification of a probability

distribution for X(r). No assumptions are made about the distribution of the

probability masses within such intervals Ij.

Analysis of the probability in Equation (2.2) leads to some interesting results,

including the logical symmetry P (X(r) ∈ Ij) = P (X(m+1−r) ∈ In+2−j). For all

r, the probability for X(r) ∈ Ij is unimodal in j, with the maximum probability

assigned to interval Ij∗ with
(
r−1
m−1

)
(n+1) ≤ j∗ ≤

(
r−1
m−1

)
(n+1)+1. The proof of

these properties is given in Appendix A. A further interesting property occurs for

the special case where the number of future observations is equal to the number

of data observations, so m = n. In this case, P (X(r) < xr) = P (X(r) > xr) = 0.5

holds for all r = 1, . . . ,m. This fact can be proven by considering all
(

2n
n

)
equally likely orderings. Clearly, in precisely half of these orderings the r-th

future observation occurs before the r-th data observation due to the overall

exchangeability assumption. Although the special case m = n is not explicitly

considered further in this chapter, it plays an important role in the analysis of

reproducibility of statistical hypothesis tests considered in Chapter 4.

It is worth commenting on extreme values, in particular, inference involving

X(1) or X(m) for a large m compared to the value of n. In these cases, NPI assigns

large probabilities to the intervals I1 or In+1, respectively, which are outside

the range of the observed data and unbounded, unless the random quantities

of interest are logically bounded, e.g. zero as the lower bound for lifetime data.
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This indicates that for these inferences, little can be concluded without making

further assumptions on the probability masses within these end intervals, which

are outside the range of observed data.

For an event X(r) ∈ Ij, the A(.) assumptions provide precise probabilities.

More generally, interest may be in an event X(r) ∈ S, with S any subset of

the real values, for example an interval not equal to one of the Ij created by

the data. Generally, NPI provides bounds for the probability for such an event,

where the maximum lower bound and minimum upper bound are lower and upper

probabilities, respectively [7, 8, 84, 86, 87]. This can be regarded as an application

of De Finetti’s ‘Fundamental Theorem of Probability’ [39]. Similar to Equation

(1.6) and (1.7) in Section 1.2, for any subset S of the real values, we can derive

the NPI lower probability

P
(
X(r) ∈ S

)
=

n+1∑
j=1

1{Ij ⊆ S}P
(
X(r) ∈ Ij

)
(2.3)

and the corresponding NPI upper probability

P
(
X(r) ∈ S

)
=

n+1∑
j=1

1{Ij ∩ S 6= ∅}P
(
X(r) ∈ Ij

)
(2.4)

The probability (2.2) is important and we will use it in Chapter 3 for several

statistical inferences, such as pairwise and multiple comparisons based on the

r-th order statistic of m future observations for each group, and in Chapter 4

for reproducibility analysis of some basic nonparametric tests based on order

statistics. The probability (2.2) and the NPI lower and upper probabilities (2.3)

and (2.4) are briefly illustrated in the following example.

Example 2.1. Suppose that one has n = 8 observations and considers m = 5

future order statistics represented by the random quantities X(1) < . . . < X(5).

The NPI probabilities for the events X(r) ∈ Ij for r = 1, . . . , 5 and j = 1, . . . , 9

are displayed in Table 2.1 and Figure 2.2.

Table 2.1 illustrates the obvious symmetry and unimodality. Each probability

has only one local maximum which is indicated in Table 2.1 by ∗. Figure 2.2 shows
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j P (X(1) ∈ Ij) P (X(2) ∈ Ij) P (X(3) ∈ Ij) P (X(4) ∈ Ij) P (X(5) ∈ Ij)
1 0.38462* 0.12821 0.03497 0.00699 0.00078
2 0.25641 0.18648 0.08392 0.02486 0.00389
3 0.16317 0.19580* 0.13054 0.05439 0.01166
4 0.09790 0.17405 0.16317 0.09324 0.02720
5 0.05439 0.13598 0.17483* 0.13598 0.05439
6 0.02720 0.09324 0.16317 0.17405 0.09790
7 0.01166 0.05439 0.13054 0.19580* 0.16317
8 0.00389 0.02486 0.08392 0.18648 0.25641
9 0.00078 0.00699 0.03497 0.12821 0.38462*

Table 2.1: P (X(r) ∈ Ij) for m = 5 and n = 8

r=1 r=2 r=3 r=4 r=5

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

0.00

0.25

0.50

0.75

1.00

j

p
ro

b
a
b

ili
ty

Figure 2.2: P (X(r) ∈ Ij) for r = 1, . . . , 5 and j = 1, . . . , 9

that the probabilities for the event X(1) ∈ Ij for j = 1, . . . , n+ 1 are decreasing,

while they are increasing for X(5) ∈ Ij. When r = 3, the probability distribution

is symmetric around the interval j = 5; this occurs for r = m+1
2 and j = n+2

2 if m

is odd and n is even.

To illustrate the NPI lower and upper probabilities for the event X(r) ∈ S, we

consider an artificial data set consisting of the ordered numbers from 1 to 8, so

n = 8. Note that these numbers should not be interpreted as counts, one could

interpret them as ranks of actual real-valued data. The NPI lower and upper

probabilities for eventX(r) ∈ S for all r = 1, . . . ,m and S = (0, 2.5), S = (1.5, 4.5),

S = (3.5, 5.5), S = (4.2, 7.5) and S = (6.5, 10) are presented in Table 2.2 form = 5

and Figure 2.3 for m = 10. The plotted lines for each value of r represent the

intervals bounded by the corresponding NPI lower and upper probabilities, hence

the length of each line is the imprecision for that event. The results clearly
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illustrate the symmetry i.e. [P , P ](X(1) ∈ (0, 2.5)) = [P , P ](X(5) ∈ (6.5, 10))

and [P , P ](X(r) ∈ (3.5, 5.5)) symmetric around r = 3. The imprecision for

[P , P ](X(1) ∈ (0, 2.5)), decreases as the value of r increases, which is because

P (X(r) ∈ I1) and P (X(r) ∈ I3) are included in the upper probability but not in

the lower probability, and the probability mass for X(r) ∈ I1 is large for r = 1.

♦

S = (0, 2.5) S = (1.5, 4.5) S = (3.5, 5.5) S = (4.2, 7.5) S = (6.5, 10)
r P P P P P P P P P P

1 0.25641 0.80420 0.26107 0.57187 0.05439 0.17949 0.03885 0.09713 0.00389 0.01632
2 0.18648 0.51049 0.36985 0.69231 0.13598 0.40326 0.14763 0.30847 0.02486 0.08625
3 0.08392 0.24942 0.29371 0.55245 0.17483 0.50117 0.29371 0.55245 0.08392 0.24942
4 0.02486 0.08625 0.14763 0.30847 0.13598 0.40326 0.36985 0.69231 0.18648 0.51049
5 0.00389 0.01632 0.03885 0.09713 0.05439 0.17949 0.26107 0.57187 0.25641 0.80420

Table 2.2: P (X(r) ∈ S) for m = 5 and n = 8

S=(0,2.5) S=(1.5,4.5) S=(3.5,5.5) S=(4.2,7.5) S=(6.5,10)

1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910
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Figure 2.3: P (X(r) ∈ S) for m = 10 and n = 8

2.3 Multiple future order statistics

The joint probability distribution of multiple order statistics of m future observa-

tions is of interest and can also be important for statistical inference. By straight-

forward combinatorial arguments, again counting the number of orderings for

which the event of interest holds and using Equation (2.1), a partial specification

of the probability distribution of any subset of the order statistics can be derived.
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Let R = {r1, . . . , rt} ⊂ {1, . . . ,m}, with r1 < r2 < . . . < rt and 1 ≤ t ≤ m. For

any set IR = {jr1 , . . . , jrt} ⊂ {1, . . . , n + 1}, with jr1 ≤ jr2 ≤ . . . ≤ jrt , the A(.)

assumptions imply the probabilities

P

(⋂
r∈R

{
X(r) ∈ Ijr

})
=

(
n+m

n

)−1(
r1 + jr1 − 2
r1 − 1

)
×

t∏
i=2

{(
ri − ri−1 − 1 + jri

− jri−1

ri − ri−1 − 1

)}(
m− rt + n− jrt + 1

m− rt

)
(2.5)

Note that, throughout this thesis, a product over an empty set is defined to be

equal to 1; this applied here if t = 1. For the special case of two order statistics,

X(r) and X(s) with r < s and with j ≤ l, we have

P (X(r) ∈ Ij, X(s) ∈ Il) =

(
r+j−2
r−1

)(
s−r−1+l−j
s−r−1

)(
m−s+n−l+1

m−s

)
(
n+m
n

) (2.6)

The RHS of Equation (2.6) is derived as follows. We count the number of orderings

of r − 1 future observations among j − 1 past observations to the left of X(r),

multiply this by the number of orderings of s− r − 1 future observations among

l − j past observations which are located between X(r) and X(s), and multiply

further by the number of orderings of the remaining m − s future observations

among n−(l−1) data observations to the right of X(s). The denominator is again

the total number of orderings of m future observations among n past observations.

The RHS of Equation (2.5) is derived similarly as Equation (2.6) but for two or

more future observations. For the special case j = l, we have

P (X(r) ∈ Ij, X(s) ∈ Ij) =

(
r+j−2
r−1

)(
m−s+n−j+1

m−s

)
(
n+m
n

) (2.7)

Example 2.2. The joint probabilities for the event X(2) ∈ Ij, X(5) ∈ Il for

j, l = 1, . . . , 9 are given in Table 2.3. We illustrate these probabilities for the same

values n = 8 and m = 5 as used in Example 2.1.

Table 2.3 shows that ∑9
j=1

∑9
l=1 P (X(2) ∈ Ij, X(5) ∈ Il) = 1. Comparing Table
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2.3 with Table 2.1 illustrates that ∑9
l=1 P (X(2) ∈ Ij, X(5) ∈ Il) = P (X(2) ∈ Ij) and∑9

j=1 P (X(2) ∈ Ij, X(5) ∈ Il) = P (X(5) ∈ Il). The value of P (X(2) ∈ Ij, X(5) ∈ Il)

increases as the value of l increases. The maximum probability for such an event

occurs for X(2) ∈ I3 or X(2) ∈ I4 and X(5) ∈ I9.

l
j 1 2 3 4 5 6 7 8 9 Total
1 0.00078 0.00233 0.00466 0.00777 0.01166 0.01632 0.02176 0.02797 0.03497 0.12821
2 0 0.00155 0.00466 0.00932 0.01554 0.02331 0.03263 0.04351 0.05594 0.18648
3 0 0 0.00233 0.00699 0.01399 0.02331 0.03497 0.04895 0.06527 0.19580
4 0 0 0 0.00311 0.00932 0.01865 0.03108 0.04662 0.06527 0.17405
5 0 0 0 0 0.00389 0.01166 0.02331 0.03885 0.05828 0.13598
6 0 0 0 0 0 0.00466 0.01399 0.02797 0.04662 0.09324
7 0 0 0 0 0 0 0.00544 0.01632 0.03263 0.05439
8 0 0 0 0 0 0 0 0.00622 0.01865 0.02486
9 0 0 0 0 0 0 0 0 0.00699 0.00699

Total 0.00078 0.00389 0.01166 0.02720 0.05439 0.09790 0.16317 0.25641 0.38462 1

Table 2.3: P (X(2) ∈ Ij, X(5) ∈ Il) for j, l = 1, . . . , 9

♦

2.4 Conditional probabilities for future order

statistics

In this section, we present conditional probabilities for events involving a subset

of the future order statistics, given information about another subset of the

future order statistics. Let R = {r1, . . . , rt} as introduced in Section 2.3, D =

{d1, . . . , dv} with d1 < d2 < . . . < dv and 1 ≤ v ≤ m − t, such that R ∩ D = ∅.

Let ID = {jd1 , . . . , jdv} ⊂ {1, . . . , n + 1} with jd1 ≤ jd2 ≤ . . . ≤ jdv . To consider

the conditional probability P
(⋂

r∈R

{
X(r) ∈ Ijr

}
| ⋂d∈D {X(d) ∈ Ijd

})
, we need

to consider the joint probability for events involving all X(c) with c ∈ C = R ∪D,

for which we use the notation C = {c1, . . . , cw}, where c1 < c2 < . . . < cw with

w = t+ v, and IC = {jc1 , . . . , jcw} ⊂ {1, . . . , n+ 1}, with jc1 ≤ jc2 ≤ . . . ≤ jcw .

The A(.) assumptions lead to the following conditional probabilities

P

⋂
r∈R

{
X(r) ∈ Ijr

}
|
⋂
d∈D

{
X(d) ∈ Ijd

}
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=
P
(⋂

r∈R

{
X(r) ∈ Ijr

}
∩ ⋂d∈D {X(d) ∈ Ijd

})
P
(⋂

d∈D

{
X(d) ∈ Ijd

}) =
P
(⋂

c∈C

{
X(c) ∈ Ijc

})
P
(⋂

d∈D

{
X(d) ∈ Ijd

})
=

(
c1+jc1−2
c1−1

)
×∏w

i=2

(
ci−ci−1−1+jci−jci−1

ci−ci−1−1

)
×
(
m−cw+n−jcw +1

m−cw

)
(
d1+jd1−2
d1−1

)
×∏v

i=2

(
di−di−1−1+jdi

−jdi−1
di−di−1−1

)
×
(
m−dv+n−jdv +1

m−dv

) (2.8)

In case of interest in one future order statistic X(r), given information about one

other future order statistic X(d), so the general case above with t = v = 1, this

conditional probability for the case r > d with j ≥ l is

P
(
X(r) ∈ Ij | X(d) ∈ Il

)
=
P
({
X(d) ∈ Il

}
∩
{
X(r) ∈ Ij

})
P
(
X(d) ∈ Il

) =

(
r−d−1+j−l
r−d−1

)(
m−r+n−j+1

m−r

)
(
n−l+1+m−d

m−d

)
(2.9)

and for the case r < d with j ≤ l this conditional probability is

P
(
X(r) ∈ Ij | X(d) ∈ Il

)
=
P
({
X(r) ∈ Ij

}
∩
{
X(d) ∈ Il

})
P
(
X(d) ∈ Il

) =

(
r+j−2
r−1

)(
d−r−1+l−j
d−r−1

)
(
d+l−2
d−1

)
(2.10)

For completeness, P
(
X(r) ∈ Ij | X(d) ∈ Il

)
= 0 if either r > d and j < l or r < d

and j > l, and P
(
X(d) ∈ Ij | X(d) ∈ Il

)
= 1 if j = l and P

(
X(d) ∈ Ij | X(d) ∈ Il

)
=

0 otherwise.

It is straightforward to show that for the general conditional probability (2.8),

the following property holds

P

⋂
r∈R

{
X(r) ∈ Ijr

}
|
⋂
d∈D

{
X(d) ∈ Ijd

} = P

⋂
r∈R

{
X(r) ∈ Ijr

}
|
⋂

d∈DR

{
X(d) ∈ Ijd

}
(2.11)

where DR ⊂ D consists of the elements of D which in the combined set C = R∪D

have an element of R as a neighbour. Thus,

DR = {ci ∈ C | ci ∈ D and (ci−1 ∈ R or ci+1 ∈ R), i ∈ {1, . . . , w}}

where the ‘or’ is of course not strict and events concerning the non-existent c0

or cw+1 do not hold. Property (2.11) is easily shown to hold as factors for any

d ∈ D such that all its neighbouring values in C also belong to D appear in both
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the numerator and denominator of Equation (2.8). Although this property is

important in general, its main use may well be in predicting later order statistics

on the basis of early order statistics [79], in which case it is a Markov property

that also holds for order statistics in the classical theory [3, Sect. 2.4]. If dv < r1

and jdv ≤ jr1 , then

P

⋂
r∈R

{
X(r) ∈ Ijr

}
|
⋂
d∈D

{
X(d) ∈ Ijd

} = P

(⋂
r∈R

{
X(r) ∈ Ijr

}
| X(dv) ∈ Ijdv

)

=

(
r1−dv−1+jr1−jdv

r1−dv−1

)
×∏t

i=2

(
ri−ri−1−1+jri−jri−1

ri−ri−1−1

)
×
(
m−rt+n−jrt +1

m−rt

)
(
m−dv+n−jdv +1

m−dv

) (2.12)

The backward analogue of this result may also be of use, that is if d1 > rt and

jd1 ≥ jrt then

P

⋂
r∈R

{
X(r) ∈ Ijr

}
|
⋂
d∈D

{
X(d) ∈ Ijd

} = P

(⋂
r∈R

{
X(r) ∈ Ijr

}
| X(d1) ∈ Ijd1

)

=

(
r1+jr1−2
r1−1

)
×∏t

i=2

(
ri−ri−1−1+jri−jri−1

ri−ri−1−1

)
×
(
d1−rt−1+jd1−jrt

d1−rt−1

)
(
d1+jd1−2
d1−1

) (2.13)

An interesting special case of the probability (2.9) is inference on a future
order statistic X(r) given information about X(r−1), which, by the above Markov
property, also includes the case of additional information on further earlier order
statistics. For j ≥ l,

P (X(r) ∈ Ij |X(r−1) ∈ Il) =
(r−r+1−1+j−l

r−r+1−1
)(m−r+n−j+1

m−r
)(n−l+1+m−r+1

m−r+1
) =

(m−r+n−j+1
m−r

)(n−l+m−r+2
m−r+1

)
= (m− r + 1)

(n− l +m− r + 2)

m−r+1∏
k=2

[
n− j + k

n− l + k

]
(2.14)

This is equal to the probability for the event that X(1) ∈ Ij−l+1, as given by

Equation (2.2), for the case with n− l+ 1 data observations and m− r+ 1 future

observations based on the corresponding A(.) assumption. A more general form

of this result is presented in the following proposition, followed by a special case

given as a corollary. Since the proofs of these properties are straightforward, they

are not included.

Proposition 2.1. For r > d and j ≥ l, the NPI probability for the event that the
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r-th ordered future observation belongs to interval Ij, given that the d-th ordered

future observation belongs to Il, as given by Equation (2.9), is equal to the NPI

probability for the event that X(r−d) ∈ Ij−l+1, as given by Equation (2.2), for

n− l+1 data observations and m−d future observations. Similarly, for r < d and

j ≤ l, the NPI probability for the event that the r-th future observation belongs

to Ij, given that the d-th future observation belongs to Il, as given by Equation

(2.10), is equal to the probability for the event that X(d−r) ∈ Il−j+1, as given by

Equation (2.2), for l − 1 data observations and d− 1 future observations.

Corollary 2.1. The conditional probability (2.9) for j = l and r > d is,

P (X(r) ∈ Ij|X(d) ∈ Ij) =
r−d−1∏
k=0

m− r + 1 + k

m− r + n− j + 2 + k

=
r−d−1∏
k=0

P (X(r−k) ∈ Ij|X(r−k−1) ∈ Ij) (2.15)

That is, the probability for the event that the r-th future observation belongs to

Ij given that the d-th future observation belongs to the same interval, is equal to

the product of the probabilities for the events X(r−k) ∈ Ij given that X(r−k−1) ∈ Ij,

for k = 0, . . . , r − d − 1. From Proposition 2.1, this probability is equal to the

probability for the event that X(r−d) ∈ I1, as given by Equation (2.2), for n− j+1

data observations and m− d future observations.

Corollary 2.2. The conditional probability (2.10) for j = l and r < d, is

P (X(r) ∈ Ij|X(d) ∈ Ij) =
d−r−1∏
k=0

r + k

r + j − 1 + k
=

d−r−1∏
k=0

P (X(r+k) ∈ Ij|X(r+1+k) ∈ Ij)

That is, the probability for the event that the r-th future observation belongs to

Ij given that the d-th future observation belongs to the same interval, is equal to

the product of the probabilities for the events X(r+k) ∈ Ij given that X(r+1+k) ∈ Ij,

for k = 0, . . . , d − r − 1. From Proposition 2.1, this probability is equal to the

probability for the event that X(d−r) ∈ I1, as given by Equation (2.2), for j − 1

data observations and d− 1 future observations.

If one has information about two future order statistics, on either side of the

X(r) of interest, than a similar result is presented next.
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Proposition 2.2. The conditional probability forX(r) ∈ Ij given thatX(d1) ∈ Ijd1

and X(d2) ∈ Ijd2
for d1 < r < d2, is equal to the probability of X(r−d1) ∈ Ij−jd1 +1,

as given by Equation (2.2), for jd2 − jd1 data observations and d2 − d1 − 1 future

observations.

The proof of proposition 2.2 is straightforward, using Equation (2.8) for the

conditional probability P (X(r) ∈ Ij|X(d1) ∈ Ijd1
, X(d2) ∈ Ijd2

) and Equation (2.2)

for the probability for the event that X(r−d1) ∈ Ij−jd1 +1, for jd2 − jd1 data obser-

vations and d2 − d1 − 1 future observations.

The information used in the conditional probability (2.8) provides for eachX(d),

with d ∈ D, the interval in the partition created by the n observations to which

this future order statistic belongs. One may wish to consider instead information

in the form of precise values for some of the future order statistics. Due to the

nature of NPI, where the A(.)-based probabilities are assigned to intervals without

further assumptions about their distribution within such intervals, such detailed

information for some order statistics makes no difference to the probabilities

assigned to intervals for other order statistics, except for the obviously required

ordering of the order statistics.

Example 2.3. Suppose that one has n = 2 observations, x1 = 4 and x2 = 10,

so I1 = (−∞, 4), I2 = (4, 10) and I3 = (10,∞), and consider m = 3 future

observations. Suppose that we are interested in X(3) given either X(2) ∈ (4, 10) or

X(2) = 8. The corresponding conditional probabilities are P (X(3) ∈ (4, 10)|X(2) ∈

(4, 10)) = 0.5, P (X(3) ∈ (8, 10)|X(2) = 8) = 0.5. The important difference between

these two cases is just based on the more detailed information in the latter case

about X(2) which reduces interval (4, 10) for X(3) to (8, 10), but it does not affect

the corresponding probability. The absence of this detailed information in the

first case avoids reduction of the interval (4, 10) for X(3), but of course the order

X(2) < X(3) has to hold.

♦

Analysis of the conditional probability (2.10) leads to an interesting property

of stochastic ordering for the comparison of two different conditional events for the
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same random quantities. Let Fr|d(j|l) be the conditional cumulative distribution

function (CDF) for X(r) given X(d) ∈ Il, which for j = 1, . . . , l and l = 1, . . . , n+1,

is defined as

Fr|d(j|l) = P (X(r) ∈
j⋃

k=1
Ik|X(d) ∈ Il) =

j∑
k=1

P (X(r) ∈ Ik|X(d) ∈ Il) (2.16)

where Fr|d(n+ 1|l) = 1 and Fr|d(1|1) = 1. Let Fr(j) be the CDF for X(r) ∈ Ij, i.e.

Fr(j) = ∑j
k=1 P (X(r) ∈ Ik).

Consider two future order statistics X(r) and X(d) with r < d, and intervals

Ij = (xj−1, xj) and Il−1 = (xl−2, xl−1) with j ≤ l − 1. If Fr|d(j|l − 1) ≥ Fr|d(j|l),

for all j, then X(r) ∈ Ij|X(d) ∈ Il−1 is said to be stochastically less than X(r) ∈

Ij|X(d) ∈ Il, denoted by X(r) ∈ Ij|X(d) ∈ Il−1 ≤st X(r) ∈ Ij|X(d) ∈ Il.

Theorem 2.1. For l = 1, . . . , n+ 1, we have

Fr|d(j|1) ≥ Fr|d(j|2) ≥ . . . ≥ Fr|d(j|n) ≥ Fr|d(j|n+ 1)

Therefore, X(r) ∈ Ij|X(d) ∈ I1 ≤st X(r) ∈ Ij|X(d) ∈ I2 ≤st . . . ≤st X(r) ∈ Ij|X(d) ∈

In+1.

Proof. We must show that, for all j ≤ l − 1

j∑
k=1

P (X(r) ∈ Ik|X(d) ∈ Il−1) ≥
j∑

k=1
P (X(r) ∈ Ik|X(d) ∈ Il) (2.17)

Note that the conditional CDF for the event X(r) ∈ Il−1|X(d) ∈ Il−1 is

Fr|d(l − 1|l − 1) =
l−1∑
k=1

P (X(r) ∈ Ik|X(d) ∈ Il−1) = 1

and the conditional CDF for the event X(r) ∈ Il−1|X(d) ∈ Il is

Fr|d(l − 1|l) =
l−1∑
k=1

P (X(r) ∈ Ik|X(d) ∈ Il) < 1

A sufficient condition for property (2.17) to hold is if there exists one value wr
such that

P (X(r) ∈ Ik|X(d) ∈ Il−1) ≥ P (X(r) ∈ Ik|X(d) ∈ Il) for all k ≤ wr (2.18)
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and

P (X(r) ∈ Ik|X(d) ∈ Il−1) ≤ P (X(r) ∈ Ik|X(d) ∈ Il) for all k > wr (2.19)

Using Equation (2.10), it is straightforward to show that Equation (2.18) holds if

and only if

k ≤ r(l − 1)
(d− 1) + 1 (2.20)

Similarly, Equation (2.19) holds if and only if

k ≥ r(l − 1)
(d− 1) + 1 (2.21)

Hence, by defining wr = r(l−1)
(d−1) + 1, the sufficient condition holds.

�

Example 2.4. Consider n = 8 observations and m = 5 future observations, as

also used in Example 2.1. Table 2.4 presents the conditional probabilities for the

event X(2) ∈ Ij|X(5) ∈ Il for all j, l = 1, . . . , 9. Table 2.4 illustrates that Equations

(2.18) and (2.19) hold, namely when w2 = 2(l−1)
4 , as given in the proof of Theorem

2.1, we have

P (X(2) ∈ Ij|X(5) ∈ Il−1) ≥ P (X(2) ∈ Ij|X(5) ∈ Il) for j ≤ l − 1
2 + 1

and

P (X(2) ∈ Ij|X(5) ∈ Il−1) ≤ P (X(2) ∈ Ij|X(5) ∈ Il) for j ≥ l − 1
2 + 1

Thus, the conditional CDF of X(2) ∈ Ij|X(5) ∈ Il is less than the conditional CDF

of X(2) ∈ Ij|X(5) ∈ Il−1, then X(2) ∈ Ij|X(5) ∈ Il ≥st X(2) ∈ Ij|X(5) ∈ Il−1, as

illustrated in Table 2.5.

♦
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l
j 1 2 3 4 5 6 7 8 9
1 1 0.6 0.4 0.28571 0.21428 0.16666 0.13333 0.10909 0.09090
2 0 0.4 0.4 0.34285 0.28571 0.23809 0.20000 0.16969 0.14545
3 0 0 0.2 0.25714 0.25714 0.23809 0.21428 0.19090 0.16969
4 0 0 0 0.11428 0.17142 0.19047 0.19047 0.18181 0.16969
5 0 0 0 0 0.07142 0.11904 0.14285 0.15151 0.15151
6 0 0 0 0 0 0.04761 0.08571 0.10909 0.12121
7 0 0 0 0 0 0 0.03333 0.06363 0.08484
8 0 0 0 0 0 0 0 0.02424 0.04848
9 0 0 0 0 0 0 0 0 0.01818

Total 1 1 1 1 1 1 1 1 1

Table 2.4: P (X(2) ∈ Ij|X(5) ∈ Il)

l
j 1 2 3 4 5 6 7 8 9
1 1 0.6 0.4 0.2857 0.2143 0.1667 0.1333 0.1091 0.0909
2 1 1 0.8 0.6286 0.5000 0.4048 0.3333 0.2788 0.2364
3 1 1 1 0.8857 0.7571 0.6429 0.5476 0.4697 0.4006
4 1 1 1 1 0.9286 0.8333 0.7381 0.6515 0.5758
5 1 1 1 1 1 0.9524 0.8810 0.8030 0.7273
6 1 1 1 1 1 1 0.9667 0.9121 0.8485
7 1 1 1 1 1 1 1 0.9758 0.9333
8 1 1 1 1 1 1 1 1 0.9818
9 1 1 1 1 1 1 1 1 1

Table 2.5: F2|5(j|l) = ∑j
k=1 P (X(2) ∈ Ik|X(5) ∈ Il)

2.5 Median and mean of future observations

In this section, we derive the NPI probability distributions for the median and

the mean of m future observations. These have not yet been considered in NPI,

and will be used in Chapter 5.

2.5.1 The median of m future observations

We denote the median of m future observations by Mm. To keep it simple, we

first consider the case in which m is odd, so Mm = X( m+1
2 ), as it can be derived

straightforwardly by replacing r by m+1
2 in Equation (2.2). Using Equation (2.2),
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Figure 2.4: P (Mm ∈ Ij) for n = 100

the NPI probability for the event Mm ∈ Ij = (xj−1, xj) is

P (Mm ∈ Ij) = P (X( m+1
2 ) ∈ Ij) =

(m−1
2 +j−1
j−1

)(
n−j+1+ m−1

2
n−j+1

)
(
n+m
n

) (2.22)

Figure 2.4 illustrates probability (2.22) for n = 100 and for different values of

m. Note that P (Mm ∈ Ij) is symmetric around the value I51 for m = 5, 31, 51, 201

and j = 1, . . . , 101. The lower and upper probabilities for the event Mm > z, if

z 6= xj for j = 1 . . . , n, are

P (Mm > z) =
n+1∑
j=1

1{xj−1 > z}P (Mm ∈ Ij) (2.23)

P (Mm > z) =
n+1∑
j=1

1{xj > z}P (Mm ∈ Ij) (2.24)

The probabilities (2.23) and (2.24) are step functions of z, as illustrated in Figure

2.5 for m = 5 and different values of n. Figure 2.5 shows that as n increases, the

imprecision of the lower and upper probabilities decreases.

More generally, interest may be in the event Mm ∈ Z = (z1, z2), in which both

of z1, z2 are not equal to data observations. The NPI lower and upper probabilities

for this event are

P (Mm ∈ (z1, z2)) =
n+1∑
j=1

1{Ij ⊆ (z1, z2)}P (Mm ∈ Ij) (2.25)
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Figure 2.5: [P , P ](Mm > z) for m = 5 and n = 6, 15, 20, 30.

P (Mm ∈ (z1, z2)) =
n+1∑
j=1

1{Ij ∩ (z1, z2) 6= ∅}P (Mm ∈ Ij) (2.26)

NPI for the median of m future observations is relatively more complex if m

is even, in which case Mm =
X( m

2 )+X( m
2 +1)

2 . In this case NPI does not provide

precise probabilities for the event Mm ∈ Ij, but instead the NPI lower and upper

probabilities for the event Mm ∈ Ij are

P (Mm ∈ Ij) =
n+1∑
i=1

n+1∑
l=i

1{xj−1 ≤
xi−1 + xl−1

2 ∧ xi + xl
2 ≤ xj} × P (X( m

2 ) ∈ Ii, X( m
2 +1) ∈ Il)

(2.27)

P (Mm ∈ Ij) =
n+1∑
i=1

n+1∑
l=i

1{(xi−1 + xl−1

2 ,
xi + xl

2 ) ∩ Ij 6= ∅} × P (X( m
2 ) ∈ Ii, X( m

2 +1) ∈ Il)

(2.28)

Example 2.5. Consider an artificial data set consisting of the ordered numbers

from 3 to 50, so n = 48. The lower and upper probabilities for the event that the

median for m = 6, 32, 52 and 202 is in interval Ij = (xj−1, xj) are shown in Figure

2.6. The results clearly illustrate that by increasing the value of m the NPI lower

and upper probabilities for event that the Mm ∈ Ij increase for nearly all j, apart
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Figure 2.6: [P , P ](Mm ∈ Ij) for m = 6, 32, 52, 202, n = 48 and
j = 1, . . . , 49

from small and large values of j. The maximum lower and upper probabilities

are achieved for event Mm ∈ I25, for which the imprecision is also maximal.

♦

Similarly, for m even, the lower and upper probabilities for the event Mm > z,

with z 6= xj, for j = 1, . . . , n, are

P (
X( m

2 ) +X( m
2 +1)

2 ≥ z)

=
n+1∑
i=1

n+1∑
l=i

1{(xi−1 + xl−1

2 ,
xi + xl

2 ) ≥ z} × P (X( m
2 ) ∈ Ii, X( m

2 +1) ∈ Il)

(2.29)

P (
X( m

2 ) +X( m
2 +1)

2 ≥ z)

=
n+1∑
i=1

n+1∑
l=i

1{(xi−1 + xl−1

2 ,
xi + xl

2 ) ∩ (z,∞) 6= ∅} × P (X( m
2 ) ∈ Ii, X( m

2 +1) ∈ Il)

(2.30)

2.5.2 The mean of m future observations

We denote the mean of m future observations by µm and the mean corresponding

to a specific ordering Oi of the future observations among n observations by

µim. When we consider µim, we must avoid possible probability mass in −∞

or ∞, because it affects the mean of the m future observations. We assume
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finite bounds L < R for the data observations and future observations, such that

L < x1 < . . . < xn < R, and define x0 = L and xn+1 = R for the A(.) assumptions.

The randomness of µm can be considered as a result from not knowing the

ordering Oi and the place of the sij future observations within each interval Ij.

Given the orderings Oi, the mean µim is imprecise, because we do not assume where

the sij future observations precisely are within interval Ij, we remind the reader

that sij is the number of future observations which, according to ordering Oi, are

in interval Ij. Thus, based on the A(.) assumptions, we can only derive bounds

for µm and for probabilities for events involving µm. The maximum lower bound

and the minimum upper bound for the mean µim of the m future observations, for

given ordering Oi, are

µim = 1
m

n+1∑
j=1

sijxj−1 (2.31)

µim = 1
m

n+1∑
j=1

sijxj (2.32)

The expected value for the mean µm of the m future observations is

E(µm) =
(n+m

n )∑
i=1

E(µm|Oi)P (Oi) = 1(
n+m
n

) (n+m
n )∑
i=1

µim

The maximum lower bound for E(µm), which is also called the lower expectation,

is

E(µm) =
(n+m

n )∑
i=1

P (Oi)µim = 1(
n+m
n

) (n+m
n )∑
i=1

1
m

n+1∑
j=1

sijxj−1

= 1(
n+m
n

) 1
m

n+1∑
j=1

xj−1[
(n+m

n )∑
i=1

sij] = 1(
n+m
n

) 1
m

n+1∑
j=1

xj−1[
m
(
n+m
n

)
n+ 1 ]

= 1
n+ 1

n+1∑
j=1

xj−1 = 1
n+ 1

n∑
j=0

xj (2.33)

In this derivation, the third equality is based on the equality∑(n+m
n )

i=1 sij = m(n+m
n )

n+1 =(
n+1+m−1

n+1

)
, which holds for all j, since all orderings Oi are equally likely by

Equation (2.1). Similarly, the minimum upper bound for E(µm), also called the
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A: L = −2 1 10 R = 12
B: L = −2 1 2 11 12 R = 14
C: L = −2 1 2 3 4 13 14 15 16 R = 18

Table 2.6: Data sets

upper expectation, is

E[µm] =
(n+m

n )∑
i=1

P (Oi)µim = 1
n+ 1

n+1∑
j=1

xj (2.34)

The NPI lower and upper probabilities for the event µm > z, are

P (µm ≥ z) = 1(
n+m
n

) (n+m
n )∑
i=1

1{µim ≥ z} (2.35)

P (µm ≥ z) = 1(
n+m
n

) (n+m
n )∑
i=1

1{µim ≥ z} (2.36)

For any interval Z = (z1, z2) the NPI lower and upper probabilities for the event

µm ∈ Z are

P (µm ∈ (z1, z2)) = 1(
n+m
n

) (n+m
n )∑
i=1

1{z1 ≤ µim ≤ µim ≤ z2} (2.37)

P (µm ∈ (z1, z2)) = 1(
n+m
n

) (n+m
n )∑
i=1

1{(µim, µim) ∩ (z1, z2) 6= ∅} (2.38)

Example 2.6. To illustrate the inference involving the mean of the m future

observations given in Equations (2.37) and (2.38), we consider the data sets

given in Table 2.6. It is often of interest to investigate whether the mean of the

future observations falls in an interval (z1, z2), e.g. we want to know if the µm is

somewhere around the centre of the given data.

Figure 2.7 presents the lower and upper probabilities for the events µm ∈

(z1, z2), for m = 2, . . . , 30, corresponding to the datasets in cases A, B and C,

for the events µm ∈ (2.5, 9.5), µm ∈ (3.5, 10.5) and µm ∈ (5.5, 12.5) respectively.

The behaviour of each probability for the different datasets is quite similar as the
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Figure 2.7: Lower and upper probabilities for the event µim ∈
(z1, z2) for data set in case A, B and C for m =
2, . . . , 30

intervals (z1, z2) for all data sets have the same length. However, it is clear from

the results that the effect of increasing the sample size leads to decreasing the

imprecision, because more information is available.

♦

2.5.3 The expected value of a future order statistic

It may also be of interest to consider the NPI maximum lower and minimum

upper bounds for the expectation of X(r). As in Section 2.5.2, we assume bounds

L and R for the observations x1, . . . , xn, and for the future observations.

The lower and upper bounds for the expected value of X(r) are easily derived

by putting all probability masses per interval to the left for the lower bound, and

to the right for the upper bound, which leads to the lower and upper expected

values

E(X(r)) =
n+1∑
j=1

xj−1P (X(r) ∈ Ij) (2.39)

E(X(r)) =
n+1∑
j=1

xjP (X(r) ∈ Ij) (2.40)
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2.6 Concluding remarks

The results presented in this chapter provide new tools for predictive inference

on order statistics of future observations. While some inferences coincide with

classical results on order statistics [3], the explicit use of the A(.) assumptions

and restriction to m future observations make the derivation of some results

more straightforward than in the classical framework, where typically both the

data observations and future observations are considered to be random quantities,

sampled from an unknown population probability distribution, with predictive

inference developed through conditioning on the data observations. The use of

lower and upper probabilities widens the range of possible inferences compared to

the classical approach. Several inferences involving future order statistics will be

illustrated in the next chapter, in particular on pairwise and multiple comparisons.



Chapter 3

Statistical inferences involving

future order statistics

3.1 Introduction

In this chapter, we develop statistical methods based on the probability results

presented in Chapter 2, so we consider inference involving future order statistics.

Applications of statistical inference often involve comparison of two or more

independent groups of data, e.g. resulting from two different treatments. In

classical statistics, a popular method is to test equality of parameters in assumed

parametric models, or to use the ranks of the observations in nonparametric

methods, for example Wilcoxon’s or Kruskal–Wallis tests can be used for two or

more independent populations, respectively [46]. These methods assume that the

random quantities for each population are independent and identically distributed.

Comparisons of real-valued observations in NPI have been formulated in terms of

a single future observation from each of two or more groups of data [19, 30]. We

provide a generalisation by considering m future observations instead of a single

future observation.

The key difference between comparison in NPI and classical statistics is in

formulating the question of interest. In classical tests, usually the starting point

is the hypothesis that both groups come from the same distribution, which is

36
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often impractical. The NPI approach does not require a particular hypothesis

to be formulated; it uses a direct approach involving only future observations,

which enables a natural manner of comparison that is particularly well suited if a

decision must be made about, for example, the best treatment for the next units

or individuals [35].

This chapter is organized as follows. Section 3.2 provides a generalisation

of pairwise comparisons as presented by Coolen and Maturi [28], and different

events of interest are considered. Section 3.3 presents the difference between

future order statistics of two independent groups. Section 3.4 extends multiple

comparisons as presented by Coolen and van der Laan [30], by considering the

comparison in terms of the r-th order statistic out of m future observations from

each group using the results derived in Chapter 2. Section 3.5 briefly discusses

some further inferences that could be of interest, namely prediction intervals, the

number of future order statistics in an interval, and the spacing between future

order statistics. The chapter ends with some concluding remarks in Section 3.6.

3.2 Pairwise comparisons

Suppose that we have two independent groups of real-valued observations, X and

Y ; so the values in one group contain no information about the values in the

other group, and their ordered observed values are x1 < x2 < . . . < xnx and y1 <

y2 < . . . < yny . For ease of notation, let x0 = y0 = −∞ and xnx+1 = yny+1 =∞.

Let Ixjx = (xjx−1, xjx) and Iyjy = (yjy−1, yjy). We focus attention on m ≥ 1 future

observations from each group (i.e. mx = my = m), so, on Xnx+i and Yny+i for

i = 1, . . . ,m. The theory presented in this chapter does not require limitation to

the case mx = my, but it seems to be quite logical when comparing future order

statistics to consider the same number of future observations for each group; the

generalisation to different values for mx and my is straightforward.

Suppose that we wish to compare the r-th ordered future observation from

group X to the s-th ordered future observation from group Y , by considering
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−∞

x1 x2 ....... x jx j−1 ....... xn
∞−∞

y1 y2 ....... y jy j−1 ....... yn
∞

P(X (r)∈ I 1)

p(Y (s)∈ I n+1)

P(X (r)∈ I 2) P(X (r)∈I j) P(X (r)∈ I nx+1)

p(Y (s)∈ I n+1)p(Y (s)∈I 2)p(Y (s)∈I 1)

Figure 3.1: Locations of probability masses corresponds to lower
and upper probabilities of the event X(r) < Y(s), rep-
resented by red dots and black arrows respectively.

the event X(r) < Y(s). The inference depends on A(.) assumptions for each group,

denoted by Ax(.) and Ay(.) for group X and Y respectively. The NPI lower and

upper probabilities for this event, based on the Ax(.) and Ay(.) assumptions per

group, are

P (X(r) < Y(s)) =
nx+1∑
jx=1

ny+1∑
jy=1

1{xjx < yjy−1}P (X(r) ∈ Ixjx)P (Y(s) ∈ Iyjy) (3.1)

P (X(r) < Y(s)) =
nx+1∑
jx=1

ny+1∑
jy=1

1{xjx−1 < yjy}P (X(r) ∈ Ixjx)P (Y(s) ∈ Iyjy) (3.2)

The NPI lower (upper) probability is obtained by putting the probability mass

per interval at an end point, for group X at right (left) end point and for group

Y at the left (right) end point. This is illustrated in Figure 3.1. The special case

with r = s was earlier presented by Coolen and Maturi [28].

One may wish to compare two groups by taking multiple future order stat-

istics into account. This can be done using the joint probability (2.5) presented

in Chapter 2. For example, suppose that we are interested in comparing two

independent groups X and Y by simultaneously considering the r-th and the s-th

future order statistics from each group. We can use the joint probability given

by Equation (2.6) for any event involving the r-th and s-th future observations

per group. Suppose that we are interested in the event X(r) < Y(r), X(s) > Y(s),

with r < s, which can give insight into the spread of the future observations for

the two groups. The NPI lower and upper probabilities for this event are given

in the following theorem. Of course, such results for different events of interest
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are derived similarly.

Theorem 3.1. The NPI lower and upper probabilities for the event X(r) <

Y(r), X(s) > Y(s) are

P (X(r) < Y(r), X(s) > Y(s)) =
nx+1∑
jx=1

nx+1∑
lx=jx+1

ny+1∑
jy=1

ny+1∑
ly=jy

1{xjx < yjy−1, xlx−1 > yly}

× P (X(r) ∈ Ixjx , X(s) ∈ Ixlx)× P (Y(r) ∈ Iyjy , Y(s) ∈ Iyly)

(3.3)

P (X(r) < Y(r), X(s) > Y(s)) =
nx+1∑
jx=1

nx+1∑
lx=jx

ny+1∑
jy=1

ny+1∑
ly=jy+1

[
1{xjx−1 < yjy , xlx > yly−1}.

× P (X(r) ∈ Ixjx , X(s) ∈ Ixlx)× P (Y(r) ∈ Iyjy , Y(s) ∈ Iyly)
]

+
ny+1∑
jy=1

max
y∗jy
∈Ijy

[
P(jy)

]
(3.4)

where

P(jy) =
nx+1∑
jx=1

nx+1∑
lx=jx

1{xjx−1 < y∗jy , xlx > y∗jy}P (X(r) ∈ Ixjx , X(s) ∈ Ixlx)

× P (Y(r) ∈ Iyjy , Y(s) ∈ Iyjy) (3.5)

The proof of Theorem 3.1 is given in Appendix B; the remaining maximisation

for the derivation of the upper probability is also discussed in that appendix.

Another event that may be of interest is X(r) < Y(r), X(s) < Y(s). The NPI

lower and upper probabilities for this event are

P (X(r) < Y(r), X(s) < Y(s)) =
nx+1∑
jx=1

nx+1∑
lx=jx

ny+1∑
jy=1

ny+1∑
ly=jy

1{xjx < yjy−1, xlx < yly−1}

×P (X(r) ∈ Ixjx , X(s) ∈ Ixlx)× P (Y(r) ∈ Iyjy , Y(s) ∈ Iyly)
(3.6)

P (X(r) < Y(r), X(s) < Y(s)) =
nx+1∑
jx=1

nx+1∑
lx=jx

ny+1∑
jy=1

ny+1∑
ly=jy

1{xjx−1 < yjy , xlx−1 < yly}

×P (X(r) ∈ Ixjx , X(s) ∈ Ixlx)× P (Y(r) ∈ Iyjy , Y(s) ∈ Iyly)
(3.7)

These lower and upper probabilities are derived similarly to those in Theorem 3.1,
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but note that, for this event, the upper probability does not require remaining

optimization. We illustrate the NPI pairwise comparisons based on future order

statistics in the following example.

Example 3.1. We consider the data set of a study of the effect of ozone envir-

onment on rats growth [42, p.170]. One group of 22 rats were kept in an ozone

containing environment and the second group of 23 similar rats were kept in an

ozone-free environment. Both groups were kept for 7 days and their weight gains

are given in Table 3.1.

Ozone group (X) Ozone-free group (Y )
-15.9 -14.7 -12.9 -9.9 -9.0 -9.0 -16.9 13.1 15.4 17.4 17.7 18.3
6.1 6.6 6.8 7.3 10.1 12.1 19.2 21.4 21.8 21.9 22.4 22.7
14.0 14.3 15.5 15.7 17.9 20.4 24.4 25.9 26.0 26.0 26.6 27.3
28.2 39.9 44.1 54.6 27.4 28.5 29.4 38.4 41.0

Table 3.1: Rats weight gain data

The NPI lower and upper probabilities (3.1) and (3.2) for the eventsX(r) < Y(r),

r = 1, . . . ,m, are displayed in Figure 3.2. The first row corresponds to the full data

for the cases with m = 5, 25, 200, while the second row presents the corresponding

figures with the observation −16.9 removed from group Y . This value could e.g.

be removed because it could be considered as an outlier, so it might be interesting

to see its influence on these inferences. Note that the data for group X and for

group Y both contain two tied observations, at −9.0 and 26.0, respectively. Since

the tied observations are within the same group, we just add a very small amount

to one of them, not affecting their rankings within the group nor with the data

for both groups combined, and therefore not affecting the inferences. This can be

interpreted as assuming that these values actually differ in a further decimal, not

reported due to rounding.

This example shows that these data strongly support the event X(r) < Y(r)

for future order statistics that are likely to be in the middle area of the data

ranges, with the values of the NPI lower and upper probabilities reflecting the

amount of overlap in the observed data for groups X and Y . For extreme future
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Figure 3.2: [P , P ](X(r) < Y(r))

order statistics the imprecision is very large when m is greater than n, due to the

fact that those future order statistics are quite likely both to fall in the first or

last interval, in which case very little can be said about the comparison of their

values. Deleting the smallest Y value from the data, as shown in the second row

in this figure, has quite some effect on inferences for small values of r, as the lower

parts of the plots in rows 1 and 2 in Figure 3.2 clearly illustrate, but deleting this

possible outlier does not have a noticable effect when larger values of r are used

for the pairwise comparison.

To illustrate pairwise comparison using different order statistics for the two

groups, we consider the case with m = 200 and interest in events X(r) < Y(s).

Figure 3.3 presents the NPI lower and upper probabilities for these events for the

values r = 1, 50, 100, 150, 200 and for all s = 1, . . . ,m. Note that here the smallest
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Y observation, −16.9, has been deleted from the data. For r = 1 it is very likely

that Y(s) > X(1) for nearly all s, apart from the smallest values of s for which

we get almost vacuous lower and upper probabilities for this event; that means

upper probability of about 1 and lower probability of about 0, so imprecision close

to 1. This reflects that the X data set contains quite a few observations which

are smaller than all Y data values, and also the earlier discussed fact that one

gets much imprecision for extreme future order observations if m is substantially

greater than nx and ny. Note that for r = 200 the effect is very similar, it is very

unlikely that Y(s) > X(200) for nearly all s, apart from large values of s for which

we get imprecision close to 1, due to the X group data containing the two overall

largest observations. In Figure 3.3, for r = 1 and r = 50 and s > 80 the NPI

lower and upper probabilities for event Y(s) > X(r) are close to one. The plotted

line, which represents the interval bounded by lower and upper probabilities for

each of these events is not shown in the figures, similarly for r = 200, and s < 100,

in which cases P (Y(s) > X(200)) ' P (Y(s) > X(200)) ' 0. The plot for r = 150 may

well be most informative, with e.g. the event X(150) < Y(s) having lower probability

greater than 0.5 already for s from just below 60 onwards.

r=1 r=50 r=100 r=150 r=200

20

40

60

80

100

120

140

160

180

200

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

s

Figure 3.3: [P , P ](X(r) < Y(s)) for m = 200

The NPI lower and upper probabilities for the events X(r) < Y(r), X(s) > Y(s),

with r < s, are presented for these data in Figure 3.4, for m = 100 future obser-

vations for both groups X and Y . The presented cases are for r = 5, 10, 25, 50, 75,

and for all s = r + 1, . . . ,m. The plotted lines in Figure 3.4 start at s = r + 1 as
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r=5 r=10 r=25 r=50 r=75

10

20

30

40

50
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70
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100

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

s

Figure 3.4: [P , P ](X(r) < Y(r), Y(s) < X(s)) for r < s and m =
100

we consider r < s. Note that again the smallest Y observation, −16.9, has been

deleted. This event of interest is whether the values Y(r) and Y(s) will both be in

the interval (X(r), X(s)). For small values of r it is likely that X(r) < Y(r), as the

X data contain the smallest overall observations. So the results for the case r = 5

are largely influenced by the event Y(s) < X(s), which for most values of s is quite

unlikely to happen, yet for large values of s it becomes well possible, reflecting

that the two largest overall data observations belong to group X. Again we see

much imprecision for the extreme order statistics.

♦

Example 3.2. We consider different values of n and m to illustrate their effect

on the NPI inference of pairwise comparisons of the event X(r) < Y(r). The NPI

comparisons depend on the combined ordering of the two groups. Let us consider

data from two independent groups X and Y , consisting of an even number n of

observations from each group, with the following ranks; x1 < . . . < xn
2
< y1 <

. . . < yn < xn
2 +1 < . . . < xn. The NPI lower and upper probabilities for the

event X(r) < Y(r) are plotted as a function of n in Figure 3.5 for m = 5 and

r = 1, . . . , 5, and in Figure 3.6 for m = 100 and r = 1, 25, 50, 75, 200. The plotted

line for each value of n represents the interval bounded by the lower and upper

probabilities, so the length of each line is the imprecision for the event X(r) < Y(r).
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Figure 3.5: [P , P ](X(r) < Y(r)) for m = 5
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Figure 3.6: [P , P ](X(r) < Y(r)) for m = 100
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Figure 3.7: [P , P ](X(r) < Y(r)) for n = 8

These results clearly show that increasing the number n of data observations

decreases the imprecision for such an event. However, for large m, as illustrated

in Figure 3.6, the imprecision remains high for the extreme future order statistics,

as no assumptions are made about the spread of the probability mass in the end

intervals in both groups.

Figure 3.7 presents the lower and upper probabilities for the event that X(r) <

Y(r) for n = 8 and r = 1, m+1
2 ,m, considering different odd values of m. The
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results show that imprecision tends to increase as a function of m, particularly

for the event involving extreme future observations and where m is much greater

than n.

♦

3.3 Differences between future order statistics

of two groups

The pairwise comparison methods presented in Section 3.2 do not provide insight

into the actual differences between these future order statistics. To achieve this,

we generalise this method by considering the event that X(r) < Y(s) + δ for δ ∈ R.

This is similar to the use of the so-called effect size in hypothesis testing, which

is used to quantify a difference between two groups [17]. The generalisations of

Equations (3.1) and (3.2) are as follows,

P (X(r) < Y(s) + δ) =
nx+1∑
jx=1

ny+1∑
jy=1

1{xjx < yjy−1 + δ}P (X(r) ∈ Ixjx)P (Y(s) ∈ Iyjy) (3.8)

P (X(r) < Y(s) + δ) =
nx+1∑
jx=1

ny+1∑
jy=1

1{xjx−1 < yjy + δ}P (X(r) ∈ Ixjx)P (Y(s) ∈ Iyjy) (3.9)

The NPI lower and upper probabilities only change if δ is large enough to change

the ordering of the y1, . . . , ynx among the values x1, . . . , xnx . This change in

ordering can occur for at most nx × ny different values of δ. Thus the lower and

upper probabilities of the event that X(r) < Y(s) + δ for fixed r and s can have at

most nx × ny + 1 different values, including the case δ = 0. As a function of δ,

P (X(r) < Y(s) + δ) and P (X(r) < Y(s) + δ) are step functions that change value at

nx × ny different values of δ.

Example 3.3. To illustrate the NPI lower and upper probabilities (3.8) and

(3.9), we consider the data set given in Example 3.1, about the effect of ozone

environment on rats growth. We consider m = 10 future observations for both

groups. The smallest Y observation, −16.9, has again been deleted from the
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r=1 r=3 r=5 r=7 r=10
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Figure 3.8: [P , P ](X(r) < Y(r) + δ), m = 10

data. Figure 3.8 presents the NPI lower and upper probabilities for the event

X(r) < Y(r) + δ, as a function of δ, for r = 1, 3, 5, 7, 10. Figures 3.9 and 3.10

present the NPI lower and upper probabilities for the event X(r) < Y(s) + δ, again

as function of δ, for (r = 1, s = 3), (r = 1, s = 5), (r = 1, s = 7), (r = 1, s = 10)

and (r = 3, s = 5), in Figure 3.9, and for (r = 3, s = 7), (r = 3, s = 10),

(r = 5, s = 7), (r = 5, s = 10) and (r = 7, s = 10) in Figure 3.10.
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−71.6

−40.0

0.0

40.0

71.6

δ

Figure 3.9: [P , P ](X(r) < Y(s) + δ), m = 10

These NPI lower and upper probabilities are monotonically increasing as the

value of δ increases. For these data, the lower and upper probabilities remain

constant for values of δ less than −57 or greater than 42; in these cases, the two

data sets are completely non-overlapping as all observations for group Y become

less than all observations for group X or vice versa. Thus, the lower probabilities

for this event are equal to 0 for δ < −57, while the upper probabilities for this



3.4. Multiple comparisons 47

r=3,s=7 r=3,s=10 r=5,s=7 r=5,s=10 r=7,s=10

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

−71.6

−40.0

0.0

40.0

71.6

δ

Figure 3.10: [P , P ](X(r) < Y(s) + δ), m = 10

event are equal to 1 for δ > 42. Figure 3.8 illustrates that events involving the

extreme future order statistics have high imprecision. [P , P ](X(1) < Y(1) + δ)

increase as functions of δ, staring when the largest observations in group Y begin

to exceed the smallest observations in group X. Figures 3.9 and 3.10 illustrate

that events involving the extreme future order statistics, i.e. X(1) or X(10) or both,

have less imprecision for nearly all δ, apart from small values of δ, i.e. δ < −40.

For δ > −8.6, the plotted line, which represents the interval bounded by lower

and upper probabilities for the event X(1) < Y(10) + δ is not shown in Figure 3.9,

where the NPI lower and upper probabilities for X(1) < Y(10) + δ are close to one.

Similarly for δ > 30, the plotted line for the lower and upper probabilities for the

event X(3) < Y(7) + δ is not shown in Figure 3.10.

♦

3.4 Multiple comparisons

Coolen and van der Laan [30] presented NPI methods for comparisons of multiple

groups with different events of interest formulated in terms of the next future

observation from each group. This included selecting the best group, the subset of

the best groups, and the subset that includes the best group. In this section, we

present similar NPI multiple comparisons methods but based on order statistics of

multiple future observations. We are interested in the question, which group will
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give the maximum r-th ordered future observation or the minimum r-th ordered

future observation? An answer to this question might be useful if one wants to

choose between the groups.

3.4.1 Selecting the best group

First, we consider selecting the best group based on the value of a single future

order statistic. Suppose that there are k ≥ 2 independent groups, denoted by

X1, X2, . . . , Xk, of real-valued observations, and their ordered observed values

are xg1 < xg2 < . . . < xgng
for each group g = 1, . . . , k. For ease of notation, let

xg0 = −∞, xgng+1 = ∞ and Igjg = (xgjg−1, x
g
jg). We are interested in m ≥ 1 future

observations from each group, so in Xg
ng+i for i = 1, . . . ,m and g = 1 . . . , k. As

before, we consider inference based on the A(.) assumptions for each group. We

are interested in the event that a specific r-th future order statistic in group

l, so X l
(r), is the maximum of all r-th future order statistics Xg

(r) of the groups

g = 1, . . . , k. The NPI lower probability for this event X l
(r) = max1≤g≤kX

g
(r) is

derived by

P (X l
(r) = max

1≤g≤k
Xg

(r)) = P (
k⋂
g=1
g 6=l

{X l
(r) > Xg

(r)}

=
nl+1∑
jl=1

P (
k⋂
g=1
g 6=l

{Xg
(r) < X l

(r)}|X l
(r) ∈ I ljl)P (X l

(r) ∈ I ljl)

≥
nl+1∑
jl=1

P (
k⋂
g=1
g 6=l

{Xg
(r) < xljl−1})P (X l

(r) ∈ I ljl)

=
nl+1∑
jl=1

k∏
g=1
g 6=l

P (Xg
(r) < xljl−1)P (X l

(r) ∈ I ljl)

≥
nl+1∑
jl=1

k∏
g=1
g 6=l

ng+1∑
jg=1

1{xgjg < xljl−1}P (Xg
(r) ∈ I

g
jg)P (X l

(r) ∈ I ljl)

(3.10)

The lower probability is derived by putting the probability mass per interval

at the left end point for the group l, and at the right end point for all other
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groups. By placing the probability mass for each interval this way, the RHS of

Equation (3.10), can actually be attained so it is the maximum lower bound for

the probability for this event, hence it is the NPI lower probability. We use the

notation

P l = P (X l
(r) = max

1≤g≤k
Xg

(r)) =
nl+1∑
jl=1

k∏
g=1
g 6=l

ng+1∑
jg=1

1{xgjg < xljl−1}P (Xg
(r) ∈ I

g
jg)P (X l

(r) ∈ I ljl)

(3.11)

We can similarly derive the NPI upper probability for the event X l
(r) =

max1≤g≤kX
g
(r) by

P (X l
(r) = max

1≤g≤k
Xg

(r)) = P (
k⋂
g=1
g 6=l

{X l
(r) > Xg

(r)}

=
nl+1∑
jl=1

P (
k⋂
g=1
g 6=l

{Xg
(r) < X l

(r)}|X l
(r) ∈ I ljl)P (X l

(r) ∈ I ljl)

≤
nl+1∑
jl=1

P (
k⋂
g=1
g 6=l

{Xg
(r) < xljl})P (X l

(r) ∈ I ljl)

≤
nl+1∑
jl=1

k∏
g=1
g 6=l

ng+1∑
jg=1

1{xgjg−1 < xljl}P (Xg
(r) ∈ I

g
jg)P (X l

(r) ∈ I ljl)

(3.12)

The upper bound is obtained by putting the probability mass per interval at the

right end point for group l, and at left end point for all other groups. This upper

bound can also be attained and hence is the NPI upper probability, and we use

the notation

P l = P (X l
(r) = max

1≤g≤k
Xg

(r)) =
nl+1∑
jl=1

k∏
g=1
g 6=l

ng+1∑
jg=1

1{xgjg−1 < xljl}P (Xg
(r) ∈ I

g
jg)P (X l

(r) ∈ I ljl)

(3.13)

The lower and upper probabilities for the event that the r-th future observation

from groupX l is the minimum of all r-th future observations from the other groups
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Xg
(r), 1 ≤ g ≤ k, so X l

(r) = min1≤g≤kX
g
(r), are derived similarly and are equal to

P ′l = P (X l
(r) = min

1≤g≤k
Xg

(r)) =
nl+1∑
jl=1

k∏
g=1
g 6=l

ng+1∑
jg=1

1{xgjg−1 > xljl}P (X l
(r) ∈ I ljl)P (Xg

(r) ∈ I
g
jg)

(3.14)

P
′
l = P (X l

(r) = min
1≤g≤k

Xg
(r)) =

nl+1∑
jl=1

k∏
g=1
g 6=l

ng+1∑
jg=1

1{xgjg > xljl−1}P (X l
(r) ∈ I ljl)P (Xg

(r) ∈ I
g
jg)

(3.15)

We will refer to these as the lower and upper probabilities that group l is the

best of all groups, where ‘best group’ is clearly to be interpreted in terms of the

r-th ordered future observation for each group. We present examples to illustrate

these lower and upper probabilities in Subsection 3.4.4.

3.4.2 Selecting a subset containing only the best groups

In the theory of statistical selection [30, 82] interest is often in subsets of the

groups, for example, for use in screening processes where initially all groups are

involved in tests, but later stages of testing can only involve a subset of the groups

[13]. We consider a subset of the k independent groups with a subset containing

w groups, with 1 ≤ w ≤ k − 1, where w = 1 is the case of a single group as

presented in Section 3.4.1. One logical problem formulation involves selecting a

subset of the groups that is most likely to contain all the w best groups. We now

derive the NPI method for such inferences with the best group in terms of the

value of the r-th ordered value from the m future observations. Suppose that a

subset of the k independent groups contains w groups with 1 ≤ w ≤ k − 1. Let

S = {l1, . . . , lw} ⊂ {1, . . . , k} be the subset of indices of these w groups, and let

NS = {1, . . . , k}/S be the subset of indices of the k−w groups not in this subset.

The NPI lower and upper probabilities for the event min
l∈S

X l
(r) > max

g∈NS
Xg

(r) are

derived as follows. First, we find a lower bound for this probability
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P

(
min
l∈S

X l
(r) > max

g∈NS
Xg

(r)

)
= P

 ⋂
g∈NS

{Xg
(r) < min

l∈S
X l

(r)}


=

nl1 +1∑
jl1 =1

. . .

nlw +1∑
jlw =1

P

( ⋂
g∈NS

{Xg
(r) < min

l∈S
X l

(r)}|X
l1
(r) ∈ I

l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

)
× P (X l1

(r) ∈ I
l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

)

≥
nl1 +1∑
jl1 =1

. . .

nlw +1∑
jlw =1

P
 ⋂
g∈NS

{Xg
(r) < min

l∈S
xlsjls−1}

× P (X l1
(r) ∈ I

l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

)

=
nl1 +1∑
jl1 =1

. . .

nlw +1∑
jlw =1

 ∏
g∈NS

P

(
Xg

(r) < min
l∈S

xlsjls−1

)× P (X l1
(r) ∈ I

l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

)

≥
nl1 +1∑
jl1 =1

. . .

nlw +1∑
jlw =1

 ∏
g∈NS

ng+1∑
jg=1

1{xgjg < min
l∈S

xlsjls−1}P (Xg
(r) ∈ I

g
jg

)


× P (X l1

(r) ∈ I
l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

)

This lower bound is obtained by putting the probability mass per interval at

the left end point for all w groups in the subset and at the right end point for

the other k − w groups. This construction makes clear that this is the maximum

lower bound, and hence the NPI lower probability which we denote by

P S = P (min
l∈S

X l
(r) > max

g∈NS
Xg

(r))

=
nl1 +1∑
jl1 =1

. . .
nlw +1∑
jlw =1

∏
g∈NS

ng+1∑
jg=1

1{xgjg < min
l∈S

xlsjls−1}P (Xg
(r) ∈ I

g
jg)

× P (X l1
(r) ∈ I

l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

) (3.16)

Because the groups are assumed to be independent, the joint probability

P (X l1
(r) ∈ I

l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

) is equal to the product of the factors P (X l1
(r) ∈ I

l1
jl1

)

to P (X lw
(r) ∈ I lwjlw ). The corresponding upper bound for the event min

l∈S
X l

(r) >

max
g∈NS

Xg
(r) is derived similarly, leading to the upper probability

P S = P (min
l∈S

X l
(r) > max

g∈NS
Xg

(r)) =
nl1 +1∑
jl1 =1

. . .
nlw +1∑
jlw =1

∏
g∈NS

ng+1∑
jg=1

1{xgjg−1 < min
l∈S

xlsjls}

P (Xg
(r) ∈ I

g
jg)× P (X l1

(r) ∈ I
l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

)
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(3.17)

The lower and upper probabilities for the event that the r-th ordered future

observation from each group in the subset is less than the r-th ordered future

observation from all groups not in the subset, such that max
l∈S

X l
(r) < min

g∈NS
Xg

(r), are

similarly derived and are equal to

P ′S = P (max
l∈S

X l
(r) < min

g∈NS
Xg

(r)) =
nl1 +1∑
jl1 =1

. . .
nlw +1∑
jlw =1

∏
g∈NS

ng+1∑
jg=1

1{xgjg−1 > max
l∈S

xlsjls} ×

P (Xg
(r) ∈ I

g
jg)× P (X l1

(r) ∈ I
l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

)

(3.18)

P
′
S = P (max

l∈S
X l

(r) < min
g∈NS

Xg
(r)) =

nl1 +1∑
jl1 =1

. . .
nlw +1∑
jlw =1

∏
g∈NS

ng+1∑
jg=1

1{xgjg > max
l∈S

xlsjls−1} ×

P (Xg
(r) ∈ I

g
jg)× P (X l1

(r) ∈ I
l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

)

(3.19)

We will refer to these as the NPI lower and upper probabilities for a subset S

containing only the best groups. These inferences will be illustrated in Subsection

3.4.4.

3.4.3 Selecting a subset including the best group

A second common group selection problem for which classical statistical methods

have been presented aims to have the selected subset containing the single best

group. In our case, this is the group which provides the maximum r-th ordered

future observation. We can use the same notation as introduced for the selection

of a subset containing all the best groups. The NPI lower and upper probabilities

for the event that the r-th future observation from at least one of the selected

groups in S is greater than the r-th future observation from all unselected groups

in NS, are derived similarly to the NPI lower and upper probabilities (3.16) and

(3.17), but with the minimum over S everywhere replaced by the maximum over

S in the event of interest. These NPI lower and upper probabilities are
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P ∗S = P (max
l∈S

X l
(r) > max

g∈NS
Xg

(r))

=
nl1 +1∑
jl1 =1

. . .
nlw +1∑
jlw =1

∏
g∈NS

ng+1∑
jg=1

1{xgjg < max
l∈S

xlsjls−1}P (Xg
(r) ∈ I

g
jg)

× P (X l1
(r) ∈ I

l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

) (3.20)

P
∗
S = P (max

l∈S
X l

(r) > max
g∈NS

Xg
(r))

=
nl1 +1∑
jl1 =1

. . .
nlw +1∑
jlw =1

∏
g∈NS

ng+1∑
jg=1

1{xgjg−1 < max
l∈S

xlsjls}P (Xg
(r) ∈ I

g
jg)

× P (X l1
(r) ∈ I

l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

) (3.21)

Similarly, the NPI lower and upper probabilities for the event that the r-th

future observation from at least one of the selected groups in the subset S is less

than the r-th future observation from all nonselected groups in NS, are

P ∗′S = P (min
l∈S

X l
(r) < min

g∈NS
Xg

(r)) =
nl1 +1∑
jl1 =1

. . .
nlw +1∑
jlw =1

∏
g∈NS

ng+1∑
jg=1

1{xgjg−1 > min
l∈S

xlsjls} ×

P (Xg
(r) ∈ I

g
jg)× P (X l1

(r) ∈ I
l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

)

(3.22)

P
∗′
S = P (min

l∈S
X l

(r) < min
g∈NS

Xg
(r)) =

nl1 +1∑
jl1 =1

. . .
nlw +1∑
jlw =1

∏
g∈NS

ng+1∑
jg=1

1{xgjg > min
l∈S

xlsjls−1} ×

P (Xg
(r) ∈ I

g
jg)× P (X l1

(r) ∈ I
l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

)

(3.23)

These results are also illustrated in Subsection 3.4.4.

The results presented in Subsections 3.4.2 and 3.4.3 can be used in a variety

of ways. For example, one may want to select a subset of minimum size for which

P S > 0.5, or from all subsets of the same size, one may want to select the subset

with the largest lower probability for the event of interest. There are, of course,

a substantial number of further subset selection problem formulations that could

be considered, including subsets containing the two best groups or criteria based

on multiple future ordered observations. The NPI approach to such problems
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follows steps that are similar to those presented here, investigation of properties

and performance will be of interest but is left as a topic for future research.

3.4.4 Examples

We illustrate the lower and upper probabilities presented in this section by ex-

amples, considering data sets presented in the literature.

Example 3.4. We illustrate some of the above presented NPI methods for mul-

tiple comparisons based on order statistics of future observations, using data from

Coolen and van der Laan [30] with sample sizes n1 = 20, n2 = 18, n3 = 15 and

n4 = 3, as presented in Table 3.2.

Group Data
1 5.01 5.04 5.60 5.78 6.43 6.53 6.96 7.00 7.21 7.58 8.12 8.26 8.27 8.34 8.62 8.66 8.91 8.94 9.05 9.16
2 4.50 4.86 5.10 5.15 5.17 5.34 5.99 6.18 6.72 7.39 7.44 7.46 7.47 7.76 8.38 8.42 8.52 8.81
3 6.84 6.91 7.22 7.24 7.25 7.35 7.55 7.62 7.69 7.98 7.99 8.04 8.08 8.18 8.97
4 4.71 8.20 9.03

Table 3.2: Ordered data for Example 3.4

The NPI lower and upper probabilities for group l = 1, . . . , 4 to be best, in

terms of providing the largest value of the r-th ordered observation from a future

sample of size m = 5, for each group, are presented in Table 3.3, so these are

P l and P l as given in Equations (3.11) and (3.13). These NPI lower and upper

probabilities are also presented, for the case with m = 10 and all r = 1, . . . , 10,

in Figure 3.11. The imprecision in these lower and upper probabilities tends to

be largest for small and large values of r, reflecting the earlier discussed feature

of increased imprecision due to probabilities assigned to the first or last intervals.

Group 3 is most likely to provide the largest future value for r = 1, but is quite

unlikely to provide the largest future value for r > m/2, which appears most

likely to come from Group 4. However, imprecision in these lower and upper

probabilities is largest for Group 4, which reflects the fact that there are only 3

data observations from this group.

As Group 4 only has 3 data observations, it is of interest to consider the effect

on these inferences when this group is deleted. We denote the NPI lower and
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r P 1 P 1 P 2 P 2 P 3 P 3 P 4 P 4
1 0.0682 0.2732 0.0199 0.1296 0.3798 0.7752 0.1034 0.3804
2 0.1342 0.2946 0.0373 0.1207 0.1818 0.4700 0.2389 0.5883
3 0.1893 0.4216 0.0422 0.1427 0.0543 0.2218 0.3138 0.6753
4 0.1716 0.4922 0.0364 0.1736 0.0185 0.1424 0.3166 0.7268
5 0.1003 0.6010 0.0079 0.2582 0.0105 0.2981 0.1840 0.7965

Table 3.3: P l and P l for m = 5

l=1 l=2 l=3 l=4
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r

Figure 3.11: P l and P l for m = 10

upper probabilities in this case by P (−4)
l and P (−4)

l , they are presented in Table

3.4 for m = 5 and in Figure 3.12 for m = 10. Of course, as Group 4 was quite

likely to lead to the largest r-th ordered future observation for the larger values of

r, with this group deleted the corresponding lower and upper probabilities for the

3 remaining groups have increased, where particularly Group 1 benefits from the

absence of Group 4. The overall pattern of these lower and upper probabilities

for different values of r, as best seen from Figure 3.12, remains quite similar for

these 3 groups in both cases with and without Group 4, but imprecision has

decreased. This shows that the presence of a group with only few observations

may result in more imprecision for the other groups, so inclusion of a group with

only few observations may reduce the overall quality of statistical inferences for

such selection problems in the following sense. NPI provides exactly calibrated

frequentist inferences in the sense of Lawless and Fredette [66], but it only provides

inferences in terms of lower and upper probabilities. Hence, one can consider the

level of imprecision as a reflection of quality of the statistical inferences, which

remain exactly calibrated both with and without inclusion of Group 4 in this
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r P
(−4)
1 P

(−4)
1 P

(−4)
2 P

(−4)
2 P

(−4)
3 P

(−4)
3

1 0.0987 0.3022 0.0311 0.1481 0.6076 0.8682
2 0.2425 0.3569 0.0883 0.1595 0.5079 0.6564
3 0.4284 0.5504 0.1166 0.2064 0.2891 0.4200
4 0.5239 0.6971 0.1353 0.2587 0.1323 0.2673
5 0.4003 0.7648 0.0744 0.3266 0.1045 0.3865

Table 3.4: P (−4)
l and P (−4)

l for m = 5

l=1 l=2 l=3
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Figure 3.12: P (−4)
l and P (−4)

l for m = 10

example, but less imprecision provides more insight.

Figure 3.13 presents the NPI lower and upper probabilities for pairwise com-

parisons between these groups based on the r-th ordered future observation, for

m = 10 and each r = 1, . . . , 10. So the events considered are X l
(r) > Xg

(r) for

l, g = 1, . . . , 4 and l 6= g. It should be noted that NPI lower and upper probab-

ilities for events not included in this figure can be deduced using the conjugacy

property, that is P (A) = 1 − P (Ac), for any event A and its complementary

event Ac, which holds for NPI-based inferences as discussed in Chapter 1. These

pairwise comparisons also show that Group 3 is most likely to provide the largest

r-th ordered future observation for small values of r, while it is also clear that

the lower and upper probabilities for comparisons involving Group 4 are more

imprecise than for comparisons not involving Group 4, which again results from

the small data set for Group 4.

To illustrate subset selection, we first consider the event that the subset S
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Figure 3.13: P and P for m = 10

contains all the best groups, as presented in Subsection 3.4.2. Figure 3.14 and

Table 3.5 present the NPI lower and upper probabilities, which are given in

Equations (3.16) and (3.17), for any subset S containing two of the four groups,

for m = 5 in Table 3.5 and m = 10 in Figure 3.14. These results show that the

subset that contains groups 1 and 3 is most likely to provide the largest future

value for r = 1; however, it quite unlikely to provide the largest future value for

r > m/2, which is most likely to come from the subset that contains groups 1

and 4.

We also illustrate the selection of subsets containing the best group, as presen-

ted in Subsection 3.4.3 and for which the NPI lower and upper probabilities are

given by Equations (3.20) and (3.21). The NPI lower and upper probabilities for

any subset S consisting of two of the four groups are shown for m = 5 in Table

3.6, for m = 10 in the first row in Figure 3.15, and for m = 100 in the second row

in this figure. Imprecision is again largest for extreme values of r, and the values

in this table and these figures illustrate the conjugacy relation P (A) = 1−P (Ac).

Note that the NPI lower and upper probabilities for these events with subset

S consisting of three of the four groups can be derived, again by the conjugacy

relation, from the corresponding lower and upper probabilities for such events

with S consisting of a single group, as presented in Table 3.3 for m = 5 and in

Figure 3.11 for m = 10.
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Figure 3.14: P S and P S for m = 10

S : {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
r P S P S P S P S P S P S P S P S P S P S P S P S

1 0.0023 0.2142 0.2613 0.6971 0.0106 0.1751 0.1003 0.3782 0.0033 0.0868 0.0651 0.3750
2 0.0134 0.0858 0.2014 0.5210 0.0690 0.2311 0.0757 0.2511 0.0248 0.1020 0.1451 0.4230
3 0.0304 0.1235 0.0948 0.3362 0.2074 0.4458 0.0361 0.1531 0.0518 0.1591 0.1432 0.3407
4 0.0541 0.2118 0.0388 0.2096 0.3282 0.6159 0.0107 0.0719 0.0739 0.2125 0.0822 0.2248
5 0.0359 0.2789 0.0196 0.2402 0.2855 0.7050 0.0041 0.0926 0.0521 0.2744 0.0683 0.3227

Table 3.5: P S and P S for m = 5

S : {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
r P ∗S P

∗
S P ∗S P

∗
S P ∗S P

∗
S P ∗S P

∗
S P ∗S P

∗
S P ∗S P

∗
S

1 0.0893 0.3540 0.5389 0.8685 0.1949 0.5634 0.4366 0.8051 0.1315 0.4611 0.6460 0.9107
2 0.1768 0.3974 0.3483 0.6919 0.4510 0.7642 0.2358 0.5490 0.3081 0.6517 0.6026 0.8232
3 0.2437 0.5340 0.2599 0.5965 0.6639 0.8951 0.1049 0.3361 0.4035 0.7401 0.4660 0.7563
4 0.2282 0.6108 0.2085 0.5814 0.7074 0.9395 0.0605 0.2926 0.4186 0.7915 0.3892 0.7718
5 0.1390 0.7175 0.1477 0.7370 0.5193 0.9758 0.0242 0.4807 0.2630 0.8523 0.2825 0.8610

Table 3.6: P ∗S and P ∗S for m = 5

These NPI lower and upper probabilities can be used in a variety of ways. For

example, one may be interested in a subset of smallest size such that the lower

probability of it containing the best subset in terms of a specific r-th ordered

future observation exceeds a specific value.
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Figure 3.15: P ∗S and P ∗S for m = 10 and m = 100

Cloth l xl1 xl2 xl3 xl4
1 337 344 369 396
2 520 537 602 627
3 233 240 251 278
4 196 211 248 273
5 160 185 195 199
6 442 563 595 606
7 226 252 297 300

Table 3.7: Ordered weight losses (in 0.1 mg).

Example 3.5. The data for this example are presented in Table 3.7; the data are

from Bechhofer et al. [13, p. 84] and were also used by Box et al. [18, p. 277] and

by Coolen and van der Laan [30]. The data are from an experiment conducted

to determine the weight loss for seven types of cloth during a mechanical test.

The measured weight loss is in tenths of a milligram for each cloth following 1000

revolutions on a wear tester.

Based on the given data, suppose we want to choose the cloth with the

smallest weight loss at the r-th ordered future observation. The NPI lower and
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r P ′1 P
′
1 P ′2 P

′
2 P ′3 P

′
3 P ′4 P

′
4

1 0 0.55556 0 0.55556 0 0.55580 0.00008 0.56975
2 0 0.27778 0 0.27778 0 0.28485 0.00217 0.34172
3 0 0.11922 0 0.11906 0 0.16437 0.00752 0.25740
4 0 0.04540 0 0.04070 0 0.18911 0.00900 0.29025
5 0 0.10244 0 0.04485 0 0.38214 0.00424 0.49790

Table 3.8: P ′l and P
′
l for m = 5

r P ′5 P
′
5 P ′6 P

′
6 P ′7 P

′
7

1 0.00746 0.99559 0 0.55556 0 0.55593
2 0.12836 0.98898 0 0.27778 0 0.28315
3 0.38170 0.98583 0 0.11906 0 0.14221
4 0.53352 0.98898 0 0.04093 0 0.10527
5 0.41310 0.99559 0 0.05454 0 0.21775

Table 3.9: P ′l and P
′
l for m = 5

upper probabilities P ′l and P ′l for the event that cloth l is the best, for l = 1, . . . , 7,

as given in Equations (3.14) and (3.15), are displayed in Tables 3.8 and 3.9 for

m = 5 and r = 1, . . . , 5, and in Figure 3.16 for m = 5, m = 10 and m = 100, and

for all r = 1, . . . ,m. The results clearly indicate that cloths 2 and 6 are unlikely

to lead to the best r-th ordered future observation, with the upper probabilities

for cloth 6 slightly greater than for cloth 2 for large values of r. Obviously, in

this example, there is a strong suggestion that cloth 5 is the best, as it provides

the highest P ′l and P ′l that the r-th future ordered statistic is the minimum for

all r-th future order statistics. The rather large difference between the lower and

upper probabilities reflects the fact that there are only few observations available.

All the lower probabilities that are equal to 0 in Tables 3.8 and 3.9 are caused by

all the related observations being larger than all the observations for cloth 5.

Table 3.10 presents the NPI lower and upper probabilities for some subsets,

P ′S and P ′S, for the event that the subset S contains all the best cloths, as given by

Equations (3.18) and (3.19), for m = 5. These NPI lower and upper probabilities

are also presented for the case with m = 10 in Figure 3.17. These results illustrate

that P ′{3,4,5,7} = 1, because all observations for these four cloths are greater than

all the observations for cloths 1,2 and 6. If we select cloth 1 instead of cloth 7, we
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Figure 3.16: P ′l and P
′
l for l = 1, . . . , 7, m = 5, 10, 100

get P ′{1,3,4,5} = 0 as all the observations in cloth 7 are less than those for cloth 1.

Tables 3.11 and Figure 3.18 present some of the NPI lower and upper probab-

ilities for the event that the subset S contains the cloth that provides the smallest

r-th ordered future observation, as given in Equations (3.22) and (3.23), form = 5

in Table 3.11 and for m = 10 in Figure 3.18. The upper probabilities P ∗′S are all

equal to one as group 5 is included in all these subsets. The results from Table

3.11 and Figure 3.18 can be used to select the best subset. Suppose we want to

select a subset with minimum size for which P ∗′S > 0.5. Table 3.11 shows that

a subset contains cloths 4 and 5 is the best for r = 4 and r = 5 with P ∗′S > 0.5.

From all subsets of the size three, suppose we want to select the subset with

maximum lower probability for the event min
S
X l

(r) < min
NS

Xg
(r). Table 3.11 gives

that S = {3, 4, 5} is the best for r = 4 with P ∗′S = 0.7924.
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S : {4, 5} {3, 4, 5} {4, 5, 7} {3, 4, 5, 7} {1, 3, 4, 5}
r P ′S P

′
S P ′S P

′
S P ′S P

′
S P ′S P

′
S P ′S P

′
S

1 0.0144 0.9554 0.0135 0.7340 0.0184 0.8055 0.0850 1 0 0.4113
2 0.1184 0.8731 0.1154 0.7618 0.0521 0.5769 0.3204 1 0 0.2403
3 0.2125 0.8050 0.2381 0.8367 0.0469 0.4440 0.4118 1 0 0.2045
4 0.2074 0.7966 0.2235 0.9002 0.0262 0.4462 0.2410 1 0 0.3025
5 0.1171 0.8700 0.0729 0.9602 0.0053 0.6047 0.0381 1 0 0.5588

Table 3.10: P ′S and P ′S for m = 5

S : {4, 5} {3, 4, 5} {4, 5, 7} {3, 4, 5, 7} {1, 3, 4, 5}
r P ∗S P

∗′
S P ∗′S P

∗′
S P ∗′S P

∗′
S P ∗′S P

∗′
S P ∗′S P

∗′
S

1 0.0173 1 0.0390 1 0.0390 1 0.0878 1 0.0877 1
2 0.1936 1 0.2700 1 0.2694 1 0.3767 1 0.3739 1
3 0.4962 1 0.5865 1 0.5713 1 0.6835 1 0.6657 1
4 0.6696 1 0.7924 1 0.7181 1 0.8803 1 0.8251 1
5 0.5735 1 0.7638 1 0.6033 1 0.8834 1 0.7699 1

Table 3.11: P ∗′S and P ∗′S for m = 5
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Figure 3.17: P ′S and P ′S for m = 10
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Figure 3.18: P ∗′S and P ∗′S for m = 10

♦
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3.5 Further inferences

The NPI methods for future order statistics presented in this thesis enable a

wide range of further statistical inferences, as long as problems of interest are

formulated in terms of such future order statistics. For example, one can consider

NPI for prediction intervals [44], for the number of future order statistics in an

interval [3, 49], and for spacings between order statistics [3]. These are briefly

discussed next.

3.5.1 Prediction intervals

In many practical situations, it may be of interest to use the observations from

the original sample to construct an interval which contains some order statistics

of future observations with a certain probability [2]. Such an interval is called a

prediction interval e.g. outer prediction intervals can be derived as the interval

between two of the first n observations (or possibly with −∞ or∞ as end points),

say (xa, xb) with a < b, such that this interval contains an interval of the future

order statistics [X(r), X(s)] for r < s. The corresponding predictive probability is

easily computed using Equation (2.6), and is

P (xa < X(r) < X(s) < xb) =
b∑

j=a+1

b∑
l=j

P (X(r) ∈ Ij, X(s) ∈ Il) (3.24)

One may also be interested in a corresponding inner prediction interval of the form

(xc, xd) which is contained in [X(r), X(s)], the corresponding predictive probability

is

P (X(r) < xc < xd < X(s)) =
c∑
j=1

n+1∑
l=d+1

P (X(r) ∈ Ij, X(s) ∈ Il) (3.25)

One may typically be interested in the shortest outer interval, or the longest inner

interval, for which the corresponding probability (3.24) or (3.25) exceeds a chosen

threshold value, for given r and s. Of course, one may also just want to use these

probabilities directly for inferences on X(r) and X(s). The idea of such outer and

inner prediction intervals is used by Ahmadi et al. [1] for intervals between future

records. The core problem of the prediction intervals fits well within the NPI
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b
a 1 2 3 4 5 6 7 8 9
0 0.00078 0.00466 0.01632 0.04351 0.09790 0.19580 0.35897 0.61538 1
1 0 0.00155 0.00855 0.02797 0.07071 0.15229 0.29371 0.52214 0.87179
2 0 0 0.00233 0.01243 0.03963 0.09790 0.20668 0.39161 0.68531
3 0 0 0 0.00311 0.01632 0.05128 0.12510 0.26107 0.48951
4 0 0 0 0 0.00389 0.02020 0.06294 0.15229 0.31546
5 0 0 0 0 0 0.00466 0.02409 0.07459 0.17949
6 0 0 0 0 0 0 0.00544 0.02797 0.08625
7 0 0 0 0 0 0 0 0.00622 0.03186
8 0 0 0 0 0 0 0 0 0.00699

Table 3.12: P (xa < X(2) < X(5) < xb) for n = 8 and m = 5

framework for the future order statistics, as presented in this thesis, as it explicitly

focuses on the future order statistics based on the past data observations.

Example 3.6. Suppose we have n = 8 observations and m = 5 future obser-

vations. Table 3.12 presents the NPI probabilities for the event that the outer

prediction intervals (xa, xb) contains an interval of the future order statistics

[X(2), X(5)], with a < b, a = 0, . . . , 8 and b = 1, . . . , 9. Comparing Table 3.12

with Table 2.3 shows that P (xj−1 < X(2) < X(5) < xj) = P (X(2) ∈ Ij, X(5) ∈ Ij)

for j = 1, . . . , 9. Suppose we want to find the shortest outer interval for which

P (xa < X(2) < X(5) < xb) > 0.5. Table 3.12 shows that (1,8) and (2,9) are the

shortest intervals with P (xa < X(2) < X(5) < xb) > 0.5, no other interval of

length 7 has probability greater than 0.5 for this event. Of course, it may be

logical to choose (2, 9) in this case, as the probability for it to contain [X(2), X(5)]

is larger than for (1, 8).

Table 3.13 presents the NPI probabilities for the event that the inner prediction

interval (xc, xd) is contained in [X(2), X(5)], for n = 8, m = 5, c = 1, . . . , 8 and

d = 1, 2, . . . , 8. Suppose one may be interested in the longest inner interval for

which P (X(2) < xc < xd < X(5)) > 0.5, then from Table 3.13, the longest inner

interval is (4, 6) for which P (X(2) < x4 < x6 < X(5)) = 0.50894.

♦



3.5. Further inferences 65

d
c 1 2 3 4 5 6 7 8
1 0.12743 0.12510 0.12044 0.11267 0.10101 0.08469 0.06294 0.03497
2 0 0.31002 0.30070 0.28361 0.25641 0.21678 0.16239 0.09091
3 0 0 0.49417 0.47009 0.42890 0.36597 0.27661 0.15618
4 0 0 0 0.64103 0.59052 0.50894 0.38850 0.22145
5 0 0 0 0 0.72261 0.62937 0.48563 0.27972
6 0 0 0 0 0 0.71795 0.56022 0.32634
7 0 0 0 0 0 0 0.60917 0.35897
8 0 0 0 0 0 0 0 0.37762

Table 3.13: P (X(2) < xc < xd < X(5)) for n = 8 and m = 5

3.5.2 Number of future observations in an interval

One may also be interested in the number of future observations in an interval

between two data observations. Let Cm
a,b = u denote the event that exactly u out

of m future observations are in the interval (xa, xb), with 1 ≤ a < b ≤ n+ 1 and

1 ≤ u ≤ m. The NPI probability for this event is equal to

P (Cm
a,b = u) =

m−u∑
ma=0

(
a−1+ma

ma

)(
b−a−1+u

u

)(
n−b+m−u−ma

m−u−ma

)
(
n+m
n

) (3.26)

This probability depends only on the number of intervals in the partition of the

real line created by the data between xa and xb, hence only on the value b − a.

An alternative expression for this NPI probability is

P (Cm
a,b = u) =

(
n+a−b+m−u

m−u

)(
b−a−1+u

u

)
(
n+m
n

)
Both these expressions are easily derived by combinatorics using the basic prob-

ability results presented in Chapter 2. For the special case with b = n + 1, so

considering the interval (xa,∞), we have

P (Cm
a,n+1 = u) =

(
a−1+m−u
m−u

)(
n−a+u

u

)
(
n+m
n

) (3.27)

This result is equal to the distribution of the number of exceedances in the

classical theory of statistics [3], although the derivation method differs due to the

different starting points of NPI compared with the classical theory. Analysis of
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this probability (3.27) leads to the logical symmetry

P (Cm
a,n+1 = u) = P (Cm

n+1−a,n+1 = m− u)

for u = 0, . . . ,m and a = 1, . . . , n. This will be illustrated in Example 3.7.

We have the following simpler expressions for some special cases. Let us

consider the event Cm
a,n+1 = 0, so no future observations in interval (xa,∞), then

for a = 1

P (Cm
1,n+1 = 0) = m!n!

(n+m)! = P (Cm
n,n+1 = m)

and for a = n,

P (Cm
n,n+1 = 0) = n

n+m
= P (Cm

1,n+1 = m)

In particular, if m = n,

P (Cm
n,n+1 = 0) = n

2n = 0.5 = P (Cm
1,n+1 = m)

A further interesting event is that at least u future observations are in the

interval (xa, xb), denoted by Cm
a,b ≥ u. The NPI probability for this event is equal

to:

P (Cm
a,b ≥ u) =

m∑
i=u

m−i∑
mi

a=0
P (Cm

−∞,a = mi
a, C

m
a,b = i, Cm

b,∞ = m− i−mi
a)

=
m∑
i=u

m−i∑
mi

a=0

(
a−1+mi

a
mi

a

)(
b−a−1+i

i

)(
n−b+m−i−mi

a
m−i−mi

a

)
(
n+m
n

) (3.28)

This probability (3.28) also only depends on the value b− a, we can also write it

as

P (Cm
a,b ≥ u) =

m∑
i=u

(
b−a−1+i

i

)(
m−i+n−b+a

m−i

)
(
n+m
n

) (3.29)

An interesting special case of probability (3.28) for the event that at least u future

observations belong to the interval (−∞, xb)

P (Cm
0,b ≥ u) =

m∑
i=u

(
b−1+i
i

)(
n−b+m−i
m−i

)
(
n+m
n

) =
b∑

j=1
P (X(u) ∈ Ij) (3.30)

This gives the same result as the CDF of the probability in Equation (2.2).
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The joint probability for the event X(r) ∈ (−∞, xa), X(s) ∈ (xa, xb) is

P (X(r) ∈ (−∞, xa), X(s) ∈ (xa, xb)) =
s−1∑
i1=r

m∑
i2=s

(
i1+a−1
i1

)(
i2−i1+b−a−1

i2−i1

)(
m−i2+n−b
m−i2

)
(
n+m
n

)
(3.31)

This result is equal to the probability in Equation (1.4), given in classical theory of

statistics [83], although the derivation method differs due to the different starting

points of NPI compared with the classical theory. Where as in classical theory

both the data and future observations are considered to be random quantities,

predictive inference involves conditioning on the data observations.

We also derive the expected value for the number of future observations in
interval (xa, xb)

E(Cma,b = u) =
m∑
u=1

uP (Cma,b = u) = (b− a)m
n+ 1 (3.32)

As a special case, the expected number of future observations in interval (−∞, xb),

is bm
n+1 , which is the same result as the classic mean of exceedances derived by

Gumbel [49], although they use a different setting than NPI.

Example 3.7. Suppose we have n = 8 observations and m = 5 future obser-

vations. The NPI probabilities for the events that there are exactly u future

observations in interval (xa, x9) are given in Table 3.14. This table illustrates

the logical symmetry P (C5
a,9 = u) = P (C5

9−a,9 = 5 − u) for a = 1, . . . , 8 and

u = 0, . . . , 5, so the last row is equal to the second one in reversed order, the last

column is equal to the first one in reversed order, and so on.

To illustrate the inference in Equation (3.28), Table 3.15 presents the NPI

probabilities for the event that at least one future observation falls in interval

(xa, xb), i.e. C5
a,b ≥ 1, with a = 0, . . . , 8 and b = 1, . . . , 9. Table 3.15 illustrates

that P (Cm
a,b ≥ u) depends only on the value of b− a.

Table 3.16 illustrates the probabilities P (C5
a,b ≥ u), as given in Equation (3.29),

for n = 8 and m = 5, where rows represent the number of the intervals b− a, and

columns represent the number of the future observations u . Comparing Table
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u
a 0 1 2 3 4 5
0 0 0 0 0 0 1
1 0.00078 0.00622 0.02797 0.09324 0.25641 0.61538
2 0.00466 0.02720 0.08702 0.19580 0.32634 0.35897
3 0.01632 0.06993 0.16317 0.26107 0.29371 0.19580
4 0.04351 0.13598 0.23310 0.27195 0.21756 0.09790
5 0.09790 0.21756 0.27195 0.23310 0.13598 0.04351
6 0.19580 0.29371 0.26107 0.16317 0.06993 0.01632
7 0.35897 0.32634 0.19580 0.08702 0.02720 0.00466
8 0.61538 0.25641 0.09324 0.02797 0.00622 0.00078

Table 3.14: P (C5
a,9 = u)

b
a 1 2 3 4 5 6 7 8 9
0 0.38461 0.64102 0.80419 0.90209 0.95648 0.98368 0.99534 0.99922 1
1 0 0.38461 0.64102 0.80419 0.90209 0.95648 0.98368 0.99533 0.99922
2 0 0 0.38461 0.64102 0.80419 0.90209 0.95649 0.98368 0.99534
3 0 0 0 0.38461 0.64102 0.80419 0.90209 0.95649 0.98368
4 0 0 0 0 0.38461 0.64102 0.80419 0.90209 0.95649
5 0 0 0 0 0 0.38461 0.64102 0.80419 0.90209
6 0 0 0 0 0 0 0.38461 0.64102 0.80419
7 0 0 0 0 0 0 0 0.38461 0.64102
8 0 0 0 0 0 0 0 0 0.38461

Table 3.15: P (C5
a,b ≥ 1)

3.16 with Table 3.14 shows that P (C5
a,b ≥ 5) = P (C5

9−a,9 = 0) = P (C5
a,9 = 5).

Table 3.17 presents Fr(j) = ∑j
k=1 P (X(r) ∈ Ik), as given in Equation (2.2), for

n = 8, m = 5, and r = 1, . . . , 5. Comparing Table 3.17 with Tables 2.1 and Table

3.16 illustrates that

P (C5
j,j+1 ≥ u) = P (X(u) ∈ I1), u = 1, . . . , 5

P (C5
0,j ≥ u) = Fu(j), u = 1, . . . , 5 j = 1, . . . , 9

♦



3.5. Further inferences 69

u
b− a 1 2 3 4 5
1 0.38462 0.12821 0.03497 0.00699 0.00078
2 0.64103 0.31469 0.11888 0.03186 0.00466
3 0.80420 0.51049 0.24942 0.08625 0.01632
4 0.90210 0.68454 0.41259 0.17949 0.04351
5 0.95649 0.82051 0.58741 0.31546 0.09790
6 0.98368 0.91375 0.75058 0.48951 0.19580
7 0.99534 0.96814 0.88112 0.68531 0.35897
8 0.99922 0.99301 0.96503 0.87179 0.61538
9 1 1 1 1 1

Table 3.16: P (C5
a,b ≥ u)

j F1(j) F2(j) F3(j) F4(j) F5(j)
1 0.38462 0.12821 0.03497 0.00699 0.00078
2 0.64103 0.31469 0.11888 0.03186 0.00466
3 0.80420 0.51049 0.24942 0.08625 0.01632
4 0.90210 0.68454 0.41259 0.17949 0.04351
5 0.95649 0.82051 0.58741 0.31546 0.09790
6 0.98368 0.91375 0.75058 0.48951 0.19580
7 0.99534 0.96814 0.88112 0.68531 0.35897
8 0.99922 0.99301 0.96503 0.87179 0.61538
9 1 1 1 1 1

Table 3.17: Fu(j) = ∑j
k=1 P (X(u) ∈ Ik)

3.5.3 Spacings between order statistics

Spacings between order statistics have also attracted interest [3, p.32], they play

a role in many research fields of statistics, for example, goodness of fit tests,

reliability analysis and survival analysis [3, 36, 65]. The NPI approach enables

consideration of spacings between future order statistics. Let Wr,s = X(s) −X(r)

for 1 ≤ r < s ≤ m. We can use the joint probabilities, given in Equation

(2.6), for the event that X(r) ∈ Ij = (xj−1, xj) and X(s) ∈ Il = (xl−1, xl), for

j ≤ l, for inferences on Wr,s, which will mostly be in the form of lower and upper

probabilities. For example, for the event Wr,s < w for some w > 0, the NPI lower

and upper probabilities are

P (Wr,s < w) =
n+1∑
j=1

n+1∑
l=j

1{xl − xj−1 < w}P (X(r) ∈ Ij, X(s) ∈ Il) (3.33)



3.5. Further inferences 70

P (Wr,s < w) =
n+1∑
j=1

n+1∑
l=j

1{xl−1 − xj < w}P (X(r) ∈ Ij, X(s) ∈ Il) (3.34)

Example 3.8. The data in Table 3.18 are birth weights in grams of 44 babies

born in one 24-hour period in hospital Brisbane, Australia [78].

1745 2121 2184 2208 2383 2576 2635 2846 2902 3034 3116 3150 3166 3208
3278 3294 3300 3334 3345 3370 3380 3402 3406 3428 3428.1 3430 3480 3500
3520 3521 3523 3542 3554 3625 3630 3690 3736 3746 3783 3837 3838 3866
3920 4162

Table 3.18: Data set of birth weights in grams

The NPI lower and upper probabilities for the event Wr,s < w, as a function

of w, for w = 0, . . . , 2000 and for m = 25 are displayed in Figures 3.19 for some

events of r and s, corresponding to the full data. Figures 3.20 shows the same

but with the first five observations removed from the data, as these values could

be considered to be outliers, thus it might be interesting to see their influence

on these inferences. The results illustrate that events involving extreme future

order statistics have relatively higher imprecision then events that do not involve

extreme future order statistics. Deleting the first five observations from the data,

as shown in Figure 3.20, has some effect on inferences especially inferences that

involves a small value of r, i.e. r = 1 and r = 7.

r=1, s=25 r=19, s=25 r=1, s=7 r=7, s=19 r=7, s=13 r=13, s=19

0.250.500.75 0.250.500.75 0.250.500.75 0.250.500.75 0.250.500.75 0.250.500.75

0

500

1000

1500

2000

w

Figure 3.19: P , P (Wr,s < w) for m = 25, n = 44
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r=1, s=25 r=19, s=25 r=1, s=7 r=7, s=19 r=7, s=13 r=13, s=19

0.250.500.75 0.250.500.75 0.250.500.75 0.250.500.75 0.250.500.75 0.250.500.75

0

500

1000

1500

2000

w

Figure 3.20: P , P (Wr,s < w) for m = 25, n = 39

♦

3.6 Concluding remarks

This chapter has presented NPI for several events of interest including order

statistics, in particular multiple comparisons. We have presented NPI methods

for a range of such inferences, and also illustrated the influence of the particular

choice of the number m of future observations. The main ideas are similar for

other inferences as long as these are explicitly expressed in terms of one or more

future order statistics.

A major research challenge is the generalization of NPI for future order statist-

ics in case of lifetime data containing right-censored observations [83], which will

enable such methods to be created for many medical and engineering applications.

The NPI approach has been presented for right-censored data, leading to predict-

ive lower and upper survival functions that bound the well-known Kaplan-Meier

estimate [31], and related results for multiple comparisons have also been presen-

ted [34], however these were explicitly in terms of only a single future observation.

The development of NPI for multiple future observations and for future order

statistics, based on right-censored data, is a challenging topic for future research.



Chapter 4

NPI for test reproducibility

4.1 Introduction

Reproducibility of statistical hypothesis tests is an issue of major importance in

applied statistics: if the test were repeated, would the same conclusion be reached

that is rejection or non-rejection of the null hypothesis? NPI provides a natural

framework for such inferences, as its explicitly predictive nature fits well with the

core problem formulation of a repeat of the test in the future. For inference on

reproducibility of statistical tests, NPI provides lower and upper reproducibility

probabilities (RP).

In this chapter, the NPI method for reproducibility of statistical tests is

presented for two basic tests using order statistics, namely a test for a specific

value for a population quantile and a precedence test for comparison of data from

two populations, as typically used for experiments involving lifetime data if one

wishes to conclude before all observations are available. Now we use the term

’population’ within those classical tests, but we do not use it as a concept in NPI

as mentioned in Section 1.3.

Testing of hypotheses is one of the main tools in statistics and crucial in many

applications. While many different tests have been developed for a wide range

of scenarios, the aspect of reproducibility of tests has long been neglected: the

question addressed is whether or not a test, if it were repeated under the same
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circumstances, would lead to the same overall conclusion with regard to rejection

or non-rejection of the null hypothesis. Recently, this topic has started to gain

attention, in particular through the publication of a ‘handbook on reproducibil-

ity’ [6] which provides a collection of papers on the issue. Nevertheless, whilst

hypothesis testing is mainly seen as a frequentist statistics procedure, the clas-

sic frequentist framework is not suited for inference on reproducibility as this is

neither an estimation nor a testing problem. The very nature of reproducibility is

predictive, namely given the result of one test one wishes to predict the outcome

of a possible future test. Coolen and Bin Himd [25] presented NPI for reprodu-

cibility of some basic tests, with more attention to this topic in the PhD thesis

of Bin Himd [16]. These publications also provide a critical discussion of earlier

methods for reproducibility presented in the literature, which is briefly considered

in Section 4.2. This chapter contributes to development of NPI for reproducibility

by considering two tests based on order statistics, namely a one sample quantile

test and a two sample precedence test. Central to these inferences are the NPI

results for future order statistics presented in Chapter 2.

This chapter is organised as follows. Section 4.2 discusses aspects of reprodu-

cibility of statistical tests and explains the NPI perspective on such inferences.

Section 4.3 presents the NPI approach to reproducibility of a basic quantile test.

Section 4.4 considers a precedence test used for comparison of two populations.

Some concluding remarks are given in Section 4.5.

4.2 An overview of test reproducibility

Statistical hypothesis testing is used in many application areas and normally

results in either non-rejection of the stated null hypothesis or its rejection in

favour of a stated alternative, at a predetermined level of significance. Whilst

this procedure is embedded in the successful long-standing tradition of statistics,

a related aspect that had received relatively little attention in the literature until

recently is the reproducibility of such tests: if the test were repeated, would it
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lead to the same overall conclusion?

The reproducibility of a statistical test is an issue that was raised by Good-

man [48] to address some common misunderstandings regarding the meaning of a

statistical p-value. Goodman claimed that the replication probability can be used

to show that the p-value may overstate the evidence against the null hypothesis.

The reproducibility probability for a test is the probability for the event that, if

the test is repeated under similar circumstances as the original experiment, the

test result, which is the rejection or not of the null hypothesis, will be the same

in the repeated test. The focus is usually on the reproducibility of tests where

the null hypothesis is rejected, because significant effects tend to introduce, for

instance, new treatments in clinical applications. However, for a complete view

we believe that also reproducibility of tests that did not reveal significant effects is

important. Reproducibility is an important aspect of the practical significance of

test outcomes and there has been growing interest in the reproducibility probabil-

ity in recent years. In a discussion of Goodman’s study, Senn [76] highlighted the

distinctive natures of reproducibility probability and the p-value. Senn [76] agreed

with Goodman [48] regarding the importance of reproducibility of test outcomes

and the reproducibility probability. However, Senn disagreed with Goodman’s

argument that p-values exaggerate the evidence against the null-hypothesis, and

emphasised differences between the p-value and the reproducibility probability.

Senn [76] also discussed issues with the reproducibility of tests in real-world

situations where a repeated test may be under different circumstances and may

involve a different team of analysts carrying out the test. Shao and Chow [77]

introduced a concept of reproducibility probability (RP) for a given clinical trial.

Shao and Chow estimated RP of a statistically significant result for the t-test, and

argued that a single clinical trial is sufficient if the result from the first clinical trial

is strongly significant. Shao and Chow [77], considered three approaches to study

reproducibility probability; a frequentist approach that depends on estimating the

power of a future test in relation to available test data, a corresponding approach

where RP is associated with a lower confidence bound for the power estimate of the
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second test, and a Bayesian approach. They stressed the use of RP in situations

where evidence in a clinical trial strongly supports a new treatment. De Martini

[40] estimated the reproducibility probability of statistically significant results

(RP) for one-sided and two-sided alternative hypotheses, and defined statistical

tests on the basis of RP estimation. De Martini showed that RP estimation can

be used for testing parametric hypotheses. Specially, it is shown that the point

estimate of RP is greater than half if and only if a null hypthesis is rejected. De

Martini considered two definitions of the RP of statistically significant results,

which are the power of the test and the lower confidence bound of the power. De

Capitani and De Martini [37] considered different RP estimators for the Wilcoxon

rank sum test. In a recent study, De Capitani and De Martini [38] studied RP

estimators for some nonparametric tests, e.g. binomial, sign and Wilcoxon signed

rank tests.

The formulation of the reproducibility problem is not an estimation or a

hypothesis testing problem, which are the main concepts that classical statistics

tends to focus on [37, 38, 40]. It is naturally predictive, so NPI fits well with the

core problem formulation of a repeat of the test in the future. The natural and

straightforward approach of formulating inference on reproducibility probability

as a predictive problem also follows the NPI framework presented in Coolen and

Himd [25] and developed in this chapter.

Methods for addressing reproducibility, proposed in the literature since then,

have mainly shown that the classical frequentist framework of statistics may not

be immediately suitable for inference on test reproducibility. Recently, many

aspects of reproducibility, including some attention to statistical methods, have

been discussed in a volume dedicated to this topic [6]. NPI provides attractive

approaches for inference on test reproducibility, as it is a predictive methodology,

which is in line with the core problem formulation of a possible repeat of the test.

The reproducibility probability (RP) for a test is the probability for the

event that, if the test is repeated based on an experiment performed in the

same way as the original experiment, the test outcome, that is either rejection
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of the null-hypothesis or not, will be the same. In practice, focus may often be

on reproducibility of tests in which the null-hypothesis is rejected, for example

because significant effects tend to lead to new treatments in medical applications.

However, also if the null-hypothesis is not rejected it is important to have a

meaningful assessment of the reproducibility of the test. Note that RP is assessed

knowing the outcome of the first, actual experiment, which consists of the actual

observations, so not only the value of a sufficient test statistic or even just the

conclusion on rejection of the null-hypothesis. This is important as the RP will

vary with different experiment outcomes, which is logical and will lead to higher

RP if the data supported the original test conclusion more strongly. A sufficient

test statistic, if of reduced dimension compared to the full data set, does not

provide suitable input for the NPI method, hence the use of the full data set is

required for the inferences considered in this thesis.

Coolen and Bin Himd [25] introduced NPI for RP, denoted by NPI-RP, by

considering some basic nonparametric tests: the sign test, Wilcoxon’s signed

rank test, and the two sample rank sum test [46]. For these inferences NPI for

Bernoulli quantities [20] and for real-valued observations [7] were used. This

did not lead to precise valued reproducibility probabilities but to NPI lower

and upper reproducibility probabilities, denoted by RP and RP , respectively.

For these tests analytic methods were presented to calculate the NPI lower and

upper probabilities for test reproducibility. To enable NPI for more complex test

scenarios, the NPI-bootstrap method can be used, as introduced and illustrated

by Bin Himd [16] for the Kolmogorov-Smirnov test.

This chapter presents NPI-RP for two classical tests which are based on order

statistics, namely a one sample quantile test and a two sample precedence test.

For these inferences, NPI for future order statistics presented in Chapter 2 is

used. We assume that the first, actual experiment led to ordered real-valued

observations x(1) < x(2) < . . . < x(n). As we consider an imaginary repeat of

this experiment, we use NPI for n = m future ordered observations, denoted

by Xf
(1) < Xf

(2) < . . . < Xf
(n), with the superscript f used to emphasize that we
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consider future order statistics.

4.3 Quantile test

The quantile test is a basic nonparametric test for the value of a population

quantile [46]. Let κp denote the 100× p-th quantile of an unspecified continuous

distribution, for 0 ≤ p ≤ 1. On the basis of a sample of observations of independ-

ent and identically distributed random quantities Xi, i = 1, . . . , n, we consider the

one-sided test of null-hypothesis H0 : κp = κ0
p versus alternative H1 : κp > κ0

p, for

a specified value κ0
p. Under H0, κ0

p is the 100× p-th quantile of the distribution

function of the Xi, so P (Xi ≤ κ0
p|H0) = p. Define the random variable K as the

number of Xi in the sample of size n that are less than or equal to κ0
p, that is

K =
n∑
i=1

1{Xi ≤ κ0
p}

A logical test rule is to reject H0 if X(r) > κ0
p, so if K ≤ r − 1, where X(r) is

the r-th ordered observation in the sample (ordered from small to large), for a

suitable value of r corresponding to a chosen significance level. For significance

level α, r is the largest integer such that

P (X(r) > κ0
p|H0) =

r−1∑
i=0

(
n

i

)
pi(1− p)n−i ≤ α (4.1)

For a given data set x1, . . . , xn, the test statistic of the one-sided quantile test

as defined above is the number of observations less than or equal to κ0
p, denoted

by

k =
n∑
i=1

1{xi ≤ κ0
p}

For the value r derived as discussed above, H0 is rejected if and only if k ≤ r− 1.

For the two sided alternativeH1 : κp 6= κ0
p, H0 is rejected if and only if k ≤ r−1

or k ≥ s, where r is the largest integer such that P (X(r) > κ0
p|H0) ≤ α/2 and s

is the smallest integer such that

P (X(s) < κ0
p|H0) =

n∑
i=s

(
n

i

)
pi(1− p)n−i ≤ α/2 (4.2)
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For large sample sizes the Normal distribution approximation to the Binomial

distribution can be used in order to determine the appropriate value of r (and s).

In such case, the rejection region with H1 : κp > κ0
p [46], is

k ≤ −0.5 + np− zα
√
np(1− p)

and for the two sided alternative, H0 is rejected if and only if

k ≤ np− zα/2

√
np(1− p)− 0.5 or k ≥ np+ zα/2

√
np(1− p) + 0.5

Based on such data and the result of the actual hypothesis test, that is whether

the null hypothesis is rejected in favour of the alternative hypothesis or not, NPI

can be applied to study the reproducibility of the test. First we consider the case

where k ≤ r − 1, so the original test leads to rejection of H0. Reproducibility of

this test result is therefore the event that, if the test were repeated, also with n

observations, then that would also lead to rejection of H0. Using the notation for

future observations introduced in Section 4.2, this will occur if Xf
(r) > κ0

p. The

NPI lower and upper reproducibility probabilities for this event, as function of

original test result k ≤ r − 1, are

RP (k) = P (Xf
(r) > κ0

p|k) =
n+1∑
j=1

1{xj−1 > κ0
p}P (Xf

(r) ∈ Ij)

RP (k) = P (Xf
(r) > κ0

p|k) =
n+1∑
j=1

1{xj > κ0
p}P (Xf

(r) ∈ Ij)

Note that the dependence of these lower and upper probabilities on the value k

is not explicit in the notation used for the terms on the right-hand side, but is

due to the number of data xj that exceed κ0
p. It is easily shown that P (Xf

(r) >

κ0
p|k) = P (Xf

(r) > κ0
p|k + 1), which leads to RP (k) = RP (k + 1) for values of k

leading to rejection of H0.

If the original test does not lead to rejection of H0, so if k ≥ r, then reprodu-

cibility of the test is the event that the null hypothesis would also not get rejected

in the future test. The NPI lower and upper reproducibility probabilities for this
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event, as functions of k ≥ r, are

RP (k) = P (Xf
(r) ≤ κ0

p|k) =
n+1∑
j=1

1{xj ≤ κ0
p}P (Xf

(r) ∈ Ij)

RP (k) = P (Xf
(r) ≤ κ0

p|k) =
n+1∑
j=1

1{xj−1 ≤ κ0
p}P (Xf

(r) ∈ Ij)

It is easily seen that RP (k) = RP (k − 1) for values of k such that k − 1 leads to

H0 not being rejected. If an actual observation in the original test is exactly equal

to the specified value κ0
p, then the NPI method provides a precise reproducibility

probability. We do not consider this further here as the test hypotheses must

always be specified without consideration of the actual test data. Hence this case

is extremely unlikely to occur, but we do briefly illustrate this case in Example

4.1.

The minimum value that can occur for the NPI lower reproducibility probabil-

ities for this one-sided quantile test, following either rejection or non-rejection of

the null hypothesis in the original test, is equal to 0.5. This follows directly from

the formulae for the NPI lower reproducibility probabilities given above, together

with the probability P (Xf
(r) < xr) = P (Xf

(r) > xr) = 0.5 as explained in Section

2.2. The NPI upper reproducibility probabilities can be equal to one. This occurs

when all observations in the original test are less than κ0
p, so k = n, in which

case the original test let to H0 not being rejected for all values of r (so for all

order statistics considered), at any level of significance; this reflects that, with no

evidence in the original data in favour of the possibility that the data values can

actually exceed κ0
p, one cannot exclude the possibility that no future observations

could exceed this value. Note that the corresponding NPI lower reproducibility

probability will be less than one, reflecting that the original data set only provides

limited information, this lower probability will increase towards one as function

of n. The upper reproducibility probability is also equal to one if all observations

in the original test are greater than κ0
p, so k = 0, for which case the reasoning is

similar to that above but of course now with H0 being rejected.

For the two sided test with H1 : κp 6= κ0
p, the original test led to rejection of H0
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if and only if k ≤ r − 1 or k ≥ s. Then the NPI lower and upper reproducibility
probabilities, given k, are

RP (k) = P (Xf
(r) > κ0

p ∪X
f
(s) < κ0

p|k) = P (Xf
(r) > κ0

p|k) + P (Xf
(s) < κ0

p|k)

RP (k) = P (Xf
(r) > κ0

p ∪X
f
(s) < κ0

p|k)

= P (Xf
(r) > κ0

p|k) + P (Xf
(s) < κ0

p|k)− P (Xf
(r) > κ0

p, X
f
(s) < κ0

p|k)

Suppose κ0
p ∈ (xi−1, xi), then we can write the NPI lower and upper reprodu-

cibility probabilities, given either k ≤ r − 1 or k ≥ s as

RP (k) = P (Xf
(r) > xi ∪Xf

(s) < xi−1|k) = P (Xf
(r) > xi|k) + P (Xf

(s) < xi−1|k)

RP (k) = P (Xf
(r) > xi−1 ∪Xf

(s) < xi|k)

= P (Xf
(r) > xi−1|k) + P (Xf

(s) < xi|k)− P (Xf
(r) ∈ Ii, X

f
(s) ∈ Ii|k)

where the value k affects the probabilities through the value of i. Note that the
events Xf

(r) > xi and Xf
(s) < xi−1 are mutually exclusive events, but the events

Xf
(r) > xi−1 and Xf

(s) < xi are not mutually exclusive, as Xf
(r) and X

f
(s) can both

be in same interval Ii = (xi−1, xi). If the original test does not lead to rejection
of H0, so if r ≤ k ≤ s − 1, then reproducibility of this test is the event that
H0 would also not get rejected in the future test, which occurs if Xf

(r) < κ0
p and

Xf
(s) > κ0

p. The NPI lower and upper reproducibility probabilities for this event,
as a function of k, are

RP (k) = P (Xf
(r) < κ0

p ∩X
f
(s) > κ0

p|k) (4.3)

=
n+1∑
j=1

n+1∑
l=j

1{xj < κ0
p, xl−1 > κ0

p}P (Xf
(r) ∈ Ij , X

f
(s) ∈ Il)

RP (k) = P (Xf
(r) < κ0

p ∩X
f
(s) > κ0

p|k) (4.4)

=
n+1∑
j=1

n+1∑
l=j

1{xj−1 < κ0
p, xl > κ0

p}P (Xf
(r) ∈ Ij , X

f
(s) ∈ Il)

which is easy to compute using the joint probability distribution (2.6) derived in

Section 2.3.
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The minimum value that can occur for the NPI lower reproducibility probabil-

ities for this two-sided quantile test, for the case of rejection of the null hypothesis

in the original test given either k = r − 1 or k = s, is greater than 0.5. This

follows directly from the formulae for the NPI lower reproducibility probabilities

given either k = r − 1 or k = s, with P (Xf
(r) > xr ∪Xf

(s) < xr−1|k = r − 1) > 0.5

and P (Xf
(r) > xs+1 ∪ Xf

(s) < xs|k = s) > 0.5. This is because of the two re-

jection regions for H0, therefore the event here is different than the one for the

one-sided test, as we now sum up the probability masses for the two events

which are Xf
(r) > xr and Xf

(s) < xr−1 both given k = r − 1, where the prob-

ability for the event Xf
(r) > xr is equal to 0.5, as explained in Section 2.2, and

P (Xf
(s) < xr−1|k = r − 1) > 0. The maximum value that can occur for the NPI

upper reproducibility probabilities for the case of rejecting H0 in the initial test

given either k = 0 or k = n, is equal to 1. This occurs if k = 0, so all observations

in the original test are greater than κ0
p, in which situation the original test led

to H0 being rejected for all values of r, and for k = n, so all observations in

the original test are less than κ0
p, in which case the original test led to H0 being

rejected for all values of s.

If H0 is not rejected in the original test, so if s−1 ≤ k ≤ r, then the minimum

value that can occur for the NPI lower reproducibility probability for the event

Xf
(r) < κ0

p ∩ X
f
(s) > κ0

p is less than 0.5. For k = r, so κ0
p ∈ (xr, xr+1), we have

RP (r) = P (Xf
(r) < xr ∩ Xf

(s) > xr+1) < P (Xf
(r) < xr) = 0.5, and for k = s − 1,

so κ0
p ∈ (xs−1, xs), we have RP (s− 1) = P (Xf

(r) < xs−1 ∩Xf
(s) > xs) < 0.5. The

maximum value that can occur for the NPI reproducibility upper probabilities

for the case where the original test led to not reject the null hypothesis, is less

than 1. This occurs when κ0
p is neither close to xr nor to xs.

Actually, there is an interesting issue about two-sided tests in such scenarios,

that requires some further thought. One could argue that one should only consider

reproducibility for one-sided tests. This is because, in two-sided tests if the original

test leads to rejection of the null hypothesis due to a relatively large value of the

test statistic, one may not consider the test result to be reproduced if a future
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test leads to rejection due to a relatively small value of the test statistic, so in the

other tail of the statistic’s distribution under H0! On the basis of the combined

evidence of the two tests in such a case, one would probably want to investigate

the whole setting further and not regard the second test as confirming the results

of the first test.

NPI-RP for the one-sided and two-sided quantile tests is illustrated in the

following example.

Example 4.1. Suppose that an original quantile test has sample size n = 15 and

we are interested in testing the null hypothesis that the third quartile, so the 75%

quantile, of the underlying distribution is equal to a specified value κ0
0.75, against

the alternative hypothesis that this third quartile is greater than κ0
0.75, tested

at significance level α = 0.05. Using the Binomial distribution for the classical

quantile test, this leads to the rule that H0 is rejected if x(8) > κ0
0.75 and H0 is

not rejected if x(8) < κ0
0.75.

Table 4.1 presents the NPI lower and upper reproducibility probabilities for all

values of k, which is the number of observations in the original test which are less

than κ0
0.75. If k ≤ 7 then the original test leads to H0 being rejected while it is not

rejected for k ≥ 8. Hence, the NPI lower and upper reproducibility probabilities

are for the events Xf
(8) > κ0

0.75 in case of rejecting H0 in the original test and

Xf
(8) < κ0

0.75 in case of not rejecting H0 in the original test. This table illustrates

the logical fact that the worst reproducibility is achieved for k at the threshold

values 7 and 8, with increasing RP values when moving away from these values,

leading to maximum NPI-RP values for k = 0 and k = 15. Because for this test

the threshold between rejecting and not rejecting H0 is between k = 7 and k = 8

out of n = 15 observations, the NPI-RP values are symmetric, that is the same

for k = j and k = 15− j, for j = 0, 1, . . . , 7, in Table 4.1.

Table 4.2 illustrates the case if the third quartile by coincidence is equal to one

of the data observations i.e. x(j) = κ0
0.75, which is slightly different as now the NPI-

RP approach leads to precise probabilities instead of lower and upper probabilities.
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The results in Table 4.2 show that the worst NPI-RP for the case of rejecting H0 in

the original test is equal to 0.5. This occurs for the NPI reproducibility probability

at the threshold value k = 7, so κ0
0.75 = x(8), i.e. RP (7) = P (X(8) > x8) = 0.5.

Whereas for the case of non-rejection of H0 in the original test, the minimum

NPI-RP value is greater than a half, i.e. RP (8) = P (X(8) < x9) > 0.5. The

maximum value that can occur for NPI-RP is not equal to one, in both cases

RP (0) = P (X(8) > x1) < 1 and RP (14) = P (X(8) < x15) < 1. This is because

the value of κ0
0.75 is equal to either the minimum or maximum observation, so

there is one interval left beyond that observation. Note that here k can only take

values from 0 to 14 as again the value of κ0
0.75 is equal to one of the data values

xj, for j = 1, . . . , 15, so if κ0
0.75 = x15 then k = 14; there are 14 observations less

than κ0
0.75 = x15.

k RP (k) RP (k) k RP (k) RP (k) k RP (k) RP (k)
0 0.9989 1 6 0.6424 0.7689 12 0.9359 0.9749
1 0.9929 0.9989 7 0.5 0.6424 13 0.9749 0.9929
2 0.9749 0.9929 8 0.5 0.6424 14 0.9929 0.9989
3 0.9359 0.9749 9 0.6424 0.7689 15 0.9989 1
4 0.8682 0.9359 10 0.7689 0.8682
5 0.7689 0.8682 11 0.8682 0.9359

Table 4.1: NPI-RP for third quartile, n = 15 and α = 0.05.

k RP k RP k RP
0 0.9989 6 0.6424 12 0.9749
1 0.9929 7 0.5 13 0.9929
2 0.9749 8 0.6424 14 0.9989
3 0.9359 9 0.7689
4 0.8682 10 0.8682
5 0.7689 11 0.9359

Table 4.2: NPI-RP for third quartile, n = 15 and α = 0.05.

Table 4.3 presents NPI-RP values for the quantile test considering the median,

so the 50% quantile, again with sample size n = 15 and testing the null hypothesis

that the median is equal to a specified value κ0
0.5 against the one-sided hypothesis
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that it is greater than κ0
0.5, at level of significance α = 0.05. This leads to the test

rule that H0 is rejected if the number k of observations that are smaller than κ0
0.5

is less than or equal to 3, and H0 is not rejected if k ≥ 4. Note that throughout

this chapter, precise values 0.5 and 1 are presented without additional decimals,

so the values 1.0000 are actually less than 1 but rounded upwards. Of course,

these NPI-RP values are not symmetric, and reproducibility becomes very likely

for initial test results with a substantial number of observations less than κ0
0.5. But

rejection of H0, which occurs for k ≤ 3 and is often of main practical relevance,

has relatively low NPI-RP values.

k RP (k) RP (k) k RP (k) RP (k) k RP (k) RP (k)
0 0.9502 1 6 0.7865 0.8775 12 0.9986 0.9997
1 0.8352 0.9502 7 0.8775 0.9359 13 0.9997 0.9999
2 0.6743 0.8352 8 0.9359 0.9698 14 0.9999 1.0000
3 0.5 0.6743 9 0.9698 0.9873 15 1.0000 1
4 0.5 0.6592 10 0.9873 0.9954
5 0.6592 0.7865 11 0.9954 0.9986

Table 4.3: NPI-RP for median, n = 15 and α = 0.05.

Tables 4.4 and 4.5 present the NPI-RP results for the same one-sided quantile

test on the third quartile for n = 30, at significance levels α = 0.05 and α = 0.01,

respectively. Using the Normal distribution approximation, the test rule for

α = 0.05 is to reject H0 that this third quartile is equal to κ0
0.75 in favour of the

alternative hypothesis that it is greater than κ0
0.75 if k ≤ 18 and not to reject it if

k ≥ 19, where k is again the number of observations less than κ0
0.75. For α = 0.01,

H0 is rejected if k ≤ 16 and not rejected if k ≥ 17. The change in level of

significance α leads obviously to change of the rejection threshold, with H0 being

rejected for a smaller range of values k in case of smaller value of α. Comparison

of these tables with Table 4.1 shows that the larger sample size tends to lead

to slightly less imprecision, that is the difference between corresponding upper

and lower probabilities, this is e.g. shown by considering the upper probabilities

RP (k) for the values of k next to the rejection thresholds, so corresponding to

RP (k) = 0.5.
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k RP (k) RP (k) k RP (k) RP (k) k RP (k) RP (k)
0 1.0000 1 11 0.9651 0.9811 22 0.7941 0.8666
1 1.0000 1.0000 12 0.9398 0.9651 23 0.8666 0.9210
2 1.0000 1.0000 13 0.9023 0.9398 24 0.9210 0.9580
3 1.0000 1.0000 14 0.8503 0.9023 25 0.9580 0.9805
4 0.9999 1.0000 15 0.7826 0.8503 26 0.9805 0.9923
5 0.9998 0.9999 16 0.6995 0.7826 27 0.9923 0.9976
6 0.9993 0.9998 17 0.6038 0.6995 28 0.9976 0.9995
7 0.9981 0.9993 18 0.5 0.6038 29 0.9995 0.9999
8 0.9956 0.9981 19 0.5 0.6054 30 0.9999 1
9 0.9905 0.9956 20 0.6054 0.7056
10 0.9811 0.9905 21 0.7056 0.7941

Table 4.4: NPI-RP for third quartile, n = 15 and α = 0.05.

k RP (k) RP (k) k RP (k) RP (k) k RP (k) RP (k)
0 1.0000 1 11 0.9023 0.9406 22 0.9101 0.9483
1 1.0000 1.0000 12 0.8493 0.9023 23 0.9483 0.9731
2 1.0000 1.0000 13 0.7805 0.8493 24 0.9731 0.9875
3 0.9999 1.0000 14 0.6971 0.7805 25 0.9875 0.9949
4 0.9995 0.9999 15 0.6019 0.6971 26 0.9949 0.9983
5 0.9986 0.9995 16 0.5 0.6019 27 0.9983 0.9995
6 0.9964 0.9986 17 0.5 0.6026 28 0.9995 0.9999
7 0.9916 0.9964 18 0.6026 0.6995 29 0.9999 1.0000
8 0.9824 0.9916 19 0.6995 0.7852 30 1.0000 1
9 0.9664 0.9824 20 0.7852 0.8559
10 0.9406 0.9664 21 0.8559 0.9101

Table 4.5: NPI-RP for third quartile, n = 30 and α = 0.01.

Tables 4.6 and 4.7 illustrate the NPI lower and upper reproducibility prob-

abilities for the one sample quantile test considering the median, with two-sided

alternative hypothesis H1 : κ0.5 6= κ0
0.5, for n = 20 at significance levels α = 0.05

and α = 0.01, respectively. For Table 4.6, with α = 0.05, the null hypothesis is

rejected in the original test if k ≤ 5 or k ≥ 15 while it is not rejected if 6 ≤ k ≤ 14.

Hence, the NPI lower and upper reproducibility probabilities are for the events

Xf
(6) > κ0

0.5 ∪X
f
(15) < κ0

0.5, given the value of k with either k ≤ 5 or k ≥ 15 in case

of rejection of H0 in the original test, and Xf
(6) < κ0

0.5, X
f
(15) > κ0

0.5, given the value

of k with 6 ≤ k ≤ 14 in case of non-rejection of H0 in the original test. The results
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in Table 4.6 show that the minimum value for RP (k), for k leading to rejection of

H0, namely 0.5006 at both k = 5 and k = 15, is now indeed greater than 0.5, due

to the two rejection areas for H0, as discussed before. Moving away from these

threshold values between rejecting and not rejecting H0 leads to increasing values

of NPI-RP, with the maximum value of the upper reproducibility probabilities

being equal to one, which is achieved for k = 0 and k = 20. The minimum value

for RP (k), in case H0 was not rejected in the original test, which is 0.4948 for

both k = 6 and k = 14, is less than 0.5, as discussed before. Tables 4.6 and 4.7

illustrate that, when we consider the two-sided test for the median, the NPI lower

and upper reproducibility probabilities are symmetric about k = n/2 = 10. The

maximum NPI lower and upper RP values, for k which leads to non-rejection

of H0, are 0.8093 and 0.8947 in Table 4.6, and 0.9593 and 0.9813 in Table 4.7,

respectively, which are both achieved at k = 10.

For the situation in Table 4.7, with α = 0.01, the null hypothesis is rejected

in the original test if k ≤ 3 or k ≥ 17 while it is not rejected for 4 ≤ k ≤ 16. So

with small α the null hypothesis not rejected for a large range of values k, which

is in line with the same feature as discussed for one-sided tests earlier. Comparing

this table with Table 4.6, the NPI lower and upper reproducibility probabilities

are smaller for values of k for which H0 is rejected and larger for values of k for

which H0 is not rejected. This is logical as the change in the level of significance

obviously leads to change of the rejection threshold.

k RP (k) RP (k) k RP (k) RP (k) k RP (k) RP (k)
0 0.9899 1 7 0.6221 0.7445 14 0.4948 0.6325
1 0.9543 0.9899 8 0.7230 0.8274 15 0.5006 0.6437
2 0.8824 0.9543 9 0.7873 0.8778 16 0.6420 0.7753
3 0.7747 0.8826 10 0.8093 0.8947 17 0.7747 0.8826
4 0.6420 0.7753 11 0.7873 0.8778 18 0.8824 0.9543
5 0.5006 0.6437 12 0.7230 0.8274 19 0.9543 0.9899
6 0.4948 0.6325 13 0.6221 0.7445 20 0.9899 1

Table 4.6: NPI-RP for median, n = 20 and α = 0.05.
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k RP (k) RP (k) k RP (k) RP (k) k RP (k) RP (k)
0 0.9470 1 7 0.8618 0.9219 14 0.7742 0.8632
1 0.8292 0.9470 8 0.9185 0.9573 15 0.6525 0.7747
2 0.6693 0.8292 9 0.9495 0.9757 16 0.5000 0.6526
3 0.5000 0.6693 10 0.9593 0.9813 17 0.5000 0.6693
4 0.5000 0.6526 11 0.9495 0.9757 18 0.6693 0.8292
5 0.6525 0.7747 12 0.9185 0.9573 19 0.8292 0.9470
6 0.7742 0.8632 13 0.8618 0.9219 20 0.9470 1

Table 4.7: NPI-RP for median, n = 20 and α = 0.01.

Table 4.8 presents NPI-values for the quantile test considering the third

quantile, with sample size of 20 and testing the null hypothesis κ0.75 = κ0
0.75

against the two-sided hypothesis that κ0.75 6= κ0
0.75 at level of significance α = 0.05.

The original test led to rejection of H0 if k ≤ 10 or k ≥ 19 and non-rejection

if 11 ≤ k ≤ 18. Thus the NPI lower and upper reproducibility probabilities are

for the events Xf
(11) > κ0

0.75 ∪X
f
(19) < κ0

0.75 in case of rejection H0 in the original

test and Xf
(11) < κ0

0.75, X
f
(19) > κ0

0.75 in case of not rejecting H0 in the original test.

The minimum value for RP (k), for k leading to rejection of H0, is equal to 0.5006

at k = 10, and 0.5002 at k = 19. The maximum RP (k) is equal to one, achieved

for both k = 0 and k = 20. The smallest values for RP (k) in case H0 was not

rejected in the original test, are 0.4958 at k = 11 and 0.4934 at k = 18, while the

maximum RP (k) for this case is equal to 0.9063, which occurs at k = 15.

k RP (k) RP (k) k RP (k) RP (k) k RP (k) RP (k)
0 0.9999 1 7 0.8297 0.8999 14 0.7878 0.8828
1 0.9994 0.9999 8 0.7364 0.8299 15 0.8139 0.9063
2 0.9971 0.9994 9 0.6240 0.7370 16 0.7814 0.8887
3 0.9906 0.9971 10 0.5006 0.6255 17 0.6774 0.8223
4 0.9758 0.9907 11 0.4958 0.6227 18 0.4934 0.6958
5 0.9473 0.9758 12 0.6146 0.7343 19 0.5002 0.7578
6 0.8999 0.9473 13 0.7167 0.8236 20 0.7564 1

Table 4.8: NPI-RP for third quartile, n = 20 and α = 0.05.
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4.4 Precedence test

As a second example of NPI for reproducibility of a statistical test based on order

statistics, we consider a basic nonparametric precedence test. Such a test, first

proposed by Nelson [73], is typically used for comparison of two groups of lifetime

data, where one wishes to reach a conclusion before all units on test have failed.

The test is based on the order of the observed failure times for the two groups,

and typically leads to, possibly many, right-censored observations at the time

when the test is ended. Balakrishnan and Ng [10] present a detailed introduction

and overview of precedence testing, including more sophisticated tests than the

basic one considered in this chapter. NPI for precedence testing was presented by

Coolen-Schrijner, et al. [35], without consideration of reproducibility. It should

be emphasized that we consider here the NPI approach for reproducibility of a

classical precedence test, so not of the NPI approach to precedence testing [35].

We consider the classical scenario with two independent samples. Let X(1) <

X(2) < . . . < X(nx) be random quantities representing the ordered real-valued ob-

servations in a sample of size nx, drawn randomly from a continuously distributed

population, which we refer to as the X population, with a probability distribution

depending on location parameter λx. Similarly, let Y(1) < Y(2) < . . . < Y(ny) be

random quantities representing the ordered real-valued observations in a sample

of size ny, drawn randomly from another continuously distributed population, the

Y population, with a probability distribution which is identical to that of the X

population except for its location parameter λy. We consider the hypothesis test

for the locations of these two populations is H0 : λx = λy versus H1 : λx < λy,

which is to be interpreted such that, underH1, observations from the Y population

tend to be larger than observations from the X population.

The precedence test considered in this section, for this specific hypothesis test

scenario, is as follows. Given nx and ny, one specifies the value of r, such that the

test is ended at, or before, the r-th observation of the Y population. For specific

level of signifance α, one determines the value k (which therefore is a function of

α and of r) such that H0 is rejected if and only if X(k) < Y(r). The critical value
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for k is the smallest integer which satisfies

P (X(k) < Y(r)|H0) =
(
nx + ny
nx

)−1 r−1∑
j=0

(
j + k − 1

j

)(
ny − j + nx − k

ny − j

)
≤ α

Note that the test is typically ended at the time T = min(X(k), Y(r)), with the

conclusion that H0 is rejected in favour of the one-sided alternative hypothesis

H1, specified above, if T = X(k), and H0 is not rejected if T = Y(r). It is of

interest to emphasize this censoring; continuing with the original test would make

no difference at all to the test conclusion, but further observations would make a

difference for the NPI reproducibility results, as will be discussed later.

The NPI approach for reproducibility of this two-sample precedence test con-

siders again the same test scenario applied to future order statistics, and derives

the NPI lower and upper probabilities for the event that the same overall test

conclusion will be derived, given the data from the original test. This involves

the NPI approach for inference on the r-th future order statistic Y f
(r) out of ny

future observations based on the data from the Y population, and similarly for

the k-th future order statistic Xf
(k) out of the nx future observations based on the

data from the X population, where the values of r and k are the same as used

for the original test (as we assume also the same significance level for the future

test). Note, however, that there is a complication: for full specification of the

NPI probabilities for these future order statistics, we require the full data from

the original test to be available. But, as mentioned, the data resulting from the

original precedence test typically have right-censored observations for at least one,

but most likely both populations, and these are all just known to exceed the time

T at which the original test had ended.

Before we proceed, we discuss this situation in more detail as it is important for

the general idea of studying reproducibility of tests. We should emphasize that we

have not come across this important issue before in the literature. There are two

perspectives on the study of reproducibility of such precedence tests. First, one

can study the test outcome assuming that, actually, complete data were available,

so all nx and ny observations of the X and Y populations, respectively, in the
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original test are assumed to be available. Secondly, one can consider inference for

the realistic scenario with the actual data from the original test, so including right-

censored observations at time T . The first scenario is the most straightforward

for the development of NPI-RP, and we start with this scenario. Then we explain

how this first scenario, without additional assumptions, leads to NPI-RP for the

second scenario.

The starting point for NPI-RP for the precedence test is to apply NPI for

nx future observations, based on the nx original test observations from the X

population, which are assumed to be fully available, and similarly for ny future

observations based on the ny observations from the Y population. Using the

results presented in Chapter 2, with notation adapted to indicate the specific

populations, the following NPI lower and upper reproducibility probabilities are

derived. First, if H0 is rejected in the original test, so x(k) < y(r), then

RP = P (Xf
(k) < Y f

(r)) =
nx+1∑
jx=1

ny+1∑
jy=1

1{x(jx) < y(jy−1)}P (Xf
(k) ∈ I

x
jx)P (Y f

(r) ∈ I
y
jy)

(4.5)

RP = P (Xf
(k) < Y f

(r)) =
nx+1∑
jx=1

ny+1∑
jy=1

1{x(jx−1) < y(jy)}P (Xf
(k) ∈ I

x
jx)P (Y f

(r) ∈ I
y
jy)

(4.6)

Note that these RP and RP are conditional on the orderings of the full data from

the original test, which for simplicity we do not include in the notation. If H0 is

not rejected in the original test, so x(k) > y(r), then

RP = P (Xf
(k) > Y f

(r)) =
nx+1∑
jx=1

ny+1∑
jy=1

1{x(jx−1) > y(jy)}P (Xf
(k) ∈ I

x
jx)P (Y f

(r) ∈ I
y
jy)

(4.7)

RP = P (Xf
(k) > Y f

(r)) =
nx+1∑
jx=1

ny+1∑
jy=1

1{x(jx) > y(jy−1)}P (Xf
(k) ∈ I

x
jx)P (Y f

(r) ∈ I
y
jy)

(4.8)

Both in case of rejecting and not rejecting H0, the maximum possible value of
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the NPI upper reproducibility probability is 1. If H0 was rejected this occurs if

x(nx) < y(1), while if H0 was not rejected this occurs if x(1) > y(ny), so both cases

lead to maximum reproducibility if the original test data were entirely separated

in the sense that either all observations from the X population occurred before

all observations from the Y population, or the other way around.

In both cases of rejecting or not rejecting H0 in the original test, the minimum

value of the NPI lower reproducibility probability is 0.25. If H0 was rejected,

this occurs if y(r−1) < x(1) and x(k) < y(r) and y(ny) < x(k+1). If H0 was not

rejected, this occurs if x(k−1) < y(1) and y(r) < x(k) and x(nx) < y(r+1). Both

these smallest possible values for RP result from data orderings that, whilst

leading to a test conclusion, are least supportive for it, together with the fact

that P (Xf
(k) < x(k)) = P (Xf

(k) > x(k)) = 0.5, and similar for Y f
(r), as discussed in

Section 2.2.

The effect of local changes to the combined ordering of the data of the two
populations in the original test is important. Suppose that, for given data for the
X and Y populations for the original test, observations y(u) and x(v) are such that
y(u) < x(v) and in the combined ordering of all nx + ny data they are consecutive.
Now suppose that we change these observations, and denote them by ỹ(u) and
x̃(v), respectively, such that they keep their order in the data from their own
population but between them change their order, so x̃(v) < ỹ(u). From Equations
(4.5) and (4.6), the difference between the NPI lower and upper probabilities for
the event Xf

(k) < Y f
(r) given y(u) < x(v) and the NPI lower and upper probabilities

for the same event given x̃(v) < ỹ(u), are

P (Xf
(k) < Y f

(r)|y(u) < x(v))− P (Xf
(k) < Y f

(r)|x̃(v) < ỹ(u))

=
nx+1∑
jx 6=v

ny+1∑
jy 6=u+1

1{xjx < yjy−1}P (Xf
(k) ∈ I

x
jx)P (Y f

(r) ∈ I
y
jy

)

−
[ nx+1∑
jx 6=v

ny+1∑
jy 6=u+1

1{xjx < yjy−1}P (Xf
(k) ∈ I

x
jx)P (Y f

(r) ∈ I
y
jy

)

+P (Xf
(k) ∈ I

x
vx

)P (Y f
(r) ∈ I

y
uy+1)

]
= −P (Xf

(k) ∈ I
x
vx

)P (Y f
(r) ∈ I

y
uy+1)
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P (Xf
(k) < Y f

(r)|y(u) < x(v))− P (Xf
(k) < Y f

(r)|x̃(v) < ỹ(u))

=
nx+1∑
jx 6=v+1

ny+1∑
jy 6=u

1{xjx−1 < yjy}P (Xf
(k) ∈ I

x
jx)P (Y f

(r) ∈ I
y
jy)

−
[ nx+1∑
jx 6=v

ny+1∑
jy 6=u+1

1{xjx < yjy−1}P (Xf
(k) ∈ I

x
jx)P (Y f

(r) ∈ I
y
jy)

+P (Xf
(k) ∈ I

x
vx+1)P (Y f

(r) ∈ I
y
uy

)
]

= −P (Xf
(k) ∈ I

x
vx+1)P (Y f

(r) ∈ I
y
uy

)

Then this local change to the combined ordering of the data leads to increase of

both the NPI lower and upper probabilities for the event Xf
(k) < Y f

(r), that is

P (Xf
(k) < Y f

(r)|y(u) < x(v)) < P (Xf
(k) < Y f

(r)|x̃(v) < ỹ(u)) (4.9)

P (Xf
(k) < Y f

(r)|y(u) < x(v)) < P (Xf
(k) < Y f

(r)|x̃(v) < ỹ(u)) (4.10)

This implies that the NPI-RP inferences for the precedence test depend monoton-

ically on the combined ordering of the original test data, which is an important

property to derive such inference for actual tests including right-censored obser-

vations, as discussed after Example 4.2.

Example 4.2. Nelson [74] presents data consisting of six groups of times (in

minutes) to breakdown of an insulating fluid subjected to different levels of voltage.

To illustrate NPI-RP for the basic precedence test as discussed above, we assume

that sample 3 provides data from the X population and sample 6 from the Y

population. These times are presented in Table 4.9. Both samples are of size

10, and we assume that the precedence testing scenario discussed in this section

is followed, so we assume that the population distributions may only differ in

location parameters, with H0 : λx = λy tested versus H1 : λx < λy. We assume

that r = 6, so the test is set up to end at the observation of the sixth failure time

for the Y population. We discuss both significance levels α = 0.05 and α = 0.1.

The missing values in Table 4.9 are only known to exceed 3.83.
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X sample 0.94 0.64 0.82 0.93 1.08 1.99 2.06 2.15 2.57 *

Y sample 1.34 1.49 1.56 2.10 2.12 3.83 * * * *

Table 4.9: Times to insulating fluid breakdown.

For significance level α = 0.05, the critical value is k = 10, while for α = 0.1

this is k = 9. Therefore, the provided data will lead, in this precedence test,

to rejection of H0 at 10% level of significance but not to rejection of H0 at 5%

level of significance. For both scenarios, the NPI lower and upper reproducibility

probabilities are presented in Table 4.10, for all of the possible orderings of the

right-censored observations. Note that in total 15 observations are available, with

1 value of the X sample and 4 values of the Y sample only known to exceed 3.83.

In Table 4.10, we give the rank, from the combined ordering of all 20 observations,

of the right-censored observation x(10), for example when this is 17 it implies that

y(7) < x(10) < y(8). Table 4.10 presents both the results for α = 0.05, in which case

H0 was not rejected in the original test, hence reproducibility is achieved if H0 is

also not rejected in the future test, and the results for α = 0.01, in which case

H0 was rejected so reproducibility also implies rejection of H0 in the future test.

Note that for α = 0.1 we still assume that y(6) = 3.83 was actually observed, even

though the test could have been concluded at time x(9) = 2.57 because x(9) < y(6)

was conclusive for the test in this case. Table 4.10 shows that the NPI-RP values

are increasing in the combined rank of x(10) for α = 0.05 and decreasing for

α = 0.1, which illustrates the monotonicity of these inferences with regard to

changes in ranks of the data as discussed above, as increasing combined rank of

x(10) provides more evidence in support of H0, hence in favour of reproducing the

original test result for α = 0.05 but against doing so for α = 0.1. We notice that

the actual rank that x(10) would have among the 20 combined observations has

substantial influence on the NPI-RP values.

♦
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α = 0.05 α = 0.1

rank of x(10) RP RP RP RP

16 0.3871 0.7814 0.3885 0.7079

17 0.4746 0.8209 0.3490 0.6665

18 0.5496 0.8484 0.3215 0.6309

19 0.6019 0.8627 0.3072 0.6062

20 0.6290 0.8669 0.3029 0.5934

Table 4.10: NPI-RP for precedence test on insulating fluid break-
down data.

Thus far, we have studied reproducibility of the basic precedence test from

the perspective of having the complete data available. In Example 4.2 this was

illustrated by considering all possible orderings for the right-censored data in

the two samples. However, a more realistic perspective is to only use the actual

test outcome, without any assumptions on the ordering of the right-censored

observations. Using lower and upper probabilities, this can be easily achieved by

defining RP as the minimum of all NPI lower probabilities for reproducibility over

all possible orderings for the right-censored observations, and similarly by defining

RP as the maximum of all NPI upper probabilities for reproducibility over all

possible orderings for the right-censored observations. Hence, in Example 4.2,

this leads to RP = 0.3871 and RP = 0.8669 for α = 0.05, and RP = 0.3029 and

RP = 0.7079 for α = 0.1. Of course, this leads to increased imprecision compared

to every possible specific ordering of the right-censored observations, but it is

convenient as no further assumptions about those right-censored observations

are required. Furthermore, to derive the NPI-RP values for this perspective one

does not need to calculate the corresponding values for each possible combined

ordering of right-censored observations, due to the above discussed monotonicity

of these inferences and given in Equations (4.9) and (4.10). Hence, we always

know for which specific ordering of right-censored observations these NPI-RP

values are obtained, that is either with all right-censored observations from the
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X sample occurring before all right-censored observations from the Y sample, or

the other way around, depending on the actual outcome of the original test. This

perspective is illustrated in Example 4.3.

Example 4.3. We consider again NPI-RP for the precedence test as presented in

this section, so with one-sided alternative hypothesis H1 : λx < λy. Suppose that

nx = 10 units of the X population and ny = 8 units of the Y population are put

on a life test, where one wants at most two Y units to actually fail, so the value

r = 2 is chosen. Testing at significance level α = 0.05, the critical value is k = 7,

so H0 is rejected if x(7) < y(2) while H0 is not rejected if y(2) < x(7). Note that,

with the test ending at time min(x(7), y(2)), there are at least 3 right-censored

X observations and at least 6 right-censored Y observations; this leads to large

imprecision in the NPI-RP values.

Table 4.11 presents the NPI lower and upper reproducibility probabilities for

this test, for all possible data in the original test, which are indicated through the

rankings of all observations until the test is ended, in the combined ranking of the

X and Y samples. As indicated, the columns to the left relate to the cases where

H0 is not rejected while the columns to the right relate to the cases where H0

is rejected. All these NPI-RP values are calculated using the monotonicity with

regard to the combined ranks of the right-censored observations, as explained

above. These results illustrate the earlier discussed maximum value 1 for RP

and minimum value 0.25 for RP . It is particularly noticeable that the NPI lower

reproducibility probabilities for this test tend to be small, which is not really

surprising due to the large number of right-censored observations resulting from

the choice r = 2.

Table 4.12 presents NPI-RP for the precedence test with alternative hypothesis

H1 : λx < λy, considering r = 5, with nx = 10, ny = 8 and testing at significance

level α = 0.05, the critical value is k = 10. So H0 is rejected in the original test if

all observations in X are observed before y(5), i.e. x(10) < y(5), whereas H0 is not

rejected if y(5) < x(10). In case of not rejecting H0 in the original test, there are
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H0 not rejected H0 rejected
X ranks Y ranks RP RP X ranks Y ranks RP RP
- 1,2 0.4992 1 1-7 - 0.3833 1
1 2,3 0.4951 0.9988 1-6,8 7 0.3367 0.8833
2 1,3 0.4970 0.9992 1-5,7,8 6 0.2993 0.8425
1,2 3,4 0.4826 0.9924 1-4,6-8 5 0.2739 0.8098
1,3 2,4 0.4884 0.9946 1-3,5-8 4 0.2593 0.7875
2,3 1,4 0.4903 0.9951 1,2,4-8 3 0.2526 0.7748
1-3 4,5 0.4553 0.9733 1,3-8 2 0.2504 0.7690
1-4 5,6 0.4075 0.9314 2-8 1 0.25 0.7670
1-5 6,7 0.3375 0.8582
1-6 7,8 0.25 0.7509
2-7 1,8 0.3663 0.8375

Table 4.11: NPI-RP for precedence test with nx = 10, ny = 8,
r = 2, k = 7 and α = 0.05.

at most 3 right-censored Y observations and at least 1 right-censored X observa-

tion, while if the original test led to rejection of H0, there are no right-censored

observations in the X sample and at least 3 right-censored observations in Y

sample. So in the case of rejecting H0, we have complete data available from

the X sample, but at least 1 right-censored observation in Y sample, and it is

straightforward to derive the NPI lower and upper reproducibility probabilities.

However, if the original test did not lead to rejection of H0, both samples have

right-censored observations, so the lower and upper reproducibility probabilities

are the minimum and the maximum over all lower and upper reproducibility prob-

abilities respectively, of all possible orderings of the right-censored observations.

Comparing Table 4.11 and Table 4.12 illustrates that increasing the value of r,

which leads to a decrease of the numbers of right-censored observations, leads to

an increase of the values of the NPI lower and upper reproducibility probabilities.
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H0 not rejected H0 rejected
[P , P ](Xf

(10) > Y f
(5)) [P , P ](Xf

(10) < Y f
(5))

X ranks Y ranks RP RP X ranks Y ranks RP RP
- 1,5 0.5000 1 1-10 - 0.4936 1
1 2-6 0.5000 1.0000 1-9,11 10 0.4813 0.9936
2 1,3-6 0.5000 1.0000 1-8,10,11 9 0.4752 0.9902
1,2 3-7 0.4998 0.9999 1-7,9-11 8 0.4723 0.9885
1,3 2,4-7 0.4998 1.0000 1-6,8-11 7 0.4710 0.9877
2,3 1,4-7 0.4998 0.9999 1-5,7-11 6 0.4705 0.9874
1-3 4-8 0.4992 0.9996 1-4,6-11 5 0.4704 0.9872
1-4 5-9 0.4973 0.9985 1-3,5-11 4 0.4703 0.9872
1-5 6-10 0.4919 0.9947 1,2,4-11 3 0.4703 0.9872
1-6 7-11 0.4783 0.9840 1,3-11 2 0.4703 0.9872
2-7 1,8-11 0.4048 0.8816 2-11 1 0.4703 0.9872
1-9 10-14 0.25 0.7662 5-14 1-4 0.25 0.6904

Table 4.12: NPI-RP for precedence test with nx = 10, ny = 8,
r = 5, k = 10 and α = 0.05.

♦

4.5 Concluding remarks

The NPI approach to reproducibility of tests provides many research challenges.

It can be developed for many statistical tests, while for some data types, e.g.

multivariate data, NPI requires to be developed further. The test scenarios studied

for particular tests may require careful attention, as illustrated by the different

perspectives discussed for the precedence test in Section 4.4. As mentioned, the

precedence test scenarios discussed in Section 4.4 are very basic. Balakrishnan

and Ng [10] present a detailed introduction and overview of precedence testing,

including more sophisticated tests than the basic one considered in this chapter.

In practice, it is important for such tests, and also in general, to also consider the

power of the test; thus far this has not yet been considered in the NPI approach

for reproducibility of testing. With further development of this approach, we

are aiming at guidance on selection of test methods which, for specified level

of significance, have good power and good reproducibility properties. This may
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often require more test data than needed following traditional guidance, but the

assurance of good reproducibility is important for many applications and may

lead to savings in the longer run by reducing processes, such as development of

new medication, to continue on the basis of test results which may later turn out

not to be reproduced in repeated tests under similar circumstances.



Chapter 5

Robustness of NPI

5.1 Introduction

As every statistical inference has underlying assumptions about models and spe-

cific methods used, one important field in statistics is the study of robustness of

inferences. Statistical inferences are based on the data observations as well as the

underlying assumptions, e.g. about randomness, independence and distributional

models [62]. Since the middle of the twentieth century, many theoretical efforts

have been dedicated to develop statistical procedures that are resistant with re-

gard to outliers and robust with regard to small deviations from the assumed

parametric model [15]. Huber [60] is a significant contributor to the development

of robust statistical procedures. He provided in his graduate level textbook the

basic robustness theory [60]. Further, Hampel [50, 51, 52] made significant con-

tributions to the theory of robust estimation. Hampel, et al. [53] discussed some

properties of robust estimators, test statistics and linear models. In these devel-

opments the primary focus has been on estimating location, scale, and regression

parameters [63]. It is well known that some classical procedures are not robust to

slight contamination of the strict model assumptions [15]. From this perspective

robustness against small deviations from the assumed model and existence of

outliers or contamination, have all been identified as principal issues [63].

In classical statistics, there are several tools used in robust statistics to describe

99
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robustness: the influence function, the sensitivity curve and the breakdown point

(see Section 5.2 for a brief discussion of such tools). These three measures of

robustness are not the only existing ones but they are commonly used methods.

In this chapter, robustness of NPI is presented. This involves adopting some of

the concepts of classical robust statistics within the NPI setting, namely sensitivity

curve and breakdown point. These concepts fit well with the NPI setting as they

depend on the actual data at hand rather than on a hypothetical underlying

assumption. Data may be subject to error occurring during the measurement

process, so a reported value can differ from the true one [41]. Data contamination

refers to errors in data which happen due to human error in collecting and

recording the data, which introduces unintended changes to the original data.

The concept of robust inference is usually aimed at development of inference

methods which are not too sensitive to data errors or to deviations from the

model assumptions. In this chapter, we use it in a slightly narrower sense, as

for our aims robustness indicates insensitivity to a small change in the data and

existence of outliers.

Outliers are generally described as observations that appear to be discordant

with the rest of the data and are not appropriate for the assumed model [11].

One of the important reasons for detecting the presence of outliers is that they

can have a crucial impact on parameter estimates of the model, which may cause

erroneous inference. As a result, removing outliers may improve the accuracy of

the estimators. However, outliers sometimes provide information that may be lost

if the outlier is removed. Bellio and Ventura [15] stated that empirical evidence

shows that good robust procedures behave relatively better than techniques based

on the rejection of outliers. Robustness is a wide topic, and dealing with outliers is

just one aspect of it. We could interpret robustness in two different ways, namely

robustness with regard to small changes in data and robustness with regard to

outliers. Our aim is to explore these two aspects for NPI for future order statistics

as presented in this thesis.

This chapter is organized as follows. Section 5.2 provides a brief overview
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of some concepts used in robust statistics, namely influence function, sensitivity

curve and breakdown point. In Section 5.3 we introduce the sensitivity curve and

breakdown point in the NPI framework. Section 5.4 presents the use of these

tools for NPI for events involving the r-th future observation. In Section 5.5 we

use these tools to explore the robustness of the inferences involving the median

and the mean of the m future observations. In Section 5.6, we briefly present NPI

robustness of further inferences, namely pairwise comparisons and reproducibility

of statistical tests, as presented in the previous chapters.

5.2 Classical concepts for evaluating

robustness

In the literature of robustness, many measures of robustness of an estimator have

been introduced [51, 53]. In this section, we review some concepts from classical

theory of robust statistics, namely the influence function (IF), sensitivity curve

(SC), empirical influence function (EIF) and breakdown point (BP). First, we

consider the influence function (IF), an approach that is due to Hampel [51].

IF measures the influence of infinitesimal perturbations in a distribution on a

statistic. Suppose we have a basic model with CDF F , and Gξ is the CDF with

a point mass at ξ.

Definition 5.1. For an estimator T based on data from a population with CDF

F , the influence function of T at basic distribution F is

IFT,F (ξ) = lim
ε→0

T ((1− ε)F + εGξ)− T (F )
ε

(5.1)

Here ((1− ε)F + εGξ) with 0 < ε < 1 is a mixture distribution of F and Gξ. This

definition of the IF depends on the assumed distribution as it assesses the effect of

an infinitesimal perturbation in a distribution on the value of the estimator. There

are several finite sample versions of (5.1), the most important being the sensitivity

curve [81], the empirical influence function [53] and the jackknife [71, 72, 75, 80].
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The first two of these we will also consider.

Tukey [81] proposed the sensitivity curve (SC), designed to assess the sensit-

ivity of an estimator with regard to replacement or addition of an observation in

the sample. SC also illustrates Tukey’s emphasis on the nonprobabilistic aspects

of statistics and data analysis. He preferred to rely on the actual data at hand

rather than on a hypothetical underlying population of which it might be a sample

[61]. This is in line with the NPI method, as in NPI we do not consider the hy-

pothetical underlying population. For given data, we do not focus our inferences

on a population from which the data are assumed to come, but on future data

that are exchangeable with given data. There are two versions of SC, one with an

additional observation and one with replacement of an observation [53]. First, we

consider the case where we add an additional observation to the data. Many of

the common estimators and test statistics depend on the sample x1, . . . , xn only

through the empirical distribution function [62]

Fn(x) =
∑ 1{xi < x}

n

Thus we can write T (Fn) = T (x1, . . . , xn) for some estimator T [62].

Definition 5.2. Let Tn(X) = Tn(x1, .., xn) denote a statistic of the sample X =

(x1, .., xn) and let Tn+1(X, ξ) denote the corresponding statistic of the sample

x1, .., xn, ξ. If we replace F by the empirical function Fn and ε by 1/(n + 1) in

(5.1), then the sensitivity curve (SC) is defined as [62]

SCn(ξ, Tn, X) =
T
(

n
n+1Fn + 1

n+1Gξ

)
− T (Fn)

1/(n+ 1)
= (n+ 1) (Tn+1(x1, . . . , xn, ξ)− Tn(x1, . . . , xn))

= (n+ 1) (Tn+1(X, ξ)− Tn(X)) (5.2)

SCn(ξ, Tn, X) measures the sensitivity of Tn to the addition of one observation

with value ξ [62]. The sensitivity curve measures sensitivity of an estimator to a

change in the sample. By contrast, the IF in Definition 5.1 shows what happens
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to an estimator when we change the distribution of the data slightly. There also

exists a version of SC where instead of adding an observation ξ to the sample,

one observation xi is replaced by ξ.

Definition 5.3. We define the SC, if we replace F by the empirical function Fn
and ε by 1/n in (5.1) [62]

SCi(ξ, Tn, X) =
T
(
n−1
n Fn + 1

nGξ
)
− T (Fn)

1/n
= n (Tn(x1 . . . , xi−1, ξ, xi+1, . . . , xn)− Tn(x1 . . . , xi−1, xi, xi+1, . . . , xn))

= n (Tn(X, ξ, i)− Tn(X)) (5.3)

This version of SC measures the sensitivity of Tn to replacing the i-th value in

the sample by an arbitrary value.

Definition 5.4. The empirical influence function of Tn for the sample X at ξ is

EIFi(ξ, Tn, X) = Tn(x1 . . . , xi−1, ξ, xi+1, . . . , xn) (5.4)

This EIFi is defined by replacing the i-th value in the sampleX by an arbitrary

value ξ and looking at the output of the estimator [53]. Alternatively, one can

define it by adding an obervation, i.e. when the original sample consists of n

observations one can add an arbitrary value ξ, EIF (ξ, Tn, X) = Tn(x1, . . . , xn, ξ).

The EIF gives us an idea of how an estimator behaves when we change one point

in the sample X and no model assumptions are made [67].

In NPI we will adopt the two versions of the sensitivity curve (SC), as these

give more insight than the EIF concept. The concepts defined above are local

measurements, as they in principle examine the effect on an estimator of substi-

tuting a single contaminant for one of the n observations, or of adding a data

point to the sample. In contrast, the breakdown point is a global measurement,

as it gives the highest fraction of outliers one may have in the data before the

estimator goes to infinity [63]. Let X = (x1, . . . , xn) be a fixed sample of size n.
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We can contaminate this sample in many ways [62]. We consider the following

two; λa replacement and λb contamination. These will also be considered in the

NPI setting in Section 5.3.

1. λa replacement: we replace an arbitrary subset of size l of the sample by ar-

bitrary values y1, . . . , yl, so 1 ≤ l ≤ n [62]. Let X ′ denote the contaminated

sample. The fraction of contaminated values in the contaminated sample

X
′ = (x1 . . . , xl−1, yl, . . . , yn), is λa = l

n

2. λb contamination: we add l arbitrary additional values Y = (y1, . . . , yl) to

the sample X [62]. Let X ′′ denote the contaminated sample by adding l

arbitrary additional values. Thus, the fraction of contaminated values in

the contaminated sample X ′′ = X ∪ Y is λb = l
l+n

Definition 5.5. Let T = (Tn) be an estimator and T (X) be its value at the

sample X. The maximum bias which might be caused by general λ, which is

either λa or λb, is [62]

b(λ;X,T ) = sup |{T (X, Y )− T (X)}| (5.5)

where the supremum is taken over the set of all λ-contaminated samples which is

either X ′ or X ′′ .

Definition 5.6. The definition of the breakdown point is

λ∗(X,T ) = inf{λ|b(λ;X,T ) =∞} (5.6)

The breakdown point λ∗(X,T ) of an estimator T at sample X is the smallest

value of λ for which the estimator T (X, Y ) can have values arbitrarily far from

T (X).

For example, a contaminant in a sample of size n will, if large enough, shift the

sample mean to be large, so the sample mean has unbounded influence function
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and breakdown point 1/n. In contrast, the influence of a contaminant on the

sample median is bounded, because 2k − 2 contaminants, whatever their mag-

nitudes, added to a sample of size n = 2k − 1, where k is the position of the

median, can at most shift the sample median from xk to x1 or x2k−1 [11]. However,

as soon as the number of contaminants added exceeds 2k− 2, the sample median

can take any value. Thus the median has breakdown point 2k−1
4k−2 = 1

2 and this is

the highest value of the breakdown point which an estimator can achieve [11].

5.3 Robustness concepts in NPI

This section presents a first exploration of the use, and where needed adaptation, of

the robustness concepts discussed in Section 5.2, within the NPI setting. It turns

out that we need to adapt the concepts, but we can keep similar interpretations.

A simple way to study NPI robustness is to contaminate the given data and

then explore its effect on our predictive inference. This approach is straightforward,

gives an intuitive analysis, and is in line with the classic nonparametric robustness

concepts, as they typically assess the influence on statistical inference of an

arbitrary data value either added to the data or replacing an original observation.

We do not look at IF for NPI, as IF depends on the assumed distribution

and in the NPI approach we do not assume any underlying distribution. Also

we do not consider EIF and we consider SC as it gives more insight than EIF.

In our study of the robustness of NPI, we will focus on the sensitivity curve and

breakdown point as they typically rely on the actual data at hand rather than on

a hypothetical underlying population.

From robustness for the NPI perspective, questions of interest include the

following. Does contamination of the given observations influence the predictive

inferences on future order statistics? Is the effect on the predictive inference pro-

portional to the number of contaminants present? How does a single contaminant

effect relate to its magnitude? These questions are similar as in the classical

theory, where they are answered by the SC and BP of an estimator.
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5.3.1 Notation

Let x = {x1, . . . , xn} be a given sample of real-valued observations and let I(x)

be a predictive inference for future observations, based on the sample x. Such a

sample x can be contaminated in many ways, and we consider two of them.

1. Replacement: We replace a subset of size l of the data x, xj1 , . . . , xjl , by

xj1 + δ, . . . , xjl + δ, where 1 ≤ l ≤ n. We denote these contaminated data

by x(j1, . . . , jl, δ). Let I(x(j1, . . . , jl, δ)) denote the inference of interest

based on the contaminated data. The fraction of contaminant values in the

contaminated sample x(j1, . . . , jl, δ) is λa = l
n
. This includes the special

case l = 1, where we replace one observation xj of the sample by the value

xj+δ, for any real-valued δ. The inference, with this replacement, is denoted

by I(x(j, δ)).

2. Additional: We add l arbitrary additional observations y1, . . . , yl to the past

data x. We denote these contaminated data by (x, y1, . . . , yl). The inference

is denoted by I(x, y1, . . . , yl). The fraction of contaminant values in the

contaminated sample (x, y1, . . . , yl), is λb = l
l+n .

These two ways of contaminating the sample will be studied separately in the

NPI framework. We first focus on the effect of adding δ to one of the observations

in the past data, as it is convenient and logical to do this in the NPI method.

The ordered observations of the contaminated sample are denoted by x̃1 <

. . . < x̃n. Adding δ to xj might change its rank from j to l, where l ≥ j for δ > 0

and l ≤ j for δ < 0 and denote by x̃l.

5.3.2 NPI concepts for evaluating robustness

In this subsection we introduce and discuss robustness concepts for NPI. We

illustrate their use in the following sections for events involving the r-th ordered

future observation, the median and the mean of the future observations, and

further inferences involving the future observations that have been introduced in

Chapters 2, 3 and 4.
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To begin with we consider the case of replacement, substituting a contaminant

for one of the n observations. A simple way to assess the effect of an arbitrary

value δ added to one of the data observations on a particular predictive inference

is to compute the difference between the value of the predictive inference with

and without δ added.

Definition 5.7. The NPI-sensitivity curve (NPI-SC) for a predictive inference

I(x), in case of replacing one observation xj by xj + δ, is defined by

SCI(x(j, δ)) = I(x(j, δ))− I(x) (5.7)

It can also be of interest to consider nSCI(x(j, δ)), corresponding to the

classical definition of the sensitivity curve as given in Definition 5.3. We may

multiply SCI(x(j, δ)) by n, but in our case Equation (5.7) is more straightforward,

and it depends on n, so when n is large we expect SCI(x(j, δ)) to become smaller.

However, if one wants to compare sensitivity for different values of n, then one

may need to multiply SC by n.

Example 5.1. To illustrate the use of nSCI(x(j, δ)) and SCI(x(j, δ)) for the NPI

lower and upper probabilities for the event X(r) ≥ z, we consider artificial data

sets consisting of the ordered numbers from 1 to n, for n = 8, 20, 30, 40, . . . , 100,

and m = 3 future observations. The effect of replacing x1 < z by x1 + δ = x̃l > z

on the probability of the event that the second ordered future observation X(2),

out of m = 3 future observations, is greater than z, where z ∈ In
2 +1, and n is an

even number, is reflected by the NPI-SC

SCP (X(2)>z)(x(1, δ)) = P x(j,δ)(X(2) > z)− P x(X(2) > z)

= P (X(2) ∈ In
2 +1) if x1 < z and x̃l > z

SCP (X(2)>z)(x(1, δ)) = P x(j,δ)(X(2) > z)− P x(X(2) > z)

= P (X(2) ∈ In
2
) if x1 < z and x̃l > z
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We plot the NPI-SC of [P , P ](X(2) > z) as function of different values of n. Figure

5.1 shows n×SC[P ,P ](X(2)≥z)(x(1, δ)) and SC[P ,P ](X(2)≥z)(x(1, δ)), for m = 3, where

the lower probability is denoted by LP and the upper probability denoted by UP .

The results clearly illustrate that the effect of replacing x1 by x1 + δ on the lower

and upper probabilities for event X(2) > z decreases as the value of n increases.

Figure 5.1: nSCP (X(2)≥z)(x(1, δ)) and SCP (X(2)≥z)(x(1, δ))

♦

Definition 5.8. The NPI-SC, in the case of adding an additional observation y

to the data, is

SCI(x, y) = I(x, y)− I(x) (5.8)

This NPI-SCI(x, y) assesses the sensitivity of an inference to the position of

an additional observation, so it illustrates the impact of adding an additional

observation y to the sample on the inferences involving future observations. In

Example 5.2, we will illustrate NPI-SC for the event that X(r) ∈ Ij, as a function

of y where y ∈ I∗j , for all j∗ = 1, . . . , n+ 1.

A finite sample breakdown point (BP) was first proposed by Hodges [59], as

"tolerance of extreme values" in the situation of the location parameter problems,

and it was generalized for a variety of cases by Hampel [50]. However, it has not

been applied to situations of predictive inferences where the range of the inferences
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for the future observations is bounded, but it can easily be extended to such

situations. We will modify the concept of BP to fit with the NPI approach. The

maximum value of predictive inferences in terms of lower and upper probabilities

is 1. We introduce a new definition of BP, which we call the c-breakdown point,

and denote by λ∗c(λ, I, x(δ, j1, . . . , jl)).

Definition 5.9. The maximum bias which might be caused by λa-replacement,

is

b(λa;x, I) = sup |(I(x(j1, . . . , jl, δ))− I(x))|

= sup |(SCI(x(j1, . . . , jl, δ))| (5.9)

where the supremum is taken over the set of all λa-replacement samples x(j1, . . . , jl, δ),

with {j1, . . . , jl} ⊂ {1, . . . , n} for fixed δ and given data x. Alternatively, one can

define the maximum bias by adding l contaminated values to the sample x, so

the maximum bias which might be caused by λb-contamination is

b(λb;x, I) = sup |(I(x, y1, . . . , yl)− I(x))|

= sup |(SCI(x, y1, . . . , yl)| (5.10)

where the supremum is taken over the set of all λb-contaminated samples (x, y1, . . . , yl),

with y1, . . . , yl ∈ R of given data x.

Definition 5.10. The c-breakdown point, where c ∈ [0, 1], for the case of λa-

replacement, is defined as

λ∗c(I, x(δ, j1, . . . , jl)) = inf{λa|b(λa;x, I) > c} (5.11)

where the infimum is taken over all possible fractions λa = l
n
. Alternatively, the

c-breakdown point for the case of adding l observations to the original sample

(λb-contamination), is

λ∗c(I, (x, yj1 , . . . , yjl)) = inf{λb|b(λb;x, I) > c} (5.12)



5.4. Robustness of NPI for the rth future order statistic 110

where the infimum is taken over all possible fractions λb = l
l+n .

The c-breakdown point is the smallest fraction of contamination in the past

data that could cause a predictive inference for future order statistics to take

a value at least c away from the value of the initial predictive inference. This

definition includes for, c = 0, the case when any change in the inference caused

by l contaminated observations, is considered as breakdown point of the inference

of interest. The value c determines how much we allow the inference to change

before its breakdown.

5.4 Robustness of NPI for the rth future order

statistic

To illustrate the use of the robustness concepts for NPI, namely NPI-SC and

NPI-BP as defined in Section 5.3, we first consider the probabilities for events

involving the r-th ordered future observation. We illustrate both ways that the

sample can be contaminated.

5.4.1 NPI-SC for data replacement

To begin with, we explore how a contamination in the data affects the NPI
probability for the event that X(r) ∈ Ik in Equation (2.2). The probability (2.2)
is only affected by replacing contamination if the indices, k = 1, . . . , n+ 1, differ.
The effect of replacing an observation xj by xj + δ = x̃l, with δ ∈ R, on the
probability for the event X(r) ∈ Ik is

SCP (X(r)∈Ik)(x(j, δ)) = P x(j,δ)(X(r) ∈ (x̃k−1, x̃k))− P x(X(r) ∈ Ik)

=



0 if xj < xk and x̃l < xk

P (X(r) ∈ Ik−1)− P (X(r) ∈ Ik) if xj < xk and x̃l > xk∑l
i=k+1 P (X(r) ∈ Ii) if xj = xk and x̃l > xk∑k−1
i=l+1 P (X(r) ∈ Ii)− P (X(r) ∈ Ik) if xj = xk and x̃l < xk

P (X(r) ∈ Ik+1) if xj > xk and x̃l ∈ (xk−1, xk)

0 if xj > xk and x̃l > xk
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The NPI lower and upper probabilities for the event X(r) > z are, in some cases,

affected slightly by changing xj to xj + δ. Let z ∈ Ik = (xk−1, xk), then the effect

of replacing an observation xj by xj + δ = x̃l, with δ ∈ R, on the NPI lower and

upper probabilities for the event X(r) > z, is

SCP (X(r)>z)(x(j, δ)) = P x(j,δ)(X(r) > z)− P x(X(r) > z)

=



0 if xj < z and x̃l < z

P (X(r) ∈ Ik) if xj < z and x̃l > z

−P (X(r) ∈ Ik−1) if xj > z and x̃l < z

0 if xj > z and x̃l > z

SCP (X(r)>z)(x(j, δ)) = P x(j,δ)(X(r) > z)− P x(X(r) > z)

=



0 if xj < z and x̃l < z

P (X(r) ∈ Ik−1) if xj < z and x̃l > z

−P (X(r) ∈ Ik) if xj > z and x̃l < z

0 if xj > z and x̃l > z

This NPI-SC depends on the value of r and which interval it falls in, and will be

illustrated in Example 5.2 in Subsection 5.4.4.

5.4.2 NPI-SC for additional data

Suppose we are interested in assessing the effect of an additional observation

on the probability for the event that the rth ordered future observation falls in

interval Ij, by considering

SCP (X(r)∈Ij)(x, y) = P(x,y)(X(r) ∈ Ij)− Px(X(r) ∈ Ij) (5.13)

We let j∗ be such that y ∈ Ij∗ If the method is robust to the new observation

then P (X(r) ∈ Ij|y ∈ Ij∗) should be close to P (X(r) ∈ Ij) for all r, j, j∗. The

intuitive question we should investigate is when the influence is larger, if j∗ < j,

or j∗ = j, or j∗ > j? Thus, this P (X(r) ∈ Ij|y ∈ Ij∗) needs to be studied with

respect to the position of j∗ and j. The P (X(r) ∈ Ij|y ∈ Ij∗) can be derived using
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Equation (2.2), as given in Appendix C.

Theorem 5.1. SCP (X(r)∈Ij)(x, y) > 0 for j∗ < j if and only if j ≤ (r−1)(n+1)
m

and

for j∗ > j if and only if j ≥ r(n+1)
m

+1. �

The proof of Theorem 5.1 is given in the Appendix D.

The SC for the event that X(r) ∈ Ij, when we add an additional observation

y ∈ Ij∗ where j∗ < j and Ĩj+1 = (x̃j, x̃j+1) = (xj−1, xj), is

SCP (X(r)∈Ij)(x, y) = P (X(r) ∈ Ĩj+1|y ∈ I∗j )− P (X(r) ∈ Ij)

= P (X(r) ∈ Ij)
[

(j + r − 1)(n+ 1)
j(n+ 1 +m) − 1

]

= P (X(r) ∈ Ij)
[

(r − 1)(n+ 1)− jm
j(n+ 1 +m)

]
(5.14)

If j∗ > j, so Ĩj = Ij = (x̃j−1, x̃j), then

SCP (X(r)∈Ij)(x, y) = P (X(r) ∈ Ij|y ∈ I∗j )− P (X(r) ∈ Ij)

= P (X(r) ∈ Ij)
[

(n− j + 2 +m− r)(n+ 1)
(n− j + 2)(n+m+ 1) − 1

]

= P (X(r) ∈ Ij)
[
m(j − 1)− r(n+ 1)

(n− j + 2)(n+m+ 1)

]
(5.15)

If j∗ > j and j = r(n+1)
m

+ 1 is an integer number then SCP (X(r)∈Ij)(x, y) = 0,

as illustrated in Example 5.2. If j∗ = j, so Ij now becomes Ĩj ∪ Ĩj+1 where

Ĩj = (xj−1, y) and Ĩj+1 = (y, xj), then NPI-SC for P (X(r) ∈ Ij) is

SCP (X(r)∈Ij)(x, y) =
[
P (X(r) ∈ Ĩj|y ∈ Ij) + P (X(r) ∈ Ĩj+1|y ∈ Ij)

]
− P (X(r) ∈ Ij)

= P (X(r) ∈ Ij)
[

(r − 1)(n+ 1)− jm
j(n+ 1 +m) + m(j − 1)− r(n+ 1)

(n− j + 2)(n+m+ 1)

]

The NPI-SC measures how a single contaminant, whether added or substituted,

affects an inference of interest, which is in line with SC in classical robustness.

5.4.3 NPI-BP for data replacement and adding

We illustrate the NPI-BP for the lower and upper probabilities for the event

that X(r) > z, where z ∈ (xk−1, xk). Suppose we keep x1, . . . , xk−1 fixed and let
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xk, . . . , xn go to infinity, then the NPI lower and upper probabilities for the event

that X(r) > z, will not change at all. However, when we only keep x1, . . . , xk−2

fixed and let xk−1, . . . , xn go to infinity then [P , P ](X(r) > z) will increase. For

c = 0 the minimum fraction of the contaminated values in the contaminated

sample that can cause b(λa;x, [P , P ](X(r) > z)) > 0, is

λ∗0([P , P ](X(r) > z), x(δ, k − 1, . . . , n)) = n− k + 2
n

(5.16)

An effect on such an inference occurs only when the contaminated values lead

to change of the number of the observations that are greater than z. The value

of the c-breakdown point decreases as the value of k increases, where Ik is the

interval that z falls in. Similarly, the c-breakdown point for the probability for

the event that X(r) ∈ Ik is n−k+2
n

.

In the case of adding observations to the data, the c-breakdown point for the

probability for the event that X(r) ∈ Ii, for c = 0, is

λ∗0(P (X(r) ∈ Ii), (x, yj1 , . . . , yjl)) = inf{λb|b(λb;x, P (X(r) ∈ Ii)) > 0}

λ∗0(P (X(r) ∈ Ii), (x, yj1)) = 1
n+ 1 (5.17)

Thus, adding a single data observation will change the probability for the event
that X(r) ∈ Ij. The size of the change varies depending on which order statistic
is considered and in which interval it is, which will be illustrated in Example 5.2.
Similarly, in the case of additional observations to the sample, the c-breakdown
point for the event that X(r) > z, for c = 0 is

λ∗0([P , P ](X(r) > z), (x, yj1)) = 1
n+ 1 for z ∈ Ik

Thus, if we add a single data observation, it will change the probability of the

event that X(r) > z.

We have only considered the NPI-BP for c = 0 here. In Example 5.2, we will

also illustrate NPI-BP for c > 0.
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5.4.4 Example

We illustrate the NPI-SC and NPI-BP presented in this section by the following

example.

Example 5.2. We consider data set x = {−9,−7, 0, 2, 5, 7, 10, 16}, and the cor-

rupted sample x(2, δ), where we replace x2 = −7 by −7 + δ for δ ∈ R.

Table 5.1 presents the NPI-SC for the lower and upper probabilities for the

event X(r) ≥ 1, for m = 5 and r = 1, . . . , 5. These inferences are not affected by

adding δ < 8 to x2, as x2 + δ < 1, whereas for δ ≥ 8 the value x2 + δ > 1, which

changes the values of the lower and upper probabilities by an amount P (X(r) ∈ I4),

and P (X(r) ∈ I3), respectively. The results illustrate that the largest effect of

replacing x2 = −7 by −7 + δ, for δ ≥ 8, occurs for r = 2 and the smallest effect

occurs for r = 5.

δ < 8 δ ≥ 8
r SCP SCP SCP SCP
1 0 0 0.09790 0.16317
2 0 0 0.17405 0.19580
3 0 0 0.16317 0.13054
4 0 0 0.09324 0.05439
5 0 0 0.02720 0.01166

Table 5.1: SCP (X(r)≥1)(x(j, δ)) for m = 5

To illustrate the NPI-BP, we consider the data set x and the case with

m = 5 and interest in event X(r) ≥ 1. Figure 5.2 and Table 5.2 present the

NPI-SC for the NPI lower and upper probabilities for X(r) ≥ 1 for the values

r = 1, . . . , 5, in the case where we keep x1, . . . , x8−l and we added δ = 100 to

x9−l, . . . , x8 for l = 1, . . . , 8. The results clearly show that as the value of r in-

creases the effect of replacing l observations by contaminated values on the NPI

lower and upper probabilities for X(r) ≥ 1 is decreasing. If we chose c = 0.15,

as presented by the red line in Figure 5.2, then the maximum NPI-BP for the

event X(r) ≥ 1 is when r = 5, whereas the minimum NPI-BP is for which

r = 2. The higher the breakdown point of an inference, the more robust it is.

λ∗0(P (X(1) ≥ 1), x(2, . . . , 8, 100)) = λ∗0(P (X(3) ≥ 1), x(2, . . . , 8, 100)) = 7
8 whereas
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the NPI-BP for the lower and upper probabilities for X(2) ≥ 1 and the lower

probability for X(3) ≥ 1 is 6
8 and for the lower probability for X(4) ≥ 1 is one

whereas for upper probability for X(4) ≥ 1 does not breakdown. For r = 5 the

inferences did not breakdown.

r = 1 r = 2 r = 3 r = 4 r = 5
l SCP SCP SCP SCP SCP SCP SCP SCP SCP SCP
6 0.0979 0.1632 0.1740 0.1958 0.1632 0.1305 0.0932 0.0544 0.0272 0.0117
7 0.2611 0.4196 0.3699 0.3823 0.2937 0.2145 0.1476 0.0793 0.0389 0.0155
8 0.5175 0.8042 0.5563 0.5105 0.3776 0.2494 0.1725 0.0862 0.0427 0.0163

Table 5.2: SCP (X(r)≥1)(x(9− l, . . . , 8, 100)) for m = 5

r=1 r=2 r=3 r=4 r=5

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

Number of contaminants

 SC 

LP

UP

Figure 5.2: SCP (X(r)≥1)(x(9− l, . . . , 8, 100)) for m = 5

To illustrate the possible effect on P (X(r) ∈ Ij) of an additional value y to

the original sample, we consider n = 8 data observations and m = 3 future

observations. Table 5.3 illustrates the NPI-SC for the event that X(1) ∈ Ij, for

j = 1, . . . , 9, and for all possible values of y that might fall in Ij∗ = (xj∗−1, xj∗)

for j∗ = 1, . . . , 9. The results clearly illustrate that the effect of adding y to any

intervals to the left of interval Ij, on the NPI probability for X(1) ∈ Ij, is the

same, and also if y is added to any intervals to the right of Ij.

Figures 5.3, 5.4 and 5.5 illustrate the NPI-SC for the event X(r) ∈ Ij, for

r = 1, 2, 3, j = 1, . . . , 9 and j∗ < j, j∗ = j and j∗ > j. These figures illustrate that

SCP (X(r)∈Ij)(x, y) is symmetric, i.e. SCP (X(r)∈Ij)(x, y) = SCP (X(m+1−r)∈In+2−j)(x, y),

so e.g. SCP (X(1)∈I9)(x, y) = SCP (X(3)∈I1)(x, y) . For all r, the NPI-SC for X(r) ∈ Ij
is unimodal in j. Note that the values 0 in Table 5.3, for j = 4 and j∗ > 4,

illustrate the property mentioned immediately before Equation (5.15).
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j∗

j 1 2 3 4 5 6 7 8 9
1 0.1818 -0.0227 -0.0227 -0.0227 -0.0227 -0.0227 -0.0227 -0.0227 -0.0227
2 -0.0545 0.1500 -0.0136 -0.0136 -0.0136 -0.0136 -0.0136 -0.0136 -0.0136
3 -0.0424 -0.0424 0.1212 -0.0061 -0.0061 -0.0061 -0.0061 -0.0061 -0.0061
4 -0.0318 -0.0318 -0.0318 0.0955 0 0 0 0 0
5 -0.0227 -0.0227 -0.0227 -0.0227 0.0727 0.0045 0.0045 0.0045 0.0045
6 -0.0152 -0.0152 -0.0152 -0.0152 -0.0152 0.0530 0.0076 0.0076 0.0076
7 -0.0091 -0.0091 -0.0091 -0.0091 -0.0091 -0.0091 0.0364 0.0091 0.0091
8 -0.0045 -0.0045 -0.0045 -0.0045 -0.0045 -0.0045 -0.0045 0.0227 0.0091
9 -0.0015 -0.0015 -0.0015 -0.0015 -0.0015 -0.0015 -0.0015 -0.0015 0.0121

Table 5.3: SCP (X(1)∈Ij)(x, y)

j j∗ < j j∗ > j j∗ = j
1 - -0.02273 0.18182
2 -0.05455 -0.01364 0.15000
3 -0.04242 -0.00606 0.12121
4 -0.03182 0 0.09545
5 -0.02273 0.00455 0.07273
6 -0.01515 0.00758 0.05303
7 -0.00909 0.00909 0.03636
8 -0.00455 0.00909 0.02273
9 -0.00152 - 0.01212

Table 5.4: SCP (X(1)∈Ij)(x, y)

j*<j j*=j j*>j
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Figure 5.3: SCP (X(1)∈Ij)(x, y) for n = 8 and m = 3.

To illustrate the c-breakdown point λ∗c for the event X(r) ∈ Ij, we choose

c = 0.05 and plot the absolute value of SCP (X(r)∈Ij)(x, y1, . . . , yl) as function of l,

where l is the number of the contaminated values that have been added to the data

set of size n = 8. These are given in Figures 5.6, 5.7 and 5.8 and Tables 5.5 and 5.6

for r = 1, 2, 3. For r = 1 and j ≥ 3, the probability for the eventX(1) ∈ Ij does not

break down, whereas for j = 1, λ∗0.05(P (X(1) ∈ I1), (x, y9, y10, y11)) = 3
11 = 0.2727
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j*<j j*=j j*>j
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Figure 5.4: SCP (X(2)∈Ij)(x, y) for n = 8 and m = 3.

j*<j j*=j j*>j

−0.05

0.00

0.05

0.10

0.15

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

J

S
C

r=3

Figure 5.5: SCP (X(3)∈Ij)(x, y) for n = 8 and m = 3.

r l j = 1 l j = 2 l j = 3 l j = 4 l j = 5
1 2 0.0420 4 0.0468 7 0.0410 7 0.0158 7 0.0047

3 0.0584 5 0.0557 8 0.0459 8 0.0189 8 0.0030
2 7 0.0349 4 0.0442 3 0.0449 3 0.0466 3 0.0416

8 0.0370 5 0.0505 4 0.0547 4 0.0575 4 0.0526
3 7 0.0048 7 0.0145 7 0.0290 7 0.0484 3 0.0497

8 0.0050 8 0.0151 8 0.0302 8 0.0503 4 0.0579

Table 5.5: SCP (X(r)∈Ij)(x, y1, . . . , yl) for m = 3

and for j = 2, λ∗0.05(P (X(1) ∈ I2), (x, y9, . . . , y13)) = 5
13 = 0.3846. Figure 5.7

presents the absolute value of the NPI-SC for X(2) ∈ Ij, where for j = 3, 4, 5 the

NPI-BP is 4
12 = 0.3333, for j = 2 is 5

13 = 0.3846 and for j = 6 is 6
14 = 0.4286.

The probability for the event X(2) ∈ Ij for j = 1, 7, 8, 9, does not break down

as SCP (X(2)∈Ij)(x, y1, . . . , y8) < 0.05. Figure 5.8 shows that for r = 3, and j = 4,

λ∗0.05(P (X(3) ∈ Ij), (x, y9, . . . , y16)) = 8
16 = 0.5, whereas as j increases the NPI-BP

decreases, such that for j = 8, 9, λ∗0.05(P (X(3) ∈ Ij), (x, y9)) = 1/9.
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r l j = 6 l j = 7 l j = 8 l j = 9
1 7 0.0203 7 0.0310 7 0.0370 7 0.0381

8 0.0199 8 0.0317 8 0.0386 8 0.0404
2 5 0.0490 7 0.0415 7 0.0087 7 0.0337

6 0.0572 8 0.0478 8 0.0144 8 0.0290
3 1 0.0318 1 0.0424 1 0.0545 1 0.0682

2 0.0538 2 0.0718 2 0.0923 2 0.1154

Table 5.6: SCP (X(r)∈Ij)(x, y1, . . . , yl) for m = 3

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9
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Figure 5.6: SCP (X(1)∈Ii)(x, y1, . . . , yl) for n = 8 and m = 3.
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Figure 5.7: SCP (X(2)∈Ii)(x, y1, . . . , yl) for n = 8 and m = 3.

♦
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Figure 5.8: SCP (X(3)∈Ii)(x, y1, . . . , yl) for n = 8 and m = 3.

5.5 Robustness of the median and mean of the

future observations

In the classical robustness literature there has been quite a lot of emphasis on

robust estimation of a location parameter, where typically they compare the

robustness of the mean and the median. In this section, we illustrate the use

of the robustness concepts for NPI, namely NPI-SC and NP-BP, by considering

events involving the median and the mean of the m future observations.

5.5.1 Median of the m future observations

We first examine how contamination in the data affects NPI for an event involving

the median of the m future observations, for m is odd. We consider the NPI-SC

for the lower and upper probabilities for the event Mm < z. We wish to examine

the effect on [P , P ](Mm < z) of adding a contaminant δ to one of the observations

xj with j = 1, . . . , n. Let z ∈ Ik = (xk−1, xk), if we add δ to xj this becomes

x̃l = xj + δ, where δ ∈ R. The NPI-SC for event Mm < z is

SCP (Mm<z)(x(j, δ)) =



0 if xj > z and x̃l > z

0 if xj < z and x̃l < z

P (Mm ∈ Ik) if xj > z and x̃l < z

−P (Mm ∈ Ik−1) if xj < z and x̃l > z
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SCP (Mm<z)(x(j, δ)) =



0 if xj > z and x̃l > z

0 if xj < z and x̃l < z

P (Mm ∈ Ik+1) if xj > z and x̃l < z

−P (Mm ∈ Ik) if xj < z and x̃l > z

The NPI-SC for lower and upper probabilities for the event Mm < z is a step

function, with the step occurring when the contamination value changes the

number of intervals to the right of z.

Next we consider the NPI-SC for the lower and upper probability for the event

that Mm ∈ (z1, z2). Let z1 ∈ Ik and z2 ∈ Id where k ≤ d. If we add δ to one

of the data observations, i.e. xj is replaced by x̃l, then there are three possible

situations. The effect of adding δ to xj is to change the value of the NPI lower

and upper probabilities for the event Mm ∈ (z1, z2), by an amount NPI-SC as

specified for each case below. First, if xj < z1

SCP (Mm∈(z1,z2))(x(j, δ)) = P x(j,δ)(Mm ∈ (z1, z2))− P x(Mm ∈ (z1, z2))

=


0 if x̃l < z1

P (Mm ∈ Ik) if x̃l ∈ (z1, z2)

P (Mm ∈ Ik)− P (Mm ∈ Id−1) if x̃l > z2

(5.18)

SCP (Mm∈(z1,z2))(x(j, δ)) = P x(j,δ)(Mm ∈ (z1, z2))− P x(Mm ∈ (z1, z2))

=


0 if x̃l < z1

P (Mm ∈ Ik−1) if x̃l ∈ (z1, z2)

P (Mm ∈ Ik−1)− P (Mm ∈ Id) if x̃l > z2

(5.19)

Secondly, if xj > z2

SCP (Mm∈(z1,z2))(x(j, δ)) =


0 if x̃l > z2

P (Mm ∈ Id) if x̃l ∈ (z1, z2)

P (Mm ∈ Id)− P (Mm ∈ Ik+1) if x̃l < z1
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SCP (Mm∈(z1,z2))(x(j, δ)) =


0 if x̃l > z2

P (Mm ∈ Id+1) if x̃l ∈ (z1, z2)

P (Mm ∈ Id+1)− P (Mm ∈ Ik) if x̃l < z1

Thirdly, if xj ∈ (z1, z2)

SCP (Mm∈(z1,z2))(x(j, δ)) =


0 if x̃l ∈ (z1, z2)

−P (Mm ∈ Id−1) if x̃l > z2

−P (Mm ∈ Ik+1) if x̃l < z1

(5.20)

SCP (Mm∈(z1,z2))(x(j, δ)) =


0 if x̃l ∈ (z1, z2)

−P (Mm ∈ Id) if x̃l > z2

−P (Mm ∈ Ik) if x̃l < z1

(5.21)

So, when the data are contaminated and that contamination does not affect the

number of intervals in (z1, z2) then there is no effect on this inference at all, which

is an attractive property. But this is not the same if m is even. The probability

for the event involving the median of the m future observations, where m is even,

given in Equations (2.29) and (2.30), depends on the actual observations and not

only on the ordering of the observations. For example, if we consider the lower

and upper probabilities for the event that Mm ≥ z, where Mm =
X( m

2 )+X( m
2 +1)

2 ,

then the NPI-SC for this event, if we add δ to xj, are

SCP (Mm≥z)(x(j, δ)) =[
n+1∑
i=1

n+1∑
k=i

1{( x̃i−1 + x̃k−1

2 ,
x̃i + x̃k

2 ) ≥ z}P (X( m
2 ) ∈ Ĩi, X( m

2 +1) ∈ Ĩk)
]

−
[
n+1∑
i=1

n+1∑
k=i

1{(xi−1 + xk−1

2 ,
xi + xk

2 ) ≥ z}P (X( m
2 ) ∈ Ii, X( m

2 +1) ∈ Ik)
] (5.22)

SCP (Mm≥z)(x(j, δ)) =[
n+1∑
i=1

n+1∑
k=i

1{( x̃i−1 + x̃k−1

2 ,
x̃i + x̃k

2 ) ∩ (z,∞) 6= ∅}P (X( m
2 ) ∈ Ii, X( m

2 +1) ∈ Ik)
]

−
[
n+1∑
i=1

n+1∑
k=i

1{(xi−1 + xk−1

2 ,
xi + xk

2 ) ∩ (z,∞) 6= ∅}P (X( m
2 ) ∈ Ii, X( m

2 +1) ∈ Ik)
]

(5.23)
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We also consider the c-breakdown point for the NPI lower and upper probabil-

ities for the event Mm > z, where z ∈ Ik. The NPI lower and upper probabilities

for such an event depend only on the number of observations that are greater

than z, so in the sample of n observations, only n − k + 2 outliers cause these

probabilities to change. The c breakdown point for the event Mm > z is sim-

ilar as presented in Section 5.4, if we replace X(r) by Mm, where m is odd, in

Equation (5.16). For m even, the c-breakdown point for the NPI lower and upper

probabilities for the event Mm > z and c = 0 is

λ∗0([P , P ](Mm > z), x(n, δ)) = 1
n

for z ∈ Ik

5.5.2 Mean of the m future observations

We consider the NPI-SC for the mean of the m future observations. It is well

known that the mean of the population in classical statistics is more sensitive

than the median to any change in the data [62]. In this subsection we investigate

the robustness of inferences involving the mean of the m future observations.

To begin with, we consider the NPI-SC for the NPI lower and upper expected

values for µm, as given in Equations (2.33) and (2.34). Suppose that one observa-

tion xj is replaced by xj +δ, then the NPI-SC for the lower and upper expectation

for the mean of the m future observations is SCE(µ)(x(j, δ)) = SCE(µ)(x(j, δ)) =
δ

n+1 . The lower and upper bounds for the mean of the m future observations given

the ordering Oi, as given in Equations (2.31) and (2.32), depend on the value of

sij. The NPI-SC for the lower and upper bounds of the µim, for the case that xj +δ

did not shift from its rank among the observations, i.e. xj−1 < xj + δ < xj+1, are

SCµi
m

(x(j, δ)) = 1
m
sij+1δ (5.24)

SC
µi

m
(x(j, δ)) = 1

m
sijδ (5.25)

If the value of sij = sij+1 = 0 then there is no influence at all on the lower and

upper µim, whereas for sij = m or sij+1 = m then NPI-SC of the lower or the upper

bounds for µim, will exceed any bound for δ large or small enough.
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The NPI-SC for the lower and upper mean of the m future observations given

the ordering Oi, for the case that xj +δ gets another rank than xj, i.e. xj becomes

x̃l, for δ > 0 and l > j or for δ < 0 and l < j, are

SCµi
m

(x(j, δ)) = 1
m

 l∑
k=j

sik+1[x̃k − xk]
 (5.26)

SC
µi

m
(x(j, δ)) = 1

m

 l∑
k=j

sik[x̃k − xk]
 (5.27)

The NPI-SC for µm ≥ z, if xj becomes xj + δ = x̃l and δ ∈ R, is

SCP (µm≥z)(x(j, δ)) = P x(j,δ)(µm ≥ z)− P x(µm ≥ z)

=
(n+m

n )∑
i=1

P (Oi)
[
1{µim(x(j, δ)) ≥ z} − 1{µim(x) ≥ z}

]
SCP (µm≥z)(x(j, δ)) = P x(j,δ)(µm ≥ z)− P x(µm ≥ z)

=
(n+m

n )∑
i=1

P (Oi)
[
1{µim(x(j, δ)) ≥ z} − 1{µim(x) ≥ z}

]

Special case if xj−1 < xj+δ < xj, so µim(x(j, δ)) = µim(x)+ si
j+1δ

m
, then the NPI-SC

for µm ≥ z is

SCP (µm≥z)(x(j, δ)) =
(n+m

n )∑
i=1

P (Oi)
[
1{µim(x(j, δ)) ≥ z} − 1{µim(x) ≥ z}

]

=
(n+m

n )∑
i=1

P (Oi)
[
1{[µim +

sij+1δ

m
] ≥ z} − 1{µim ≥ z}

]

=
(n+m

n )∑
i=1

P (Oi)1{µim ≤ z ≤ µim +
sij+1δ

m
} (5.28)

=
(n+m

n )∑
i=1

P (Oi)1{0 ≤ z − µim ≤
sij+1δ

m
}

=
(n+m

n )∑
i=1

P (Oi)1{0 ≤
m(z − µim)

sij+1
≤ δ}

Similarly, the NPI-SC of the upper probability for this event, is



5.5. Robustness of the median and mean of the future observations 124

SCP (µm≥z)(x(j, δ)) =
(n+m

n )∑
i=1

P (Oi)
[
1{[µim +

sijδ

m
] ≥ z} − 1{µim ≥ z}

]

=
(n+m

n )∑
i=1

P (Oi)1{0 ≤
m(z − µim)

sij
≤ δ} (5.29)

For δ > 0, the NPI-SC for the lower and upper probabilities for the event µm ≥

z, as given in Equations (5.28) and (5.29), has three different scenarios. For

some orderings Oi, both µim(x) ≥ z and µim (x(j, δ)) ≥ z, for other orderings

both µim(x) < z and µim (x(j, δ)) < z, and for some orderings µim(x) ≥ z and

µim (x(j, δ)) < z, or µim(x) < z and µim (x(j, δ)) ≥ z. The latter orderings lead to

changes in the inference for the mean. This is reflected by Equations (5.28) and

(5.29), only the affected orderings are considered.

The NPI-SC of the lower and upper probabilities for the event µm ∈ (z1, z2)),

are

SCp(µm∈(z1,z2))(x(j, δ)) = P x(j,δ)(µm ∈ (z1, z2))− P x(µm ∈ (z1, z2))

=
(n+m

n )∑
i=1

P (Oi)
[
1{z1 ≤ µim(x(j, δ)) ≤ µim(x(j, δ)) ≤ z2}

−1{z1 ≤ µim(x) ≤ µim(x) ≤ z2}
]

and

SCp(µm∈(z1,z2))(x(j, δ)) = P x(j,δ)(µm ∈ (z1, z2))− P x(µm ∈ (z1, z2))

=
(n+m

n )∑
i=1

P (Oi)
[
1{(µim(x(j, δ)), µim(x(j, δ))) ∩ (z1, z2) 6= ∅}

−1{(µim(x), µim(x)) ∩ (z1, z2) 6= ∅}
]

(5.30)

These NPI-SC will be illustrated in Example 5.3 in Subsection 5.5.3.

The c-breakdown points of the lower and upper bounds of µim, are

λ∗c(λa, µim, x(δ, j1, . . . , jl)) = 1
n

if sl+1 6= 0

λ∗c(λa, µim, x(δ, j1, . . . , jl)) = 1
n

for sil 6= 0 and k = 0, .., l
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because if we hold x1, . . . , xn−1 fixed and let xn go to infinity then µim also goes

to infinity if sil+1 6= 0 or sil 6= 0, corresponding to µim and µim. However, when

we consider inference involving the mean, we will not let xn go to infinity, as we

have bounds for the data observations L < x1 < . . . < xn < R, so will let xn go

large but within these bounds. So λ∗c(λa, µim, x(δ, j1, . . . , jl)) may not be equal to
1
n
. This will be illustrated in Example 5.3 in Subsection 5.5.3.

5.5.3 Comparison of robustness of the median and the

mean of the future observations

A main topic in the classical theory of robustness is comparison of the robustness

of the mean and the median. The mean is typically very sensitive to small changes

in the data whereas the median is more robust.

In our case the inferences that involve the median of the m future observations

depend on the event of interest, for example, the lower and upper probabilities

for the event Mm > z might slightly be affected if the contaminant changes the

number of observations that are less than z, and its effect is a step function, as

will be illustrated in Example 5.3. The c-breakdown point for Mm > z, where

z ∈ (xk−1, xk), is n−k+2
n

, so the value of NPI-BP for the median decreases as the

value of k increases.

If we replace xj by x̃l, then the inferences of events involving the mean of the

m future observations might be affected by a small change in the data, if sil the

number of future observations in Il given the ordering Oi is not equal to zero.

Example 5.3 illustrates the NPI-SC and NPI-BP for inferences involving the mean

and the median of the m future observations.

Example 5.3. To illustrate the NPI-SC for different inferences involving the

median and mean of the m = 3 future observations, we consider the data set

x = {−9,−7, 0, 2, 5, 7, 10, 16}, so n = 8, and the contaminated sample x(2, δ),

where we add δ to x2 = −7 and δ ∈ R. When we consider the mean of the 3

future observations, we set x0 = −17 and x9 = 18 as bounds for the observations.
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Figure 5.9 shows the NPI-SC for the NPI lower and upper probabilities for the

events µ3 ≥ 1, µ3 ∈ (1, 9), M3 ≥ 1 and M3 ∈ (1, 9) given x, and the contaminated

sample x(2, δ). Note that the NPI lower probability for such an event of interest in

these figures is denoted by LP represented by line, and the NPI upper probability

by UP and represented by dotted line. The NPI-SC for µ3 ≥ 1 increases as

the value of −7 + δ increases, and the maximum NPI-SC for the lower and

upper probabilities for µ3 ≥ 1 are 0.1576 and 0.1333 respectively, which occur at

−7+δ = 16 which is the largest contaminate value, as δ can not go to 25 as we set

R = 18 as upper bound for the observations. The inferences involving the median

of the m = 3 future observations depend on the ranks of the observations, which

are only affected if the number of the observations that are greater than 1, or in

(1, 9), changes, so NPI-SC is a step function. The NPI-SC for the NPI lower and

upper probabilities for M3 ≥ 1 are 0.1454 and 0.1273 respectively, which occur at

δ > 8. So it is less than NPI-SC for µ3 ≥ 1. The NPI-SC for the event µ3 ∈ (1, 9)

increases till δ ≥ 12.3 then for δ > 12.3 it decreases to be close to zero. The

maximum NPI-SC for the lower and upper probabilities for µ3 ∈ (1, 9) are 0.0667

and 0.0909 respectively, and it occurred at δ = 10.8. The maximum NPI-SC

for the NPI lower and upper probabilities for M3 ∈ (1, 9) are 0.1454 and 0.1273

respectively, so it is greater than NPI-SC for µ3 ∈ (1, 9). Table 5.7 presents that

for δ < 7 and δ > 19, the inference involving the mean is more sensitive than

the inference involving the median. In contrast for 8 < δ ≤ 15.3 the inferences

involving the mean are more robust.

Figure 5.10 and Table 5.8 present the NPI-SC for the NPI lower and upper

probabilities for the events that µ3 ≥ 1, µ3 ∈ (1, 9), M3 ≥ 1 and M3 ∈ (1, 9), as

function of an additional value y added to the data x. The results illustrate that

both inferences are sensitive to any additional value where the NPI-SC for the

inference involving the mean increases as function of y, whereas the NPI-SC for

the inference involving the median is a step function. The maximum NPI-SC for

the NPI lower and upper probabilities for the event µ3 ≥ 1 are 0.0909 and 0.0545,

which occur at y = 17.39, and for M3 ≥ 1 are 0.0606 and 0.0424, which occur at



5.5. Robustness of the median and mean of the future observations 127

−0.07

0.00

0.07

0.14

−10 0 10 20

δ

NPI−SC

SC([LP](Mean in (1,9) ))

SC([UP](Mean in (1,9)))

−0.07

0.00

0.07

0.14

−10 0 10 20

δ

NPI−SC

SC([LP](Mean > 1 )

SC([UP](Mean >1)

−0.07

0.00

0.07

0.14

−10 0 10 20

δ

NPI−SC

[LP](M3 in (1,9) )

[UP](M3 in (1,9))

−0.07

0.00

0.07

0.14

−10 0 10 20

δ

NPI−SC

[LP](M3 in (1,9) )

[UP](M3 in (1,9))

Figure 5.9: SCI(x(2, δ)) for the events µ3 ≥ 1, µ3 ∈ (1, 9), M3 ≥
1 and M3 ∈ (1, 9)

µ3 ≥ 1 M3 ≥ 1 µ3 ∈ (1, 9) M3 ∈ (1, 9)
δ SCP SCP SCP SCP SCP SCP SCP SCP
-9 -0.0545 -0.0667 0 0 -0.0485 -0.0667 0 0

-7.41 -0.0485 -0.0545 0 0 -0.0424 -0.0545 0 0
-5.82 -0.0364 -0.0424 0 0 -0.0303 -0.0424 0 0
-4.23 -0.0303 -0.0364 0 0 -0.0242 -0.0364 0 0
-2.64 -0.0242 -0.0303 0 0 -0.0182 -0.0303 0 0
-1.05 -0.0121 -0.0182 0 0 -0.0121 -0.0182 0 0
0.54 0.0061 0.0061 0 0 0.0000 0.0061 0 0
2.13 0.0121 0.0182 0 0 0.0000 0.0121 0 0
3.72 0.0364 0.0424 0 0 0.0242 0.0364 0 0
5.31 0.0485 0.0545 0 0 0.0364 0.0485 0 0
6.9 0.0606 0.0667 0 0 0.0424 0.0606 0 0
8.49 0.0788 0.0848 0.1455 0.1273 0.0545 0.0727 0.1455 0.1273
10.08 0.0970 0.1030 0.1455 0.1273 0.0667 0.0909 0.1455 0.1273
11.67 0.1030 0.1030 0.1455 0.1273 0.0545 0.0848 0.1455 0.1273
12.9 0.1091 0.1091 0.1455 0.1273 0.0545 0.0848 0.1455 0.1273
13.26 0.1152 0.1152 0.1455 0.1273 0.0545 0.0848 0.1455 0.1273
14.85 0.1212 0.1212 0.1455 0.1273 0.0485 0.0848 0.1455 0.1273
15.3 0.1212 0.1212 0.1455 0.1273 0.0485 0.0848 0.1455 0.1273
16.44 0.1212 0.1212 0.1455 0.1273 0.0242 0.0667 0.0000 -0.0000
18.03 0.1394 0.1273 0.1455 0.1273 0.0182 0.0485 0.0000 -0.0000
19.62 0.1455 0.1333 0.1455 0.1273 0.0121 0.0424 0.0000 -0.0000
21.21 0.1515 0.1333 0.1455 0.1273 0.0061 0.0303 0.0000 -0.0000
22.8 0.1576 0.1333 0.1455 0.1273 0.0000 0.0182 0.0000 -0.0000
24.39 0.1576 0.1333 0.1455 0.1273 -0.0121 0.0061 0.0000 -0.0000

Table 5.7: SCI(x(2, δ)) for m = 3
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Figure 5.10: SCI(x, y) for the events µ3 ≥ 1, µ3 ∈ (1, 9), M3 ≥ 1
and M3 ∈ (1, 9)

y > 1. The maximum NPI-SC for the NPI lower and upper probabilities for the

event µ3 ∈ (1, 9) are 0.0530 and 0.0288, which occurs at y = 8. For y ≤ −8.05 the

effects on the lower and upper probabilities for the events µ3 ≥ 1 and µ3 ∈ (1, 9)

are greater than the effects on the lower and upper probabilities for the events

M3 ≥ 1 and M3 ∈ (1, 9). Table shows that for y = −6.46, . . . , 8.3 the NPI-SC for

µ3 ≥ 1 is less than the NPI-SC for M3 ≥ 1. From adding y ≤ −8.05 and y > 9

the inferences for µ3 ≥ 1 and µ3 ∈ (1, 9) are more sensitive than M3 ≥ 1 and

M3 ∈ (1, 9).

To illustrate the c-breakdown point, we consider NPI-SC as function of

the number of contaminants present in the data, starting by replacing x8 by

x8 + 1, then x8 and x7 by x8 + 1 and x7 + 5, and so on, until all observations

have been contaminated. Figure 5.11 shows SC[P ,P ](µ3≥1)(x(j1, . . . , jl, δ)) and

SC[P ,P ](M3≥1)(x(j1, . . . , jl, δ)) as functions of the number of the observations that

have been contaminated by adding different value of δ to them. The results clearly

show that when we contaminate up to 5 observations, which are 2, 5, 7, 10, 16 in the

data, to become 11.5, 12, 12.5, 13, 17, the inference involving the median X(2) ≥ 1

is not affected at all whereas the inference involving the mean of the future ob-
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µ3 ≥ 1 M3 ≥ 1 µ3 ∈ (1, 9) M3 ∈ (1, 9)
y SCP SCP SCP SCP SCP SCP SCP SCP
-16 -0.1136 -0.1364 -0.0758 -0.0848 -0.0606 -0.1167 -0.0333 -0.0606

-14.41 -0.1091 -0.1273 -0.0758 -0.0848 -0.0561 -0.1076 -0.0333 -0.0606
-12.82 -0.1000 -0.1182 -0.0758 -0.0848 -0.0470 -0.0985 -0.0333 -0.0606
-11.23 -0.0955 -0.1136 -0.0758 -0.0848 -0.0424 -0.0939 -0.0333 -0.0606
-9.64 -0.0909 -0.1091 -0.0758 -0.0848 -0.0379 -0.0894 -0.0333 -0.0606
-8.05 -0.0818 -0.1000 -0.0758 -0.0848 -0.0333 -0.0803 -0.0333 -0.0606
-6.46 -0.0682 -0.0773 -0.0758 -0.0848 -0.0242 -0.0576 -0.0333 -0.0606
-4.87 -0.0591 -0.0636 -0.0758 -0.0848 -0.0197 -0.0485 -0.0333 -0.0606
-3.28 -0.0409 -0.0455 -0.0758 -0.0848 -0.0015 -0.0303 -0.0333 -0.0606
-1.69 -0.0273 -0.0364 -0.0758 -0.0848 0.0121 -0.0212 -0.0333 -0.0606
-0.1 -0.0182 -0.0273 -0.0758 -0.0848 0.0167 -0.0121 -0.0333 -0.0606
1.49 0.0000 -0.0091 0.0606 0.0424 0.0303 0.0015 0.1030 0.0667
3.08 0.0182 0.0091 0.0606 0.0424 0.0439 0.0197 0.1030 0.0667
4.67 0.0227 0.0091 0.0606 0.0424 0.0348 0.0152 0.1030 0.0667
5.9 0.0364 0.0227 0.0606 0.0424 0.0439 0.0242 0.1030 0.0667
6.26 0.0409 0.0273 0.0606 0.0424 0.0439 0.0242 0.1030 0.0667
7.85 0.0545 0.0318 0.0606 0.0424 0.0485 0.0242 0.1030 0.0667
8.3 0.0591 0.0364 0.0606 0.0424 0.0530 0.0288 0.1030 0.0667
9.44 0.0636 0.0364 0.0606 0.0424 0.0394 0.0152 -0.0242 -0.0424
11.03 0.0727 0.0455 0.0606 0.0424 0.0303 0.0061 -0.0242 -0.0424
12.62 0.0818 0.0500 0.0606 0.0424 0.0303 0.0015 -0.0242 -0.0424
14.21 0.0864 0.0500 0.0606 0.0424 0.0258 -0.0076 -0.0242 -0.0424
15.8 0.0864 0.0500 0.0606 0.0424 0.0167 -0.0167 -0.0242 -0.0424
17.39 0.0909 0.0545 0.0606 0.0424 0.0030 -0.0258 -0.0242 -0.0424

Table 5.8: SCI(x, y) for m = 3

servations is affected. If we choose c = 0.15, then the c-breakdown points for the

lower and upper probabilities for M3 ≥ 1 and for the upper probability for µ3 ≥ 1,

are all equal to 0.875, so breakdown occurs when we change 7 observations out

of 8, whereas the c- breakdown point for the NPI lower probability for µ3 ≥ 1 is

0.625, so breakdown occurs if 5 out of 8 observations are contaminated.

Figure 5.12 illustrates the NPI-SC for the events µ3 ≥ 1 and M3 ≥ 1 as

function of the number of contaminants added to the data. The contaminant

values that have been added to the data sequentially are Y = {16.2, 16.3, 16.4,

16.5, 16.6, 16.9, 17, 17.9}. The results show that both inferences involving the mean

and the median are affected by any number of contaminates that have been added

to the data. Again if we choose c = 0.15, the smallest fraction of contaminations

added to the sample that cause SCI(x, y1, . . . , yl) to be greater than 0.15, are

4/12 and 6/14 for the NPI lower and upper probabilities for M3 ≥ 11, and 3/11

and 5/13 for µ3 ≥ 1. Thus the 0.15-breakdown point for this inference involving
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M3 > 1 µ3 > 1
λ∗0.15(P ) λ∗0.15(P ) λ∗0.15(P ) λ∗0.15(P )

λa 0.875 0.875 0.625 0.875
λb 0.3333 0.4286 0.2727 0.3846

Table 5.9: c-breakdown point for c = 0.15.
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Figure 5.11: SCI(x(j1, . . . , jl, δ)) for the events µ3 ≥ 1 and M3 ≥ 1

0.0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8

Number of contaminants

 

SC([LP](Median > 1))

SC([UP](Median > 1))

0.0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8

Number of contaminants

 

SC([LP](Mean > 1))

SC([UP](Mean > 1))

Figure 5.12: SCI(x, y1, . . . , yl) for the events µ3 ≥ 1 and M3 ≥ 1

the median is higher than for this inference involving the mean, as illustrated in

Table 5.9. Comparing Figures 5.11 and 5.12 we can see that contaminating the

data by replacing observations by contaminated values tends to be less affecting

than by adding contamination, as the latter affects the sample size which plays

an important role in our inferences.

♦
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5.6 Robustness of other inferences

In this section we consider the use of the presented tools for robustness, namely

NPI-SC and NPI-BP, for pairwise comparisons and for reproducibility of tests, as

presented in Sections 3.2, 4.3 and 4.4.

5.6.1 Robustness of pairwise comparisons

We investigate the robustness of one of the applications of NPI for future order
statistics for statistical inference problems, as presented in Section 3.2. The NPI-
SC of the lower and upper probabilities for the event that X(r) < Y(r), if we replace
yj by yj + δ, which we denote by ỹl, are

SCP (X(r)<Y(r))(y(j, δ))

=



0 if yj < xd and ỹl < xd

P (Y f
(r) ∈ I

y
l+1)× P (X(r) ∈ Ixd ) if yj < xd and xd < ỹl

P (Y f
(r) ∈ I

y
l+1)×

[
P (X(r) ∈ Ixd )P (X(r) ∈ Ixd+1)

]
if yj < xd < xd+1

and xd < xd+1 < ỹl

SCP (X(r)<Y(r))(y(j, δ))

=



0 if yj < xd and ỹl < xd

P (Y(r) ∈ I
y
l )× P (X(r) ∈ Ixd+1) if yj < xd and xd < ỹl

P (Y f
(r) ∈ I

y
l )×

[
P (X(r) ∈ Ixd+1)P (X(r) ∈ Ixd+2)

]
if yj < xd < xd+1

and xd < xd+1 < ỹl

The NPI pairwise comparisons for such an event are not sensitive to a small

change in the data, as they only are affected if the change to an observation has

changed the order of the X and Y observations. In the next example we will

illustrate the NPI-SC and NPI-BP for such NPI pairwise comparisons.

Example 5.4. To illustrate the NPI-SC for pairwise comparisons, we consider

the data set of a study of the effect of ozone environment on rats growth, as
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given in Example 3.4. We use this dataset to illustrate the effect of replacing

x2 = −14.7 by −14.7 + δ, for δ from −50 to 100, on the pairwise comparisons

based on the events X(r) < Y(r), r = 1, . . . ,m, and m = 5.

Figure 5.13 illustrates what happens to the NPI lower and upper probab-

ilities for the event X(r) < Y(r), if observation x2 = −14.7 in the X sample

is replaced by −14.7 + δ. Increasing the value −14.7 to −14.7 + δ leads to

decreasing SCP (X(r)<Y(r))(x(2, δ)) for δ such that the rank of this observation

among the Y group changes. However, if the contaminated value −14.7 + δ

does not change its rank among Y observations then SCP (X(r)<Y(r))(x(2, δ)) = 0

and SCP (X(r)<Y(r))(x(2, δ)) = 0. For δ ≤ −30 the NPI-SC for X(1) < Y(1) has

large effect where the other NPI-SC for the other inferences, for r = 2, . . . , 5,

are close to zero. For −1.5 ≤ δ ≤ 27 the SCP (X(r)<Y(r))(x(2, δ)) = 0 and

SCP (X(r)<Y(r))(x(2, δ)) = 0 for all r, as the value −14.7 + δ does not change

its rank among Y observations. For δ > 27, the effect of the contaminated value

−14.7 + δ increases as the value of r increase. The inferences involving r = 4 and

5 have large NPI-SC when the value x2 + δ exceeds all the Y observations.

r=1 r=2 r=3 r=4 r=5

−50 0 50 100 −50 0 50 100 −50 0 50 100 −50 0 50 100 −50 0 50 100

−0.05

0.00

0.05

δ

SC 
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UP

Figure 5.13: SCP (X(r)<Y(r))(x(2, δ)) for m = 5

To illustrate the c-breakdown point of these NPI pairwise comparisons, we

consider NPI-SC for X(r) < Y(r) for m = 3 and r = 1, 2, 3, for the case of adding

the value 100 to l observations in group X or group Y . This is shown in Figures

5.14 and 5.15 and Tables 5.10 and 5.11. Figure 5.14 illustrates that the absolute
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value of the NPI-SC increases as the value of l, the number of contaminations

in the X sample, increases. If we choose c = 0.05, then the NPI-BP for r = 1

is 10/22, for r = 2 it is 6/22 and for r = 3 it is 5/22, so as the value of r

increases the NPI-BP decreases. Thus the probability for the event X(r) < Y(r)

based on the given data is more robust if we consider r = 1, as it has the highest

0.05-breakdown point.

Figure 5.15 illustrates the NPI-SC for X(r) < Y(r), for m = 3 and r = 1, 2, 3,

if we replace l observations from the Y sample by y24−l + 100, . . . , y23 + 100.

For c = 0.05, the c-breakdown point for the lower and upper probabilities for

the event X(1) < Y(1) is 1. This is because the inference X(1) < Y(1) is most

affected in case of contamination of all y values such that these exceed all X

observations. For r = 2 the NPI-BP is λ∗0.05(P (X(2) < Y(2)), x(δ, 13, . . . , 23)) =

11/23 and λ∗0.05(P (X(2) < Y(2)), x(δ, 12, . . . , 23)) = 13/23. However, for r = 3,

λ∗0.05([P , P ](X(3) < Y(3)), x(δ, 22, 23)) = 2/23, so if we let y22 and y23 exceed all

the X observations, the inference breaks down.

r=1 r=2 r=3

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
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0.75
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Figure 5.14: |SCP (X(r)<Y(r))(x(23− l, . . . , 22, 100))| for m = 3

r = 1 r = 2 r = 3
l SCP SCP l SCP SCP l SCP SCP
9 0.0454 0.0413 5 0.0382 0.0365 4 0.0442 0.0447
10 0.0649 0.0599 6 0.0813 0.0772 5 0.1151 0.1151

Table 5.10: The absolute value of SCP (X(r)<Y(r))(x(j1, . . . , jl, 100))
for m = 3 and n = 22.
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0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0.0

0.1

0.2

0.3

Number of contaminants

 SC 

LP

UP

Figure 5.15: SCP (X(r)<Y(r))(y(24− l, . . . , 23, 100)) for m = 3

r = 1 r = 2 r = 3
l SCP SCP l SCP l SCP l SCP SCP
22 0.0315 0.0247 10 0.0429 12 0.0458 1 0.0243 0.0244
23 0.1376 0.1262 11 0.0501 13 0.0513 2 0.0563 0.0566

Table 5.11: SCP (X(r)<Y(r))(y(j1, . . . , jl, 100)) for m = 3 and n = 23.

♦

5.6.2 Robustness of NPI reproducibility probability of

two statistical tests

Based on the given data in the original test and the result of the actual hypothesis

test, that is whether the null hypothesis is rejected or not, NPI can be applied to

study the reproducibility of the test, assuming that the sample size of the actual

test and future test are the same n = m. This seems to be a natural assumption

in order to reflect reproducibility.

To study the robustness of NPI reproducibility of classical statistical tests, we

will only consider one way of contaminating the data which is by replacing one of

the observations by a small contaminant. We do not consider contamination by

adding a value to the data as this would make a substantial change to the test

statistic and could require a different threshold value, which would complicate

the study.
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We consider how a small change in the original data would influence the NPI

reproducibility probability of the test outcome given the original data. But we

have to emphasize the assumption that we only consider a small change to the

data which would not lead to a different result of the underlying test. So to keep

everything simple we assume that we only consider a small change which does

not change the outcome of the original test.

Most of the literature [54, 68] considers the robustness of the test result, so that

if a test is robust then small variations in the data should not be able to reverse

the test decision. In our study, we are interested in exploring the robustness of

the NPI reproducibility probability of the test conclusion, not the robustness of

the original test result. Thus, we will not consider the case where adding δ to one

of the observations could change the original test decision from rejecting to not

rejecting the null hypotheses, or the other way around.

First we consider the robustness of the reproducibility of the one-sided quantile

test of H0 : κp = κ0
p versus H1 : κp > κ0

p. The original test leads to rejection of

H0 if and only if k ≤ r − 1, where k is the number of observations in the original

sample x of size n that are less than κ0
p. Reproducibility of this test result is

therefore the event that, if the test were repeated, also with n observations, then

that would also lead to rejection of H0. Let κ0
p ∈ It = (xt−1, xt), then the effect

of adding δ to any of the data observations, say xj which becomes x̃l, on the

reproducibility of the quantile test for that event is

SCP (X(r)>κ0
p|k)(x(j, δ)) =

 0 if xj < κ0
p and x̃l < κ0

p

P (X(r) ∈ It) if xj < κ0
p and x̃l > κ0

p

SCP (X(r)>κ0
p|k)(x(j, δ)) =

 0 if xj < κ0
p and x̃l < κ0

p

P (X(r) ∈ It−1) if xj < κ0
p and x̃l > κ0

p

If the original test led to not reject H0, so if k ≥ r, then reproducibility of

the test is the event that H0 would also not get rejected in the future test. The

NPI-SC for the NPI lower and upper reproducibility probabilities for X(r) ≤ κ0
p
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are

SCP (X(r)<κ0
p|k)(x(j, δ)) =



0 if xj > κ0
p and x̃l > κ0

p

0 if xj < κ0
p and x̃l < κ0

p

P (X(r) ∈ It) if xj > κ0
p and x̃l < κ0

p

−P (X(r) ∈ It−1) if xj < κ0
p and x̃l > κ0

p

The NPI-SC for the NPI upper probability

SCP (X(r)<κ0
p|k)(x(j, δ)) =



0 if xj > κ0
p and x̃l > κ0

p

0 if xj < κ0
p and x̃l < κ0

p

P (X(r) ∈ It+1) if xj > κ0
p and x̃l < κ0

p

−P (X(r) ∈ It) if xj < κ0
p and x̃l > κ0

p

So the NPI-RP for the quantile test is only affected if the change in the data

changes the value of k, which is the number of observations less than κ0
p.

Example 5.5. We consider the same case as presented in Example 4.1, to il-

lustrate the NPI-SC for the NPI-RP for the quantile test considering the third

quantile, with sample size of 15, and 5% significance level. Let k̃ denote the

number of observations that are less than κ0
p based on the contaminated sample

x(j, δ).

Table 5.12 presents, in the first column, the NPI-SC for the NPI-RP for

the event that the future test would also reject H0 if X(8) ≥ κ0
0.75 given all

possible value of k in the original test. This NPI-RP for this event is only

affected if k, the number of observations less than κ0
0.75, changes, otherwise

SC[RP (k),RP (k)](x(j, δ)) = 0. The size of the effect for such an inference increases

as the value of k increases.

Table 5.12 presents, in the second column, the NPI-SC for the test reprodu-

cibility if the original test did not reveal a significance affect, which is the event

that the future test would also lead to not reject H0, if X(8) < k0
0.75. The RP for

X(8) < k0
0.75 is only affected if xj < κ0

0.75 becomes xj + δ > κ0
0.75. The NPI-SC for

such an inference decreases as the value of k increase.

♦
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P (X(8) ≥ κ0
0.75|k) P (X(8) ≤ κ0

0.75|k)
k k̃ SCRP SCRP k k̃ SCRP SCRP
0 1 -0.00600 -0.00110 9 8 -0.14238 -0.12656
1 2 -0.01799 -0.00600 10 9 -0.12656 -0.09930
2 1 0.01799 0.00600 11 10 -0.09930 -0.06770
3 2 0.03898 0.01799 12 11 -0.06770 -0.03898
4 3 0.06770 0.03898 13 12 -0.03898 -0.01799
5 4 0.09930 0.06770 14 13 -0.01799 -0.00600
6 5 0.12656 0.09930 15 14 -0.00600 -0.00110
7 6 0.14238 0.12656

Table 5.12: SCRP (k)(x(j, δ)) for n = 15.

We next consider NPI-SC for the NPI-RP of the precedence test presented in

Section 4.4. As the NPI-RP inferences for the precedence test depend monotonic-

ally on the combined ordering of the original test data, so the local change to the

combined ordering of the data of the two populations in the original test leads to

change both the NPI lower and upper probabilities for the event of interest.

First we will consider the RP for the case that H0 is rejected in the original
test, so xk < yr, then RP = P (X(k) < Y(r)) and RP = P (X(k) < Y(r)). The
effects of adding δ to one of the observations in group Y , say yj which becomes
yj + δ = ỹl, on RP and RP are

SCP (X(k)<Y(r))(y(j, δ))

=



0 if yj < xd and ỹl < xd

P (Y f
(r) ∈ I

y
l+1)× P (X(k) ∈ Ixd ) if yj < xd and xd < ỹl

P (Y f
(r) ∈ I

y
l+1)×

[
P (X(k) ∈ Ixd ) + P (X(k) ∈ Ixd+1)

]
if yj < xd < xd+1

and xd < xd+1 < ỹl

SCP (X(k)<Y(r))(y(j, δ))

=



0 if yj < xd and ỹl < xd

P (Y(r) ∈ I
y
l )× P (X(k) ∈ Ixd+1) if yj < xd and xd < ỹl

P (Y f
(r) ∈ I

y
l )×

[
P (X(k) ∈ Ixd+1) + P (X(k) ∈ Ixd+2)

]
if yj < xd < xd+1

and xd < xd+1 < ỹl

If H0 is not rejected in the original test, so x(k) > y(r), then RP = P (X(k) >
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Y(r)) and RP = P (X(k) > Y(r)). The effects of adding δ to yj in group Y , so yj
becomes ỹl, on RP and RP are

SCP (X(k)>Y(r))(y(j, δ))

=



0 if yj < xd and ỹl < xd

−P (Y f
(r) ∈ I

y
l )× P (X(k) ∈ Ixd+1) if yj < xd and xd < ỹl

−P (Y f
(r) ∈ I

y
l )×

[
P (X(k) ∈ Ixd+1) + P (X(k) ∈ Ixd+2)

]
if yj < xd < xd+1

and xd < xd+1 < ỹl

SCP (X(k)>Y(r))(y(j, δ))

=



0 if yj < xd and ỹl < xd

−P (Y(r) ∈ I
y
l )× P (X(k) ∈ Ixd ) if yj < xd and xd < ỹl

−P (Y f
(r) ∈ I

y
l+1)×

[
P (X(k) ∈ Ixd ) + P (X(k) ∈ Ixd+1)

]
if yj < xd < xd+1

and xd < xd+1 < ỹl

In Example 5.6 we illustrate the effect of a contaminant in X sample on the

NPI lower and upper reproducibility probabilities.

Example 5.6. To illustrate the NPI-SC for the NPI-RP for the precedence test

as presented in Section 4.4, we consider the same data set as in Example 4.2,

with one-sided alternative hypothesis H1 : λx < λy. We consider both significance

levels α = 0.05 and α = 0.1, and assume r = 6. The critical value is k = 10

for α = 0.05 whereas for α = 0.1 it is k = 9. This precedence test does not

lead to rejection of H0 at 5% significance level and it leads to rejection H0 at

10%. As discussed after Example 4.2, the NPI lower and upper reproducibility

probabilities, by using only the actual outcome without any assumption on the

ordering of the right-censored observations, are RP = P (X(10) > Y(6)) = 0.3871

and RP = P (X(10) > Y(6)) = 0.8669 for α = 0.05. While for α = 0.1, RP =

P (X(9) < Y(6)) = 0.3029 and RP = P (X(9) < Y(6)) = 0.7079. Let us now assume

that we added an increasing value of δ to x2 = 0.64, then we examine its effect

on the NPI lower and upper reproducibility probabilities.
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α = 0.05 α = 0.1
δ SCRP SCRP SCRP SCRP

< 0.176 0 0 0 0
0.176− 0.846 0.00006 0.00009 -0.00044 -0.00023
0.872− 0.898 0.00031 0.00031 -0.00149 -0.00120
0.924− 1.444 0.00092 0.00069 -0.00337 -0.00355

1.470 0.00711 0.00457 -0.01501 -0.01748
1.496− 3.186 0.01598 0.00923 -0.02897 -0.03744

> 3.83 0.06121 0.07502

Table 5.13: SCRP (x(2, δ)) for X(10) > Y(6) and X(9) < Y(6).

Figure 5.16 presents, in the first column, the NPI-SC for the NPI-RP for the

event that X(10) > Y(6), as a function of δ. The results clearly illustrates that NPI-

SC for the NPI-RP for precedence test is a step function, so the NPI-RP is only

affected if x2 +δ changes its rank among the Y observations. If x2 +δ > 3.83 = y6

then x2 + δ is treated as right-censored observation in the x group, and the lower

and upper reproducibility probabilities are achieved by taking the minimum and

the maximum NPI lower and upper probability respectively, for reproducibility

over all possible orderings for the right-censored. The maximum NPI-SC for

X(10) > Y(6) is achieved when x2 + δ becomes very large and exceeds y6.

Figure 5.16 presents, in the second column, the NPI-SC for the lower and

upper reproducibility probabilities for the event X(9) < Y(6), as a function of

δ. Increasing the values of δ such that it affects the x2 + δ rank among the Y

observations leads to decrease of the value of the NPI-SC. We consider only a

small value of δ, as if x2 +δ exceeds y6 that will change the original test conclusion

and also the reproducibility probability.

Table 5.13 shows the NPI-SC for the NPI-RP for this precedence test. The

values of NPI-SC are increasing as the value of x2 + δ increases for α = 0.05, and

decreasing for α = 0.1. That again illustrates the monotonicity of these inference

with regard to changes in ranks of the data as discussed in Section 4.4.
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Figure 5.16: SCRP (x(2, δ)) for X(10) > Y(6) and X(9) < Y(6)

♦

5.7 Concluding remarks

This chapter is a first step towards robustness theory for the NPI setting, and

we looked at some examples involving inferences on future order statistics. We

found that some of the concepts from classical statistics cannot immediately be

applied, because we do not use estimators but specific inferences which are limited

in value between [0, 1]. So, inspired by the classical concepts we have defined new

concepts which are related to NPI. We then explored their use for some inferences

presented in the earlier chapters of this thesis. We had an investigation of the

mean and the median for the m future observations. The inference that involving

the median of the m future observation is a step function, whereas the mean is

affected by a single contaminate, but the size of the effect is close to the median

or less in some cases. For future research it will be of interest to consider other

robustness concepts and questions for NPI, and also, of course, robustness of other

NPI methods.



Chapter 6

Concluding Remarks

In this thesis we have contributed to the development of NPI by considering

multiple future observations for real valued random quantities. We have presented

core predictive inferences of several events of interest involving order statistics of

the future observations. Although some of these inferences agree with classical

order statistics result [3, 36, 49], their derivation is often more straightforward

than for the classical approach due to the use of the A(.) assumptions for prediction

of the m future observations. In the classical approach, typically both the data

and future observations are considered to be random quantities sampled from an

unknown population, and the predictive inference is derived through conditioning

on the given data observations. The NPI framework enables us to use lower and

upper probabilities which extend the range of possible inferences compared to the

classical method. We have also showed how pairwise and multiple comparisons

can be based on such future order statistics.

We have also developed NPI for the reproducibility probability (RP) of stat-

istical tests by considering two basic tests based on order statistics, namely a

quantile test and a precedence test. Some tests may have quite poor RP, the

minimum NPI lower RP is 0.5 for the quantile test and 0.25 for the precedence

test. The precedence test scenarios studied in this thesis require careful attention

as it typically has right-censored observations. Therefore, we have introduced two

points of view for NPI-RP for such a precedence test. First we have assumed that

141
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all the data were available in the original test, considering all possible orderings

of the right-censored observations. Secondly, we defined the lower and upper RP

as the minimum and maximum over all RP values for all possible orderings of the

right-censored data. Obviously, this perspective leads to high imprecision but it

is convenient as there are no assumptions on the right-censored data. The NPI

approach to reproducibility of tests can be developed for many statistical test,

including more sophisticated precedence tests as presented by Balakrishnan and

Ng [10].

A first exploration of robustness of NPI has been presented in this thesis. We

have introduced some well-known concepts of robust tools, namely sensitivity

curve and breakdown point, to the NPI setting. We have modified these two

concepts to suit our context of NPI inferences but we have kept similar interpret-

ations. We have introduced the NPI- sensitivity curve and c- breakdown point

for evaluating the robustness of the predictive inferences. For future research it

will be of interest to consider other robustness concepts and questions for NPI,

and also, of course, robustness of other NPI methods.
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Appendix A

Proof properties of Equation (2.2)

For all r = 1, . . . ,m and j = 1, . . . , n+ 1 we have the obvious symmetry

P (X(r) ∈ Ij) = P (X(m+1−r) ∈ In+2−j) (A.1)

This can be proved straightforward by applying Equation (2.2) to the right hand

side of Equation (A.1),

P (X(m+1−r) ∈ In+2−j) =

(
(m+1−r)+(n+2−j)−2

(n+2−j)−1

)(
n−(n+2−j)+1+m−(m+1−r)

n−(n+2−j)+1

)
(
n+m
n

)

=

(
m+1−r+n−j

n+1−j

)(
r+j−2
j−1

)
(
n+m
n

) = P (X(r) ∈ Ij)

�

Further, one of the properties we want to consider is whether P (X(r) ∈ Ij)

is unimodal. The probability distribution function given by Equation (2.2) is

unimodal if and only if it has a mode j∗ ∈ {1, . . . , n + 1} such the function is

non-decreasing on (−∞, j∗], while on [j∗,∞) it is non-increasing. If j∗ is a mode

for P (X(r) ∈ Ij) then P (X(r) ∈ Ij) ≤ P (X(r) ∈ I∗j ) for all j. The probability for

X(r) ∈ Ij is unimodal in j, with the maximum probability of X(r) ∈ Ij∗ with,

( r − 1
m− 1)(n+ 1) ≤ j∗ ≤ ( r − 1

m− 1)(n+ 1) + 1 (A.2)

To prove that the probability in Equation (2.2) is unimodal with the single
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local maximum in interval I∗j , we divide the proof into two cases. For j ≤ j∗,

we show that P (X(r) ∈ Ij−1) ≤ P (X(r) ∈ Ij), and for j ≥ j∗, we show that

P (X(r) ∈ Ij) ≥ P (X(r) ∈ Ij+1).

Case 1. For 1 ≤ r ≤ m and j ≤ j∗

P (X(r) ∈ Ij−1) ≤ P (X(r) ∈ Ij) (A.3)

From Equation (2.2), Equation (A.3) is true if and only if(
r + j − 2
j − 1

)(
n− j + 1 +m− r

n− j + 1

)
≥
(
r + (j − 1)− 2

(j − 1)− 1

)(
n− (j − 1) + 1 +m− r

n− (j − 1) + 1

)

⇔ (r + j − 2)!(n− j +m− r + 1)!(j − 2)!(n− j + 2)!
(r + j − 3)!(n− j +m− r + 2)!(j − 1)!(n− j + 1)! ≥ 1

⇔ (r + j − 2)(n− j + 2)
(n− j + 2 +m− r)(j − 1) ≥ 1

⇔ ((r − 1) + (j − 1))(n− j + 2) ≥ ((n− j + 2) + (m− r)) (j − 1)

⇔ rn− rj + 2r − n+ j − 2 ≥ mj −m− rj + r

⇔ j(m− 1) ≤ rn+ r − n− 2 +m

⇔ j(m− 1) ≤ (r − 1)(n+ 1) + (m− 1)

⇔ j ≤ (r − 1)(n+ 1)
(m− 1) + 1 (A.4)

from the RHS of inequality in Equation (A.2) it is known that j∗ ≤ (r−1)(n+1)
(m−1) + 1

so together with j ≤ j∗, Equation(A.4) holds.

Case 2. For 1 ≤ r ≤ m and j ≥ j∗

P (X(r) ∈ Ij) ≥ P (X(r) ∈ Ij+1) (A.5)

This is true if and only if(
r + j − 2
j − 1

)(
n− j + 1 +m− r

n− j + 1

)
≥
(
r + (j + 1)− 2

(j + 1)− 1

)(
n− (j + 1) + 1 +m− r

n− (j + 1) + 1

)

⇔ j(n− j + 1 +m− r)
(n− j + 1)(r + j − 1) ≥ 1



Appendix A. Proof properties of Equation (2.2) 154

⇔ j(m− r) ≥ (n− j + 1)(r − 1)

⇔ jm− jr ≥ nr − jr + r − n+ j − 1

⇔ j(m− 1) ≥ (r − 1)(n+ 1)

⇔ j ≥ (r − 1)(n+ 1)
(m− 1) (A.6)

By the first inequality in equation (A.2) it is known that j∗ ≥ (r−1)(n+1)
(m−1) thus

together with j ≥ j∗ Equation (A.6) holds.

�
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Proof of Theorem 3.1

Proof of Theorem 3.1

The NPI lower and upper probabilities (3.3) and (3.4) are, as always, obtained

by putting the probability masses per interval at end points in order to minimize

or maximize the probability for the event of interest, given the joint probabilities

for the order statistics based on the A(n) assumptions. The lower probability given

by Equation (3.3) is derived by summing up the joint probabilities for the events

X(r) ∈ Ixjx , X(s) ∈ Ixlx and Y(r) ∈ Iyjy , Y(s) ∈ Iyly for which xjx < yjy−1, xlx−1 > yly

and xlx−1 ≥ xjx hold. This follows from putting the probability masses for X(r)

and Y(s) to the right end points of their respective intervals, and for X(s) and Y(r)

to the left end points of their respective intervals. For the case where X(r) and

X(s) belong to the same interval, we can achieve a lower probability of zero for the

event that both Y(r) and Y(s) are between these two ordered future X observations,

due to the fact that the A(.) assumptions do not imply any assumptions on the

distribution of such probability masses within an interval between two consecutive

data observations.

The NPI upper probability given by Equation (3.4) is derived similarly, by

putting the probability masses for all 4 ordered future observations at the opposite

end points of the intervals compared to the derivation of the lower probability,

as explained above. However, for the upper probability the case where Y(r) and

Y(s) belong to the same interval must be taken into account. This leads to the
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additional term in Equation (3.4), which actually involves maximisation of the

probability given in Equation (3.5). In this case, Y(r) and Y(s) can be assumed

to be extremely close to each other, effectively both equal to a value y∗jy ∈ I
y
jy .

This is possible due to the flexibility of placing the respective probability masses

at any convenient point within the data intervals. Note that now we do not just

put these probability masses at end points of the interval. The remaining task

is to maximize the term in Equation (3.5) with regard to y∗jy ∈ Iyjy , with this

term dependent on whether or not any X group data observations are within

the interval Iyjy . If there are no such X observations, then one can just put the

Y probability mass in this interval at either of its end-points. However, if there

are X observations in the interval Iyjy , then these partition this interval and we

must calculate the term in Equation (3.5) for y∗jy in each of the sub-intervals of

this partition, and finally take the maximum over these values. Clearly, while

this is slightly awkward since there is no closed-form expression for this upper

probability, it is a straightforward algorithm which takes little computational

effort due to the limited number of X values in each Y interval.

�

  
y j y−1 y j y

x jx
x jx+1 x jx+2x jx−1

Y*

Figure B.1: Upper probabilities, taking the case when Y(r), Y(s)
fall in the same interval Iyj

For example, if Y ∗ ∈ (yjy−1, yjy) and there are observations from group X that

fall in this interval Ijy , as illustrated in Figure B.1, the x observations divided

the interval Iyjy into three intervals (yjy−1, xjx),(xjx , xjx+1) and (xjx+1, yjy), as we

have freedom to put Y ∗ ∈ Iyjy at any point in the interval Iyjy . Since we could put

Y ∗ in any point between these intervals, let us take the middle point. Then we

take the maximum probabilities of these.

max
(
P yjy−1+xjx

2
, Pxjx +xjx+1

2
, P

(
xjx+1+yjy

2 )

)
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.

For the case where interval Iyj does not contain any observed value from group

X then P (Y(r) ∈ Iyjy , Y(s) ∈ Iyjy) can be assigned to any end point in the interval

(yjy−1, yjy), as the number of x observations to the right of yjy−1 is the same as

the number of the x observations at the right of yjy . As we count the number

of x in the right and left y∗, it does not matter where the joint probability mass

is assigned in which end point. To be consistent, we also take the medial point

y∗ = yjy−1+yjy

2 .
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P (X(r) ∈ Ĩj|y ∈ Ij∗)

The probability P (X(r) ∈ Ĩj|y ∈ Ij∗) based on n+ 1 observations and an observa-

tion added to the left of interval Ij, so y ∈ Ij∗ for j∗ < j, is straightforward from

Equation (2.2) by replacing n by n+ 1 and j by j + 1,

P (X(r) ∈ Ĩj+1|y ∈ Ij∗) =
(
j + r − 1

j

)(
n− j + 1 +m− r

n− j + 1

)(
n+m+ 1
n+ 1

)−1

(C.1)

Similarly, for j∗ > j, n is replaced in Equation (2.2) by n+ 1 but j is unchanged,

P (X(r) ∈ Ĩj|y ∈ Ij∗) =
(
j + r − 2
j − 1

)(
n− j + 2 +m− r

n− j + 2

)(
n+m+ 1
n+ 1

)−1

(C.2)

For j∗ = j, we get

P (X(r) ∈ Ij|y ∈ Ij) = P (X(r) ∈ Ij ∪ Ĩj+1|y ∈ Ij)

= P (X(r) ∈ Ĩj|y ∈ Ij∗) + P (X(r) ∈ Ĩj+1|y ∈ Ij∗)

The probability in Equation (C.1) is the same for all j∗ = 1, . . . , j − 1. Similarly,

Equation (C.2), is the same for all j∗2 = j+1, . . . , n+1. Analysis of the probabilities

in Equations (C.1) and (C.2) leads to the symmetry property P (X(r) ∈ Ĩj|y ∈

Ij∗) = P (X(m+1−r) ∈ Ĩn−j+2|y ∈ Ij∗) for j∗ < j and j∗ > j respectively, which can

be proved straightforwardly by replacing r by m + 1 − r and j by n − j + 2 in
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Equation (C.2), which gives Equation (C.1). Similarly for j∗ = j

P (X(r) ∈ Ĩj ∪ Ĩj+1|y ∈ Ij) = P (X(m+1−r) ∈ Ĩn−j+2 ∪ Ĩn−j+3|y ∈ In−j+2)



Appendix D

Proof of Theorem 5.1

Proof. Proof of Theorem 5.1

We show that for m > 1,

P (X(r) ∈ Ĩj+1|y ∈ Ij∗) ≥ P
(
X(r) ∈ Ij

)
for j∗ < j if and only if j ≤ (r − 1)(n+ 1)

m
(D.1)

and

P (X(r) ∈ Ĩj|y ∈ Ij∗) ≥ P
(
X(r) ∈ Ij

)
for j∗ > j if and only if j ≥ r(n+ 1)

m
(D.2)

Using Equations (2.2) and (C.1),

P (X(r) ∈ Ĩj+1|y ∈ Ij∗) ≥ P
(
X(r) ∈ Ij

)
⇔

(
j+r−1
j

)(
n−j+1+m−r

n−j+1

)(
n+m+1
n+1

)−1

(
j+r−2
j−1

)(
n−j+1+m−r

n−j+1

)(
n+m
n

)−1 ≥ 1

⇔ (n+ 1)(j + r − 1)
j(n+m+ 1) ≥ 1

⇔ j ≤ (r − 1)(n+ 1)
m

(D.3)

and

P (X(r) ∈ Ĩj|y ∈ Ij∗) ≥ P
(
X(r) ∈ Ij

)
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⇔

(
j+r−2
j−1

)(
n−j+2+m−r

n−j+2

)(
n+m+1
n+1

)−1

(
j+r−2
j−1

)(
n−j+1+m−r

n−j+1

)(
n+m
n

)−1 ≥ 1

⇔ (n+ 1)(n− j + 2 +m− r)
(n+m+ 1)(n− j + 2) ≥ 1

⇔ (n+ 1) [(n+ 1)− (j − 1) + (m− r)] ≥ ((n+ 1) +m)((n+ 1)− (j + 1))

⇔ j ≥ r(n+ 1)
m

+ 1 (D.4)

�
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