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Abstract

We study required numbers of tasks to be tested for a technical system, including

systems with built-in redundancy, in order to demonstrate its reliability with regard

to its use in a process after testing, where the system has to function for different

types of tasks, which we assume to be independent. We consider optimal numbers

of tests as required for Bayesian reliability demonstration in terms of failure-free

periods, which is suitable in case of catastrophic failures, and in terms of the expected

number of failures in a process after testing. We explicitly assume that testing

reveals zero failures. For the process after testing, we consider both deterministic

and random numbers of tasks. We also consider optimal numbers of tasks to be

tested when aiming at minimal total expected costs, including costs of testing and

of failures in the process after testing. Cost and time constraints on testing are

also included in the analysis. We consider such reliability demonstration for a single

type of task, as well as for multiple types of tasks to be performed by one system.

We also consider optimal Bayesian reliability demonstration testing in combination

with flexibility in the system redundancy, where more components can be installed

to reduce test effort. For systems with redundancy, we restrict attention to systems

with exchangeable components, with testing only at the component level.

We use the Bayesian approach with the Binomial model and Beta prior dis-

tributions for the failure probabilities. We discuss the influence of choice of prior

distribution on the required zero-failure test numbers, where these inferences are

very sensitive to the choice of prior distribution, which requires careful attention to

the interpretation of non-informativeness of priors.
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10, (n, 0)) ≥ p, with a Beta(α, 0) prior. . . . . . . . . . . . . . . . . . 31

3.2 Minimal test numbers required for different p. . . . . . . . . . . . . . 37

3.3 Minimal test numbers required in Cases (a)-(l). . . . . . . . . . . . . 39

3.4 Optimal test numbers required in Cases (1)-(4). . . . . . . . . . . . . 44

3.5 Optimal test numbers required in Cases (a)-(c) for different values of

αi and βi = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Parameters for 4 types of tasks. . . . . . . . . . . . . . . . . . . . . . 58

4.2 Optimal test numbers with B = 1000 and T = 500. . . . . . . . . . . 58

4.3 Optimal real-valued numbers of tests, with B = 425 and T = 500. . . 60

5.1 r(1, 2|m = 5, (20, 0)) and r(1, 2|M ∼ Po(5), (20, 0)) for varying α, β. . 73

5.2 Minimal test numbers for a 6-out-of-8 system. . . . . . . . . . . . . . 74

5.3 Minimal n, npar, and nser for y = 8 and for different p. . . . . . . . . 76

5.4 Minimal npar, n, and nser for y = 8 and y = 9 and for different m. . . 78

5.5 Minimal test numbers required for different x-out-of-y systems and

for different cases, Cases (a)-(l). . . . . . . . . . . . . . . . . . . . . . 80

5.6 Minimal test numbers required for different x-out-of-y systems, for

Cases (a)-(l). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 Optimal test numbers for x-out-of-y systems. . . . . . . . . . . . . . . 83

5.8 Optimal n and y for x = 2, p = 0.95 and c = 1. . . . . . . . . . . . . 86

viii



List of Tables ix

5.9 Optimal n and y for x = 2, p = 0.95 and C = 10, 000. . . . . . . . . . 87

5.10 Optimal n and y for x = 2, p = 0.99 and C = 10, 000. . . . . . . . . . 87

5.11 Optimal ni, for all i, and y for x = 2 and p = 0.95. . . . . . . . . . . 88



Chapter 1

Introduction

1.1 Overview

In many situations a technical system or unit can be tested before actually being

used in real-life processes. Such testing is particularly important if high reliability

is the aim, for example if failures (the unacceptable performance caused by a fault)

have severe consequences, such as losses of life or business. The focus in this thesis

is explicitly on the system’s required performance during a specified period after

testing, with tasks that the system has to perform during that period either arriving

as stochastic processes, the random case, or known in advance, the deterministic

case. We first consider a unit-system in Chapters 2 to 4, and then we extend our

approach to include systems with redundancy, where components are considered

to be exchangeable, in Chapter 5. We use predictive formulations for reliability

requirements and related optimisation problems. Prior to the system’s use in a

process it can be tested, where we can use tasks as inputs without relying on a

particular arrival process for the tasks [32, 39, 40, 54, 55]. We explicitly assume that

testing reveals zero failures, which we share with Martz and Waller [37] and which

has also been considered by Sandoh [53], in order for the system to be used in the

process after testing. This assumption is mostly used for safety-critical systems

where high reliability is required.

Throughout this thesis, we consider such situations in the following setting. We

assume that the system has to perform one or multiple types of tasks, which are

1



1.1. Overview 2

independent both in the manner in which the system performs the tasks and in the

arrival of these tasks in the processes considered. We also assume that the system

does not wear-out, and indeed performs tasks of one type similarly, in the sense

that failures occurring in tasks of the same type can be represented by exchangeable

Bernoulli random quantities, enabling a simple Bayesian model [33, 38] (Section

2.3). In addition, the functioning of the system for such different types of tasks

is tested independently for each type of task. These independence assumptions

may, in some situations, be considered to be unrealistic, for example if some system

functionality is shared by all types of tasks or if one strongly feels that ‘one-test-

tests-all’ for some type of task. Many such situations would require more detailed

modelling, with positive correlations between probabilities of the system dealing

successfully with different (types of) tasks explicitly included in the model. Such

included positive correlations would lead to fewer required tests without failures

in order to demonstrate reliability, hence the results in this thesis could be seen

as an upper bound for required test numbers in case of lack of knowledge about

such possible positive correlations. From the point of view of observing test results

possibly to support such (possible) positive correlations, we would like to remark

that with the assumption of stopping testing at the first observed failure, the test

data could not statistically support any claim of such possible positive correlations,

and, alternatively, if there are no failures observed in the test this could also not

provide conclusive statistical support for such correlations. Hence, not only are the

results here important as they correspond to a kind of ‘worst-case scenario’ for the

number of tests required, the test observations in this setting could also not provide

conclusive statistical support in favour, or against, assumptions on such correlations

had one included these in the model. Study of required test effort, as we present in

this thesis, for the more general situations with positive correlations as presented in

Coolen, et al. [19] is an interesting topic for future research.

Throughout, we are interested in the required numbers of tasks, of each type,

to be tested without failures to achieve a certain required level of reliability for the

process in which the system is used after testing. We will express such reliability in

terms of probability of failure-free periods (Chapters 3 and 5) and in terms of the
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expected number of failures (Chapter 4) in the process after the zero-failure testing.

The solutions of our formulated problems depend explicitly on the number of tasks,

or the length of the period after testing considered, which does not occur in the more

established approaches. We will aim for minimal total number of tests needed and for

minimal total expected costs, both of testing and possible failures in the process after

testing. We consider both types of process failures; catastrophic failures, in the sense

that the process would be discontinued, and non-catastrophic failures, which allow

continued use of the system in the process. Test budget and, in some situations,

time constraints, to achieve a predictive reliability requirement for the system’s

functioning in the process, are also taken into consideration. We consider this from

a Bayesian statistical perspective [6, 24], which has the advantage that predictive

inference is relatively straightforward. Bayesian statistics also offers the opportunity

to take expert judgements explicitly into account by eliciting an appropriate prior

distribution [5, 49]. However, if one requires reliability to be demonstrated via zero-

failure testing, one would probably not wish to rely on assumed information other

than the test results. In the Bayesian setting, this suggests the use of a so-called

‘non-informative’ prior, choice of which is far from trivial for zero-failure testing,

which will be shown in this thesis.

The optimal solutions to the problems considered in this thesis depend on the,

possibly random, numbers of tasks of different types in, or length of, the considered

process after testing. This does not occur in the more established approaches in

which the optimality criteria do not tend to take such process characteristics explic-

itly into account. A motivation here is the observation that frequently, when one

speaks about testing to demonstrate reliability, it is rather vague which optimality

criterion is deemed most appropriate.

1.2 Reliability demonstration

A natural measure of reliability, especially for critical systems (or components), is

the probability that the system will perform successfully (without failures) for a

specified period of time and in a specific environment, according to the prior knowl-



1.2. Reliability demonstration 4

edge and the information obtained from the testing process. In most applications

in the literature of reliability, the focus tends to be on unobservable characteris-

tics such as the mean time between failures (MTBF), which is considered to be a

critical parameter to measure reliability, see e.g. Meeker and Escobar [43, Sec.10.6]

and Martz and Waller [38]. Such applications do not take into account important

information about the process after testing, e.g. the required number of tasks in the

process after testing, as we consider in this thesis, has not been given much attention

in the reliability metrics literature. Kvam and Miller [32] state that inference for

the unobservable parameters, especially if they have no operational meaning to the

analyst, can be unnecessary, if not misleading in the applications of probabilistic

safety assessment. In such applications, using observable parameters allows the fo-

cus to be on future failures without the necessity of estimating failure rates. Kvam

and Miller present methods for predicting future numbers of failures for probabilis-

tic safety assessments, where failures are modelled with the Poisson and Binomial

distributions. They also introduce prediction intervals for future numbers of failures

based on zero failures in the test phase, in the case of highly reliable test items,

where they support Bayesian methods to be used in such applications. However,

they do not study the required number of tests to demonstrate a required reliability

level.

Barlow [4] presents a historical overview of reliability theory from 1961, the year

of publication by Birnbaum, et al. [8], when reliability theory started to be treated

as a separate subject, to the year 2002. He also emphasizes the need of adopting

the Bayesian approach through reliability history. A brief historical overview to

reliability can also be found in Andrews and Moss [1].

Reliability testing offers not just improvement of the system but also provides

a basis for reliability assessment. It is best for reliability assessment to be carried

out during every stage of a project, with reliability demonstration the final stage of

reliability assurance. Balaban [3] emphasizes the importance and effectiveness of re-

liability demonstration as a reliability assurance activity, near the end of the system

development phase, that provides real, measurable data on reliability performance.

As testing is an important way to learn about the performance of a system, we
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discuss the general meaning and importance of testing in reliability below.

1.3 Testing and reliability

Failure of large projects, some causing disasters, including the loss of human life

and financial loss, highlighted the importance of testing in order to find out how

reliable the system is to be run safely and according to the user’s specifications. For

example, the European Space Agency’s Ariane 5 exploded 40 seconds after lift-off

because of a software error [52],

In order to learn about the performance of any system, testing is a useful way

to gain insight into the overall system quality and to find errors in order to correct

them. Testing can be regarded as a tool for learning about the quality of the

system by examining it with the aim to find errors, given the user’s specifications

and environment, before releasing the system for practical application. In other

words, test results can be used to deduce the probability of the system failing over a

specified period of operation in a process after testing, if the process is assumed to

be known. Moreover, testing gives the opportunity to correct errors that are found

in the testing process, with the aim of increasing the quality and the reliability of

the system. We emphasize the difference between testing and the correction process.

Testing can never ensure that the system is free of faults. If testing results in zero

failures then it may suggest good reliability of the system, but it cannot confirm

that you have a system that is free of faults. As Redmill [52] states, “Testing can

prove imperfection by finding a single fault, but it cannot prove perfection”.

Generally speaking, the more we test a system, the more confident we can be

about its level of reliability. However, it is usually not possible to test exhaustively

due to time, budget and other constraints imposed by the real world [31]. Myers [47]

claims that by testing, which is often a costly activity, one can add some value to

the system by raising its quality or reliability, which could be performed by finding

and removing errors. The number of tests, or when testing should stop, should

be determined carefully and according to a suitable reliability requirement. This

depends on how confident the testers are that possibly remaining faults do not form
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a high risk, either to the customer or the producer.

It is important to emphasize the role that testing plays, especially when there

are safety issues related to a system’s performance. In that case, high reliability is

often necessary, and extensive testing may be required.

In this thesis, we consider what we learn from zero-failure testing, and what

we can infer about reliability for a system used in a process after testing. In the

reliability literature, several methods have been considered to demonstrate a specific

reliability level based on different models and assumptions providing different results,

for calculating the required testing duration or number of tests. Tal, et al. [56] give

a comparison of eight methods for calculating the duration of software reliability

demonstration testing for safety-critical systems. They divide these methods into

two groups: fixed duration testing methods and non-fixed duration testing methods.

Table 1.1, which is taken from [56], gives a brief comparison between these eight

methods with respect to the following points.

• If it provides a point estimate, E, and variance,V , and a confidence level, c,

for a required reliability value. This is denoted by +;

• The number of failures, F , one should find in order to use the method;

• Test duration: fixed, unknown or unknown but limited.

Tal, et al. [56] prefer the TRW method [57], from all the fixed duration testing

methods, because it provides an upper confidence bound for the probability of soft-

ware failure on an arbitrary input, and which can be used for any number of failures,

including zero. They argue that Laplace’s method is not useful for safety-critical

software as it requires a relatively small number of tests, in comparison to the other

methods, and applies only when no failures are found, and provides only a point

estimate of unreliability. The Bayesian reliability estimation method considers all

tests to be independent and the number of failures is Binomially distributed, with

a Beta prior distribution for the failure probability. Tal, et al. [56] claim that the

Bayesian estimation method is very useful for safety-critical software as it provides

a point estimate and a variance for failure probability, and enables one to calculate a
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Method E V c F Duration Remarks

Laplace + - - 0 Fixed Finite number of inputs; of historical

value only

TRW + + + ≥ 0 Fixed Best fixed duration method

Bayesian estimation + + + ≥ 0 Fixed Results almost identical to TRW method

Life testing - - + ≥ 0 Fixed Many more tests than according to

TRW method

MTBF assurance - - - ≥ 0 Fixed Producer-oriented; not for Safety-

critical software

BAZE + + + ≥ 0 Fixed Very complex calculations and very

specific prior knowledge about

probability of failure

PRST - - + ≥ 0 Unknown Shorter than life testing but more

but limited stringent; more tests than according

to TRW

t−Distribution + + + ≥ 1 Unknown Demonstrated reliability smaller than

according to TRW method; not efficient

for safety-critical systems

Table 1.1: Methods for calculating system reliability/testing duration.

confidence interval. The BAZE method [37] (Bayesian zero-failure reliability demon-

stration testing) also considers all tests to be independent, but assumes zero failures

and uses the Gamma prior distribution for failure probability. This method requires

the following inputs: maximum permissible failure rate, required confidence level

c, upper prior limit UL, and lower prior limit LL, for failure rate and p0, which is

the prior probability that the interval (LL, UL) contains the failure rate of interest,

for detail see [37]. Tal, et al. [56] claim that this method requires very compli-

cated calculations and very specific prior knowledge. The life testing method [36]

requires the following: producer’s risk, consumer risk, acceptable quality level and

rejectable quality level. Tal, et al. [56] claim that the life testing method provides

a confidence interval for any number of failures and it requires a very large num-

ber of failures, which makes it inapplicable for safety-critical systems. The MTBF

assurance method [38, 43, 45, 56] demonstrates that the MTBF is not smaller than

a specific required value. Tal, et al. [56] claim that this method is unsuitable for
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safety-critical systems as it does not take into account failures that might happened

after a successful certain number of zero-failure missions in the test.

From the non-fixed duration testing methods, Tal, et al. [56] prefer the PRST

method (probability ratio sequential testing) to the t-distribution method, which

is not efficient when safety-critical systems are of concern (e.g. it cannot be used

unless at least one failure is found in the test and the testing duration cannot be

predicted nor bounded, see [56] for detail). The PRST method [45, 57, 58], requires

the following inputs: producer’s risk, consumer risk, upper test MTBF and lower test

MTBF, which should be specified in the contract. The procedure for this method is

usually carried out with the help of a graphical aid. This method is shorter, in terms

of the required testing duration, than those for the fixed duration test, which makes

it more practical, but may reject systems that would have passed fixed duration

tests, especially those that revealed more failures at the beginning of testing than

at the end.

Sandoh [53] proposes two procedures for reliability demonstration testing to de-

termine test duration and the maximum acceptable number of failures during the

test. The procedures are based on two risks, namely producer and consumer risks,

the second procedure is for zero-failure reliability demonstration testing considering

a constraint on either the producer-risk or consumer-risk. He assumes that the time

to failure follows an Exponential distribution and both the specified MTTSF (Mean

Time To Software Failure) in the contract and the acceptable lower level of MTTSF

for the consumer are specified prior to demonstration testing. He also assumes that

the system is not debugged during demonstration testing but failures are removed

after the test. Although he does not use the Bayesian approach, he states clearly

that using it can reduce the amount of testing required when good prior knowledge

is available. Moreover, he claims that his procedures hold for both software and

hardware systems as long as the corresponding assumptions hold. We also believe

that our approach holds for both software and hardware systems also as long as our

assumptions hold.

In the approach presented in this thesis, we do not explicitly consider point es-

timates, variance, or confidence levels, which are unobservable characteristics, but
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we consider the optimal number of tasks to be tested (of each type of tasks), taking

into account aspects of the process after testing, which none of the previously men-

tioned methods considered explicitly. Restricting attention to zero-failure testing,

we consider our method to be intuitively attractive when concerning safety-critical

systems. However, we should acknowledge that extending our approach to allow

failures in the testing phase, maybe with repairing these failures, may increase its

practical applicability and efficiency.

1.4 Bayesian statistics

Bayesian statistics [29, 33], which has been used increasingly in the reliability liter-

ature, provides a suitable way for dealing with uncertainties taking prior knowledge

into account. The Bayesian approach can be used to combine subjective opinion

with data obtained from testing, to compute a system’s reliability [26,49]. Bayesian

inferential analysis is straightforward when one represents prior information via a

conjugate prior distribution. Without conjugacy, the simplicity and elegance of the

predictive densities are lost. However, non-conjugate priors might sometimes be

more appropriate, e.g. in probabilistic safety assessments of domestic nuclear power

plants where log-normal distributions are sometimes used for Poisson rate parame-

ters [32]. In such situations, modern computation methods, such as MCMC [22] and

numerical integration methods can be used. If prior information is not available, a

non-informative prior distribution can be used. However, the non-informative prior

distribution is not always clear, which is the case in this thesis due to our zero-failure

assumption. A further advantage of the Bayesian framework is the direct link to

decision theory, via optimisation of expected utilities [21]. Although we use such

decision theoretic reasoning in Chapter 5, we do not focus explicitly on utilities but

use assumed cost figures instead.

Bertolino and Strigini [7] demonstrate the use of Bayesian statistics as a high

level quality way to predict software reliability. Guida and Pulcini [27] use the

Bayesian approach for analysing failure data for mechanical components in a relia-

bility demonstration, emphasizing that a correct use of accurate prior information
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allows one to draw inferences on the reliability of the new product even before

performing the demonstration tests. However, we would not normally support the

idea of relying totally on prior information when reliability demonstration for highly

reliable systems is the concern.

Throughout this thesis, we use the Bayesian approach, which we share with

Mastran [41], Mastran and Singpurwalla [42], and Martz and Waller [37, 38], to

reliability predictions, using a Binomial model for the number of failures in testing

and a Beta prior distribution for the unknown failure probability, as in Martz and

Waller [39], Martz et al. [40], and Springer and Thompson [54, 55]. Grohowski and

Hausman [26] present the Bayesian approach which quantifies prior information in

order to estimate reliability. They support the selection of Gamma distributions as

prior distributions for their conjugacy to the Poisson distribution. Rai [50] uses a

similar approach to ours in the Poisson case, but used a Poisson distribution, with

an unknown parameter following a Beta distribution to get a posterior distribution

with a Poisson-Beta distribution.

The two hyperparameters in the Beta prior distribution can be interpreted in

terms of results of an imaginary earlier test, in which the system failed to deal with a

number of tasks, but performed some other tasks successfully. For reliability demon-

stration, we will assume that one wishes to use very little prior information, which

can be modelled by taking all the hyperparameters small. Often in the statistical

literature, the choice of giving the hyperparameters the value 1 is proposed as a

so-called non-informative prior, but also other values for these parameters between

0 and 1 are advocated, such as Jeffries’ non-informative Beta priors with param-

eters equal to 1/2. In our setting, the choice of non-informative prior is far from

trivial. We will discuss this later, and, also on the basis of our analysis in this

thesis, we think that there are good arguments for the choice Beta(1, 0) for relia-

bility demonstration. The influence of these hyperparameters can be understood

from their interpretation in terms of numbers of failures and successes in hypothet-

ical earlier tests. Effectively, the number of required tests without failures should

counter the prior information of ‘imaginary test failures’ to demonstrate a specific

level of reliability.
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Nonparametric predictive inferential methods [18] for the same setting as studied

in this thesis have been presented by Coolen and Coolen-Schrijner [14], with which

we share the perhaps surprising fact that the deterministic case is a worst-case

scenario in terms of the number of tests needed for reliability demonstration (see

Section 2.4.2), however they restricted attention to a single type of task.

1.5 Outline of the thesis

In this thesis we study optimal numbers of tasks to be tested as required for Bayesian

reliability demonstration with regard to the system’s use in a process after zero-

failure testing, where the system has to function for different types of tasks, which

we assume to be independent.

Chapter 2, which forms the basis for Chapters 3 to 5, presents how we can learn

from testing a system in order to predict its reliability, first in a process of one type

of tasks, and secondly in a process of multiple types of tasks. We explicitly assume

that testing reveals zero failures (Section 2.2). Reliability is considered in terms of

failure-free periods (Section 2.4) and in terms of the expected number of failures

(Section 2.5) in the process after testing. Using Bayesian statistics, we analyse

the prediction for a known number of tasks and the prediction for tasks arriving

randomly, with special attention to the Poisson process.

In Chapter 3 reliability is expressed in terms of the probability of a failure-free

period, and we will aim for the minimal total number of tests needed (Section 3.3),

and for minimal total expected costs of testing and possible failure in the process

after testing (Section 3.4), assuming that a failure during the process would be

catastrophic in the sense that the process would be discontinued. For the process

after testing, we study in detail the cases where the numbers of tasks to be dealt

with by the process are known (the deterministic case) and where these numbers are

random quantities with Poisson distributions (the Poisson case). We also discuss

the influence of the choice of prior distribution on the required test numbers.

In Chapter 4 reliability is expressed in terms of the expected number of failures

in the process after testing, and the optimal numbers of tasks to be tested are
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derived by optimisation of a cost criterion, taking into account the costs of testing

and of failures in the process after testing. We assume that such failures are not

catastrophic to the system, in the sense that failures do not stop the use of the

system in the process. Cost and time constraints on testing are also included in the

analysis (Section 4.2). We focus on the study of the optimal numbers of tests for

different types of tasks, depending on the arrival rate of tasks in the process and

the costs involved. In Section 4.4, we briefly compare the results of this chapter

with optimal test numbers in Chapter 3. For these two different optimality criteria,

the dependence of the optimal numbers to be tested, for different types of tasks, on

the costs of testing per type, and on the arrival rates of tasks in the process after

testing, is very similar.

In Chapter 5, we extend the study by considering reliability demonstration for

systems with redundancy, including the two extreme cases of parallel and series

systems. Reliability prediction for such systems is considered in terms of failure-free

periods, where the process failures are, as in Chapter 3, considered to be catastrophic

(Section 5.2). Reliability demonstration for a single task (Section 5.3) and for m

tasks, both for one type and for multiple types of tasks are considered (Sections 5.4

and 5.5). The results of this chapter are also compared to the results of Chapters

3 and 4. General conclusions, and some suggestions for future research, are briefly

discussed in Sections 5.8 and 5.9.



Chapter 2

Reliability prediction after

zero-failure testing

2.1 Introduction

In this chapter, which forms the basis for Chapters 3 to 5, reliability is considered in

terms of failure-free periods (probability of zero failures in process) and the expected

number of failures, in the process after testing. We consider processes with a known

number of tasks, which we call the ‘deterministic case’, and processes with a random

number of tasks, which we call the ‘random case’. We study the Poisson case as one

of the random cases in more detail. In both the deterministic and random cases, we

consider processes with a one-type of task and with multiple independent types of

tasks.

Throughout this thesis, we assume that the system’s performance for tasks of one

type is exchangeable over these tasks and that the system’s failure of performing

one task does not affect its ability to perform other tasks. We also assume that

tasks arrive independently in the process and can also be tested independently.

Learning about the performance of a system from test results enables prediction of

the number of failures in the process for which the system is used after testing. The

random quantities representing failures (or successes) of the tasks are assumed to

be conditionally independent (for given failure probabilities per type of task) and

identically distributed per type of task. We restrict our attention to zero-failure

13
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testing before the process, so we assume that the system is only released for use in

the process if testing reveals zero failures. This assumption is reasonable if systems

must be highly reliable. We also assume that the system does not wear-out and will

not be repaired during the period over which the process is considered.

We use a Bayesian approach to reliability predictions, with a Binomial model for

the number of failures in testing (before the process) and Beta prior distributions

for the unknown parameters of the failure probabilities. We also show that, in our

Bayesian approach to this problem, the deterministic case is a worst-case scenario

with regard to the achieved level of reliability, and hence with regard to the number

of tests needed.

In Section 2.2 we introduce the zero-failure testing assumption. Section 2.3 in-

troduces the model and the method used throughout this thesis, where the Bayesian

approach with Beta prior distributions is used. In Section 2.4 reliability prediction is

introduced in terms of failure-free periods for both the deterministic (Section 2.4.1)

and the random (Section 2.4.2) cases, after zero-failure testing. In Section 2.5 relia-

bility is considered in terms of the expected number of failures in the process after

testing, again for the deterministic and the random cases.

2.2 Zero-failure testing assumption

Throughout this thesis, we assume explicitly that testing reveals zero failures, which

is a common requirement for safety-critical systems, in the sense that the system is

only released for use in the process if testing has revealed zero failures [37]. The un-

derlying idea is that, if a failure occurs during testing, the system will be redesigned,

after which testing may have to start all over again. Such testing results are, for

example, realistic in situations where high reliability is required, and where failures

during testing have severe consequences or may lead to redesign of the system.

We do not consider aspects of retesting after fixes or redesign, in case of failures

during testing, which would increase practical applicability of our approach but

would require detailed modelling of reliability growth (see e.g. Gaver and Jacobs [23]

who consider such aspects for items that require destructive testing). As examples
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of systems for which such a setting may be realistic, one can think of systems that

must trigger alarms for a variety of possible warnings in industrial applications, or

software systems that control the use of different databases and enable information

transfers between them.

2.3 Learning from tests

In this section, we present the standard Bayesian method of updating a conjugate

prior for the parameter of a Binomial distribution, representing how we learn from

testing. To learn about a system’s performance, we can test the system prior to its

use in a process. During testing, we can use tasks as inputs without relying on a

particular arrival process for the tasks. Assume that we carry out a test consisting

of n tasks (n ≥ 1). Throughout this thesis we will, for mathematical convenience,

assume that the uncertainty about the probability of a failure, say θ, before testing,

is represented by a Beta prior distribution, θ ∼ Beta(α, β), with probability density

function (pdf)

p(θ) =
θα−1(1 − θ)β−1

B(α, β)
, for 0 ≤ θ ≤ 1, (2.1)

where B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
, and Γ(.) is the Gamma function (which is defined as

Γ(α) =
∫∞

0
uα−1e−udu, α > 0) for which Γ(α + 1) = αΓ(α) for any positive value

of α, and Γ(α + 1) = α! for positive integer values of α. So, if α and β are positive

integers, the Beta-function simplifies to

B(α, β) =
(α − 1)!(β − 1)!

(α + β − 1)!
. (2.2)

Here, α and β are positive constants (β = 0 is also possible in such settings), the

choice of which we discuss in detail later in this thesis, in Section 2.4 in particular,

and θ ∈ [0, 1]. The Beta prior is conjugate to the Binomial model, see e.g. Lee [33]

or Martz and Waller [38]. Moreover, the Beta distribution allows a reasonably large

variety of shapes to model expert beliefs [33]. Weiler [59] showed that assuming a

Beta prior in Binomial sampling, when it is not the true prior distribution, often

has only a small effect in practical applications. In addition, the parameters of Beta

distributions can easily be interpreted, an important advantage when we consider
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the influence of the prior distribution on the required test numbers later in this

thesis. Dyer and Chiou [20] found in their research that the Beta family is the

most suitable, comparing to other families of priors, when prior information about

the system is not available. Colombo and Constantini [11, 12] support the Beta

distribution as Bayesian prior with Binomial sampling. However, their approach

does not support the choice of β ≤ 1 which we suggest in our approach. Moreover,

their analysis is limited to integer values for α and β, whereas in our approach α

and β can be any positive constants, while we advocate the choice of α = 1 and

β = 0, which we discuss in detail later in this thesis. We also share the use of a

Binomial model for the tests, and a Beta prior distribution with Martz et al. [40],

Martz and Waller [39], and with Springer and Thompson [54, 55].

We use the test results to update the prior distribution for the unknown failure

probability, θ. The posterior distribution of θ, after learning that a test of n ≥ 1

tasks has revealed r ≥ 0 failures, is characterised by the pdf

p(θ|(n, r)) =
L(θ|(n, r)) p(θ)

∫ 1

0
L(θ|(n, r)) p(θ) dθ

, for 0 ≤ θ ≤ 1, (2.3)

where the term L(θ|(n, r)) is the likelihood function. Based on the assumption that

the number of failures in the n tests follows a Binomial distribution, the likelihood

function is

L(θ|(n, r)) =

(

n

r

)

θr (1 − θ)n−r. (2.4)

The posterior distribution, with probability density function p(θ|(n, r)), quantifies

our uncertainty about θ based on our background knowledge and the results of the

test. Thus, when using the Beta(α, β) prior distribution for θ, and taking the zero-

failure testing assumption into account, denoting such data by (n, 0), the resulting

posterior distribution is θ|(n, 0) ∼ Beta(α, β + n), which has pdf

p(θ|(n, 0)) =
(1 − θ)nθα−1(1 − θ)β−1

∫ 1

0
(1 − θ)nθα−1(1 − θ)β−1dθ

=
θα−1(1 − θ)β+n−1

∫ 1

0
θα−1 (1 − θ)β+n−1dθ

. (2.5)

Using the Beta function B(α, β + n) =
∫ 1

0
θα−1(1 − θ)β+n−1 dθ, (2.5) is equal to

p(θ|(n, 0)) =
θα−1(1 − θ)β+n−1

B(α, β + n)
, (2.6)
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which is the pdf of the Beta distribution with parameters α and β + n.

The constants α and β can be interpreted as the number of failures and the

number of successes, respectively, in α + β imaginary observations which reflect our

judgements before the real test results become available. We can also interpret β+n

as the total successes in both the imaginary data set and the test before the process.

Indeed, we will see that there is a good reason actually to favour the choice β = 0.

Due to our assumption that testing reveals zero failures in order for the system to

be used in the process, we cannot use a Beta prior with α = 0, as (2.6) would not

be a proper pdf [6]. The actual choice of α will later be shown to play a crucial

role in determining the required test numbers. Clearly, if we wish to use very little

prior information then we should take both α and β very close to zero. In this thesis

we will use the choice of α = 1, which still requires very many zero-failure tests

to achieve the required reliability level. We consider this choice to be conservative;

however, it is needed because of the absence of clear non-informative priors due to

the zero-failure testing assumption, and we discuss this in more detail later.

2.4 Reliability prediction in terms of failure-free

periods

In this section we express reliability in terms of probability of a failure-free periods

in the process after testing. Reliability in terms of failure-free period is partic-

ularly important if high reliability is the aim, for example if failures have severe

consequences. This section is the basis for Chapters 3 and 5, where failures are

considered to be catastrophic. We consider such situations in the following setting.

We assume that the system has to perform multiple types of tasks, which are in-

dependent both in the manner in which the system performs the tasks and in the

arrival of these tasks in the processes considered. In addition, the functioning of the

system for such different types of tasks is tested independently per type of task. We

consider two types of processes after testing, namely processes with known numbers

of tasks, the deterministic case, which is presented in Section 2.4.1 and processes

where these numbers are random quantities, the random case, presented in Section
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2.4.2. Again, we assume that the system does not wear-out and performs tasks of

one type similarly, in the sense that failures can be represented by exchangeable

Bernoulli random quantities, enabling the use of a simple Binomial model.

2.4.1 Known number of tasks

In this section, we first consider a single type of task, where tasks are dealt with

independently of each other, independently of the system’s performance, and also

independently of testing. We then generalize the results for the case where multiple

independent types of tasks are required to be performed successfully by the system.

Process with a single type of task

Let m be a known number of tasks in the process, after testing, that the system

has to perform, and let P (0|m, θ, (n, 0)) be the probability of zero failures in this

process, after zero-failure testing of n tasks, for given θ. As the tasks that need

to be performed in the process are assumed to be conditionally independent of the

tasks in the tests, for given θ, we have

P (0|m, θ, (n, 0)) = P (0|m, θ).

By using the theorem of total probability we can derive the unconditional probability

distribution for zero failures in the process. Using the posterior pdf p(θ|(n, 0)), as

given in (2.6), the posterior predictive probability for a failure-free process is

P (0|m, (n, 0)) =

∫ 1

0

P (0|m, θ, (n, 0)) p(θ|(n, 0)) dθ

=

∫ 1

0

(1 − θ)m θα−1(1 − θ)β+n−1

B(α, β + n)
dθ =

B(α, β + n + m)

B(α, β + n)

=
Γ(β + n + m)Γ(α + β + n)

Γ(α + β + n + m)Γ(β + n)
. (2.7)

The role of β is interesting in this probability, as it always appears in the form β+n.

If we define z = β + n, then it is clear that any reliability requirement based solely

on this P (0|m, (n, 0)) will give a requirement on z, hence the immediate effect of

choosing a larger value for β is that the required test size n will be smaller, by the

same margin. In this case, β+n can be interpreted as the ‘combined total number of
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successes in the imaginary data set, representing prior judgements, and in the test’.

Hence, and from the zero-failure assumption in n (> 0) tests, we can use β = 0.

Also, because of this assumption (no failures are observed) we cannot use α = 0, as

the corresponding posterior distribution would be improper.

We consider two ways to simplify (2.7). First, for general values of α > 0 and

β ≥ 0,

P (0|m, (n, 0)) =
m
∏

j=1

j + β + n − 1

j + α + β + n − 1
. (2.8)

Let us denote the right-hand side, as a function of m, by g(m). Clearly, g(m) is

positive (for n > 0) and decreasing as a function of m, and from the fact that

g(m) − g(m + 1) =

m
∏

j=1

j + β + n − 1

j + α + β + n − 1
[1 − m + β + n

m + α + β + n
],

is decreasing in m, g(m) is a convex function of m. If we restrict attention to integer

values α > 0 and β ≥ 0, then a second expression for (2.7) is

P (0|m, (n, 0)) =
α
∏

j=1

j + β + n − 1

j + β + n + m − 1
. (2.9)

Let us denote this right-hand side, as a function of m, by f(m). Although this form

is less general than g(m), the effect of different choices of α might be clearer from

f(m). It is clear that P (0|m, (n, 0)) is an increasing function of n, and a decreasing

function of m, which agrees with intuition. From f(m) it is clear that increasing α

has a big effect on P (0|m, (n, 0)), and hence on the minimal required test size n.

Process with multiple types of tasks

It is easy to generalize this approach to a system that has to perform multiple types

of tasks, which arrive independently in the process after testing, and which can also

be tested independently. We assume that the system must deal with k ≥ 2 types of

tasks, which we assume to be fully independent, in the sense that the system’s failure

of performing one task does not affect its ability to perform tasks of other types. We

use notation as above, but with index i, i = 1, . . . , k, added to indicate the particular

type of task. We denote k-vectors by underlining the notation used above, further

notation is straightforward and is not explicitly introduced. We should emphasize
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that all random quantities related to different types of tasks are assumed to be

independent throughout our analysis.

Assuming a Beta(αi, βi) prior distribution for the parameter θi of a task of type

i (i = 1, . . . , k), and that ni tests of this type revealed zero failures, the posterior

predictive joint probability of zero failures in mi tasks of type i after testing is

P (0|m, (n, 0)) =

k
∏

i=1

mi
∏

j=1

j + βi + ni − 1

j + αi + βi + ni − 1
, (2.10)

for general values of αi > 0 and βi ≥ 0, and similar to (2.9) we can also write this

as

P (0|m, (n, 0)) =

k
∏

i=1

αi
∏

j=1

j + βi + ni − 1

j + βi + ni + mi − 1
, (2.11)

for integer values αi > 0 and βi ≥ 0, ∀i = 1, . . . , k. Clearly, P (0|m, (n, 0)) is

decreasing in k, the number of types in the process, which is intuitively logical: the

more types the system has to perform successfully in the process, for fixed ni and

mi for all i, the less reliable the system gets, hence the more tests are needed to

demonstrate a required reliability level, which we show later in this thesis.

2.4.2 Random number of tasks

In this section, we consider the case where the number of tasks in a specified period

[0,t] in the process after zero-failure testing is a random quantity, say M , with

probability P (M = u) for nonnegative integers u. Throughout this thesis we assume

that M is independent of the test information (n, 0), which implies that P (M =

u|(n, 0)) = P (M = u).

We are interested in a specified failure-free period (FFP ) in the process after

testing, again assuming that the test revealed no failures in n tasks tested. This

probability follows from the theorem of total probability, and is

P (FFP |(n, 0)) =
∞
∑

u=0

P (0|u, (n, 0))P (M = u). (2.12)

The convexity of g(m) = p(0|m, (n, 0)), as a function of m (Section 2.4.1), leads to

an interesting result, as Jensen’s inequality for convex functions (see e.g. Hardy, et
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al. [28] for further details on Jensen’s inequality and convexity) gives

P (FFP |(n, 0)) = E(g(M)) ≥ g(E(M)). (2.13)

This implies that, if we restrict attention to probability distributions for M with

expected value E(M) = m, then we have

P (FFP |E(M) = m, (n, 0)) ≥ P (0|m, (n, 0)). (2.14)

This is possibly surprising, as it implies that given any probability distribution for

M with E(M) = m, the probability of a specified failure-free period after testing,

after n tests without failures, is at least as large as the probability of zero failures in

a known number of tasks, m. Hence the required number of successful tests will be

no more, in case of such an M , than required for the process with m tasks, which

will be illustrated later in Chapters 3, 4 and 5. Therefore, one could consider the

exact knowledge of the value of the random quantity M to be disadvantageous, we

illustrate this in Example 2.4.1. This worst-case scenario, which is a feature of the

deterministic case, also occurs in [14], but based on different foundations.

For the case where the system has to perform k ≥ 1 independent types of tasks,

the corresponding probability of FFP is

P (FFP |(n, 0)) =
k
∏

i=1

P (FFPi|(ni, 0)), (2.15)

where

P (FFPi|(ni, 0)) =
∞
∑

u=0

P (0|u, (ni, 0))P (Mi = u). (2.16)

This factorisation of the joint probability is only allowed due to the assumed inde-

pendence of the different Mi, where the assumed independence of Mi and the test

information is explicitly used in the application of the theorem of total probability

above. If one doubts that the system deals with the different tasks independently,

in the sense that one would expect a positive correlation between different Mi’s,

then this product form provides a kind of ‘worst-case scenario’, in the sense that

to reach a particular level of reliability, the required number of successful tests per

type will never be less than when positive correlations between the Mi would be

taken into account. The convexity argument used above in this section, can be used
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again for each of these P (FFPi|(ni, 0)), to prove that the deterministic case, with

known mi, requires at least as many successful tests as are required for any random

Mi with expected value E(Mi) = mi. Hence, also with multiple types of tasks the

deterministic case will require at least as many zero-failure tests as corresponding

random cases (see e.g. Example 3.2.1).

The Poisson case

Suppose that the tasks in the process after testing arrive according to a homogeneous

Poisson process with known arrival rate λ > 0, and that a reliability requirement of

a minimum probability of a failure-free period of length t > 0 is used. Let µ = λt.

Then, the random number of tasks the system has to deal with during this period,

say M , has a Poisson distribution with expected value E(M) = µ, we denote this by

M ∼ Po(µ). Using (2.9), the probability of such a failure-free period, after testing

n tasks revealed zero failures, when restricting attention to integer α > 0, for any

β ≥ 0, is

P (FFP |M ∼ Po(µ), (n, 0)) =

∞
∑

u=0

P (0|u, (n, 0))P (u|µ)

=

∞
∑

u=0

α
∏

j=1

j + β + n − 1

j + β + n + u − 1
e−µ µu

u!
. (2.17)

For general values of α > 0, (2.8) leads to

P (FFP |M ∼ Po(µ), (n, 0)) =

∞
∑

u=0

u
∏

j=1

j + β + n − 1

j + α + β + n − 1
e−µ µu

u!
. (2.18)

The following example illustrates these probabilities, and the influence of prior

knowledge on reliability, in terms of the probability of zero failures in the process,

after testing has revealed zero failures. We consider both the deterministic case and

the Poisson case.

Example 2.4.1

Suppose that a system has performed n = 20 tasks in a test without failure. Table

2.1 gives the probabilities of zero failures for a variety of values for α and β in (1)

m = 5 tasks, and (2) a random number of tasks, M , that has a Poisson distribution
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with expected value E(M) = µ = λt = 5 within the period [0, t]. This example

demonstrates the strong influence of changes to the value of α, and the far weaker

influence of the value of β. Table 2.1 also illustrates the result in (2.14) i.e. that the

system reliability for a process with a random M , with E(M) = m, is at least as

large as the system reliability for a process with a known number of tasks m after

n tests without failures. Moreover, although we do not have an analytic proof of

the following statement, the study of many examples suggests that the difference

between these probabilities for the deterministic and the Poisson cases is very small.

α β P (0|m = 5, (20, 0)) P (FFP |M ∼ Po(5), (20, 0))

1 0 0.8000 0.8063

1 1 0.8077 0.8136

1 2 0.8148 0.8203

1 5 0.8333 0.8379

1 10 0.8571 0.8606

1 100 0.9600 0.9603

2 0 0.6462 0.6608

3 0 0.5265 0.5497

0.5 0 0.8933 0.8960

0.1 0 0.9775 0.9779

0.01 0 0.9977 0.9978

Table 2.1: P (0|m = 5, (20, 0)) and P (FFP |M ∼ Po(5), (20, 0)) for varying α, β.

To compute the infinite sums in (2.17) and (2.18), we have used an approximation

by cutting off at the point where the difference between two consecutive partial sums

does not exceed 10−20. As, for large u, the terms in the sum decrease very rapidly,

this gives a good approximation to the infinite sum.
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2.5 Reliability prediction in terms of the expected

number of failures

Reliability can also be considered in terms of the expected number of failures in the

process after testing which will be the focus of Chapter 4. This is relevant if the

failures are not catastrophic, in the sense that failures do not stop the use of the

system in the process, but may incur costs. Suppose that a system has to perform

k ≥ 1 types of tasks, which we again assume to be fully independent.

Let Di be the number of failures in mi tasks of type i, in a process of k ≥ 1 inde-

pendent types of tasks. As Di|mi, θi, (ni, 0) ∼ Binomial(mi, θi), by the conditional

independence assumption, and assuming a Beta(αi, βi) prior distribution for θi, we

have

E(Di|mi, (ni, 0)) = Eθi
(E(Di|mi, θi, (ni, 0))) = Eθi

(mi θi|(ni, 0))

= mi

∫ 1

0

θi p(θi|(ni, 0))dθi = mi
B(αi + 1, βi + ni)

B(αi, βi + ni)

=
αimi

αi + βi + ni

. (2.19)

Let D =
∑k

i=1 Di be the total number of failures. Then

E(D|m, (n, 0)) =
k
∑

i=1

E(Di|mi, (ni, 0)) =
k
∑

i=1

αimi

αi + βi + ni

. (2.20)

Clearly, E(D|m, (n, 0)) is increasing in k, which is logical as the more types of tasks

the process is required to perform successfully, the more failures one would expect

to encounter. For a random number Mi tasks of type i, with E(Mi) = mi, after

zero-failure testing, the expected number of failures of type i is also equal to (2.19).

Suppose that tasks arrive in the process according to a Poisson process over

the period [0, t] after testing, M |λ ∼ Po(λt), with expected value E(M |λ) = λt,

where we denote the total number of failures in the random process again by D,

then D|θ, λ, (n, 0) ∼ Po(θλt) [48]. For k ≥ 1 types of fully independent tasks, each

arriving as a Poisson process with E(Mi|λi) = λit, with t > 0 the length of the

period over which the process is considered, the expected total number of failures is

E(D|λ, (n, 0)) = t
k
∑

i=1

αiλi

αi + βi + ni

. (2.21)
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In Chapter 4, we study Bayesian reliability demonstration in terms of the ex-

pected number of failures after testing, and we particularly discuss the Poisson case,

with known arrival rates, to study the effect of the length of time t over which the

process is considered.



Chapter 3

Reliability demonstration for

failure-free periods

3.1 Introduction

In this chapter we study the required number of tasks to be tested in a system,

in order to demonstrate a level of reliability with regard to the system’s use in a

process after testing. Reliability is expressed in terms of the probability of failure-

free periods after zero-failure testing. Throughout this chapter we use the setting

that is introduced in Chapter 2, mainly Section 2.4.

The system has to perform multiple fully independent types of tasks after testing,

which is also assumed to be independent of the process. We focus on the important

question of how many tasks of each type should be tested, explicitly assuming that

these tests lead to zero failures, to achieve a certain required level of reliability for

the process in which the system is used after testing. For the process after testing, we

consider both the cases that the numbers of failures are deterministic and random,

including tasks arriving according to a Poisson processes. It turns out that the

deterministic case is worst in the sense that it requires most tasks to be tested.

We consider such reliability demonstration for a single type of task, as well as for

multiple types of tasks to be performed by one system. We also consider the situation

where tests of different types of tasks may have different costs, aiming at minimal

expected total costs, assuming that failure in the process would be catastrophic, in

26
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the sense that failures stop the use of the system in the process and may incur a

very high cost. Generally, these inferences are very sensitive to the choice of prior

distribution, so one must be very careful with interpretation of non-informativeness

of priors.

In Section 3.2 we consider a single type of task, which allows us to introduce the

basic concepts used in later sections and to study the effect of the prior distribution

on required test numbers. We also show (and illustrate by examples) the fact that

the deterministic case is a worst-case scenario with regard to the number of tests

needed, using results from Section 2.4.2. Section 3.3 generalizes this approach to a

system that has to perform multiple types of tasks. In Section 3.4 we include costs

in a related analysis, assuming that failure of the system during the process after

testing is catastrophic, in the sense that the process would be discontinued, with all

consequences taken into account via a (probably large) cost figure which we assume

to be known. The model in Section 3.4 allows for the testing of different types of

tasks to have different costs, and allows such tasks to be required in the process in

different numbers or to arrive at different rates. We study the effect of these char-

acteristics of the different types of tasks on the optimal test numbers. The problem

in Section 3.3 is actually a special case of the more general problem formulation in

Section 3.4, but has sufficient interesting features to be studied separately. We end

the chapter with some concluding remarks in Section 3.5.

3.2 A single type of task

In this section we restrict attention to a single type of task, and we consider the

following basic situation. Suppose we must determine the number n of tests to

perform, in order to satisfy a reliability requirement in terms of probability of zero

failures in the process after testing. Here, as we do throughout this thesis, we explic-

itly assume that testing reveals no failures (see Section 2.2). We first consider the

deterministic case for the process after testing, meaning that we know the number

of tasks that need to be performed after testing: we denote this number by m. In a

standard Bayesian setting (Section 2.3), the posterior distribution of the unknown
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θ, with a Beta(α, β) prior distribution, after n zero-failure tests is Beta(α, β + n),

where α > 0, β ≥ 0, the choice of which we discuss later.

Section 2.4 shows that the posterior predictive probability (2.7) for the reliability

requirement in terms of zero failures in m tasks after testing, where testing revealed

zero failures can be written by two expressions: (2.8) for the general values of α > 0

and β ≥ 0, and (2.9) when restricting attention to integer values α > 0 and β ≥ 0.

Section 2.4 also shows that P (0|m, (n, 0)) is decreasing and convex as a function of

m, and increasing as a function of n.

For positive integer α, and p, the required reliability level, close to 1, if n is

large compared to α, then from (2.9) the minimal required value for z = β + n,

assuming again that the system functions successfully for all tasks tested, is close

to the solution of

(
z

z + m
)α = p.

Therefore, this required value of z is close to

p1/α

1 − p1/α
m ≈ p

1 − p
αm, (3.1)

which follows from the fact that (for positive integer α and p close to 1)

lim
q↑1

q1/α(1 − q)

(1 − q1/α)q
= α, (3.2)

which can be derived via de l’Hopital’s theorem,

lim
q↑1

q1/α(1 − q)

(1 − q1/α)q
= lim

q↑1

∂q1/α(1 − q)

∂q

∂(1 − q1/α)q

∂q

= lim
q↑1

1
α
q

1

α
−1(1 − q) − q

1

α

− 1

α
q

1

α + (1 − q
1

α )

=

1

α
− 1 − 1

α

1 − 1 − 1

α

= α.

For example, if we take p = 0.95, then taking α equal to two will lead to a required

z of just more than twice the size than that which would be required for α equal

to one (e.g. see Table 3.1). Indeed, in this setting, small differences in α can lead

to large differences in the inference of interest, namely the required test size n.

This might be explained, intuitively, in the sense that α represents the imaginary
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number of failures reflecting prior judgements, and hence it takes relatively a lot

more tests without failures to get convinced of the reliability of the system if we

increase α. Generally, one can only assume that a small value of n is sufficient to

demonstrate reliability with a reasonably large p, by either assuming a large value

for β, so in effect assuming prior information as if one had already seen many tests

without failure, or assuming a very small value of α. For any n, one can find a

value of α such that, for any p ∈ (0, 1) and any m, this number n satisfies the

reliability requirement. Hence, one can always directly influence the required n via

the choice of α, which puts more emphasis on appropriate choices for α irrespective

of a predetermined notion of acceptably small n.

Let us now consider the situation that m is not known in advance, but let the

number of tasks to be completed, in a specified period in the process after testing,

be a random quantity, M , with probability P (M = m) for nonnegative integers m,

where M is independent of the test information. Now, we are interested in finding

the minimal number of successful tests to achieve a required level of reliability p, in

terms of the probability of a FFP of a specified length in the process after testing.

We showed in Section 2.4.2, from the convexity of p(0|m, (n, 0)) as a function of m,

and using Jensen’s inequality for convex functions, that

P (FFP |E(M) = m, (n, 0)) ≥ P (0|m, (n, 0)),

which implies that the deterministic case is a worst-case scenario with regard to the

number of tests needed, in the sense that for any probability distribution for M ,

with E(M) = m, the number of zero-failure tests is not more than the required

number of zero-failure tests in a process of a known number of tasks, m (see Section

2.4.2 for details).

In the following examples, we illustrate the above results in determining the

minimal test sizes needed to meet reliability requirements, for the deterministic case

and for the situation in which we assume a Poisson distribution for M .

Example 3.2.1

Let the reliability requirement be that the probability of a failure-free process is at

least p = 0.95. First consider the deterministic case with m = 5 tasks in the process,
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and take α = 1 and β = 0. Equating (2.9) to 0.95 yields n = 95 tasks without

revealing a failure. Secondly, let us consider what happens when the number of

tasks in the process is a random quantity, M , with probability distribution P (M =

0) = 0.9 and P (M = 50) = 0.1, hence with E(M) = 5. In this case, equating (2.16)

to 0.95 yields that we need 50 tasks tested without revealing a failure, which is

indeed far fewer than for the corresponding deterministic case. This effect becomes

even clearer if we had set p = 0.9 for the same situation, as the deterministic m = 5

would require a test of 45 successful tasks, but for M with the above distribution

the requirement is trivially satisfied without any tests needed.

Example 3.2.2

Suppose that the tasks in the process after testing arrive as a homogeneous Poisson

process with expected value E(M) = µt = 10, and that a reliability requirement

is used in terms of a minimum probability of a failure-free period of length t > 0.

Hence, as shown in Section 2.4.2, the probability of such a failure-free period, after

testing n tasks revealed zero failures, is given by (2.17) for integer α > 0 and by

(2.18) for general values of α > 0. This probability can be used to determine the

minimum number of tasks to be tested, without revealing any failures, to satisfy a

reliability requirement P (FFP |(n, 0)) ≥ p for any specified p ∈ (0, 1). We denote

this minimum test size for the Poisson case by ñ, and illustrate this procedure in

Table 3.1.

For comparison, Table 3.1 also gives the minimum number of tasks, n, to be

tested to achieve the same reliability requirement for the deterministic case with

m = 10. We see that the required test sizes for the Poisson case are very close to

the corresponding numbers for the deterministic case. As such, the Poisson case

appears to be nearly as bad, in terms of required test sizes, as the deterministic

case. It is perhaps surprising that the consequences, in terms of required test size,

of these two quite extreme cases are so similar, but for practical reasons it is quite

convenient as it implies that one does not have to worry too much about the actual

distribution of M , as long as one has a good idea of its expected value. The most

robust method then is to use the deterministic case, setting m equal to E(M), with

the added benefit that one hardly does any unnecessary tests if the actual process



3.2. A single type of task 31

is a homogeneous Poisson process. All values in Table 3.1 relate to β = 0. As both

these criteria actually give a minimal number for β + n, values of both ñ and n for

other values of β follow immediately.

From this example we can conclude that such high reliability can only be achieved

by testing many tasks, all leading to zero failures, or, alternatively, assuming quite

a high value for β to represent prior beliefs. In particular when choosing α greater

than one, many tests are needed to satisfy the reliability requirement.

p α ñ n

0.95 1 190 191

2 383 385

3 577 579

0.99 1 990 991

2 1983 1985

3 2977 2979

0.995 1 1990 1991

2 3983 3985

3 5977 5979

0.999 1 9990 9991

2 19983 19985

3 29977 29979

Table 3.1: ñ and n such that P (FFP |M ∼ Po(10), (ñ, 0)) ≥ p and P (0|m =

10, (n, 0)) ≥ p, with a Beta(α, 0) prior.

One could also use an α between zero and one, which would reduce the required

test size. For example, if we set p = 0.95 then, for α = 0.5 the minimal number

of tests required will be ñ = 93 tasks, whereas for α = 0.1, we need only ñ = 16

to achieve this level of reliability requirement, p = 0.95. However, it may often

be preferable not to rely too strongly on optimistic prior judgements, hence not to

choose α less than one nor to choose β large.
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3.3 Multiple types of tasks

In this section we generalize the approach from the previous section to a system

that has to perform multiple fully independent types of tasks after testing. Our goal

in this section is to find the minimum total test effort required to meet a reliability

criterion, in the sense of achieving a minimum required probability of a failure-free

period in the process after testing. This is a special case of the problem studied

in Section 3.4, where costs of testing are explicitly taken into account and where

testing different types of tasks can have different costs. The special case considered

in this section, which allows us to present and analyse important results, is relevant

in situations where the costs involved in testing are relatively insignificant, and

where one explicitly aims at low probability of failure for the process after testing.

Throughout this section, we assume that the system must deal with k ≥ 2 types of

tasks, and we use notation as introduced in Section 2.4.1 for a process with multiple

types of tasks. We should emphasize that all random quantities related to different

types of tasks are assumed to be independent throughout our analysis.

Assuming a Beta(αi, βi) prior distribution of θi, for a task of type i, the posterior

predictive joint probability of zero failures in mi tasks of type i after zero-failure

testing, for all i = 1, . . . , k, is given by (2.10) for general values of αi > 0 and βi ≥ 0,

and by (2.11) for integer values of αi > 0.

An interesting and intuitively logical result holds for situations with, so-to-say,

exchangeable types of tasks, in the sense that αi = α > 0 and mi = m > 0 for

all i. In such cases, the optimum real-valued zi’s, zi = βi + ni ≥ 1, are such that

|zi−zl| < 2 for all i, l ∈ {1, . . . , k}, where optimality is with regard to minimising the

sum of the zi’s in order to achieve a minimal required value for P (0|m, (n, 0)). Even

more, under a restriction
∑k

i=1 zi = kz, for integer z, this probability P (0|m, (n, 0))

is maximised by taking zi = z for all i. Of course, these properties mean that

effectively the same amount of information for each type of task is required in such

situations. Mathematical justification of these properties is as follows. For clarity,
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let us write P (0|m, (n, 0)) as

f(z1, . . . , zk) =

k
∏

i=1

m
∏

j=1

j + zi − 1

j + α + zi − 1
.

This function has the following two properties:

(a) f is maximised over all z with
∑k

i=1 zi = kz, for an integer m, by taking zi = z

for all i.

(b) For a given p ∈ (0, 1), the requirement f(z1, . . . , zk) ≥ p is achieved, for zi with

minimal
∑k

i=1 zi, by a z with |zi − zl| < 2 for all i, l ∈ {1, . . . , k}.

To prove property (a), first consider the case k = 2. It is straightforward to show

that f(z1, z2) =
∏m

j=1

[(

j + z1 − 1

j + α + z1 − 1

)(

j + z2 − 1

j + α + z2 − 1

)]

, with non-negative z1

and z2, and constraint z1 + z2 = 2z, for any non-negative integer z, is strictly

maximised by z1 = z2 = z. The symmetric form of this function now implies that,

for general k ≥ 2, this property holds for any two zi, zl with 1 ≤ i < l ≤ k. For

k ≥ 3, the product form of f(z1, . . . , zk) together with this result for the case k = 2,

implies that, for any values of z3, . . . , zk and z1 6= z2, with z1 +z2 = 2z, we have that

f(z, z, z3, . . . , zk) > f(z1, z2, z3, . . . , zk), and by symmetry the same applies again

for any two zi, zl. This is sufficient for property (a) to hold, as for any z with
∑k

i=1 zi = kz one can increase the value of f(z1, . . . , zk) by such pairwise changes,

until all zi = z (note that, at such intermediate steps towards the optimal z, the zi

do not have to be integers).

Property (b) follows from reasoning similar to that used for property (a), as it is

again possible to restrict attention to k = 2 and use the symmetry and the product

form to get the general result. For property (b), however, we do not restrict attention

to integer zi or z. By the fact that

(

j + z1 − 1

j + α + z1 − 1

)(

j + 2z − z1 − 1

j + α + 2z − z1 − 1

)

>

0, ∀j = 1, . . . , m, is concave as function of z1 for given non-negative z, with maximum

at z1 = z, and by symmetry, f(z1, 2z − z1) is increasing on [0, z) and decreasing on

(z, 2z], as function of z1, with maximum at z1 = z. This implies that if z1 ≥ z2 + 2,

then f(z1 − 1, z2 + 1) > f(z1, z2), and applying this pairwise argument repeatedly

leads to property (b).

For the special case where αi = α, with α a positive integer, zi = z and mi = m
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for all i, we can again easily find an approximation for the required value of z to

meet a reliability requirement P (0|m, (n, 0)) ≥ p, with p close to 1, if z is large

compared to α, assuming again that the system functions successfully for all tasks

tested. From (2.11), and using the same logic used in the previous section, the

minimal required value for z is close to

p1/(kα)

1 − p1/(kα)
m ≈ p

1 − p
kαm. (3.3)

For the case with α = 1 and βi = 0, for all i = 1, . . . , k, the expression in (3.3) gives

the exact value of the optimal (real-valued) ni’s (see Section 3.4).

The result in (3.3) has an important implication when comparing two possibilities

for such reliability demonstration for a system:

(A) one considers all possible tasks as exchangeable, so one does not wish to dis-

tinguish tasks of different types;

(B) one separates the possible tasks into k ≥ 2 different types.

Suppose that, for case (B), one wishes to demonstrate reliability for the situation

that m tasks are required for each type, so a total of km tasks, and for case (A)

the total number of tasks (all of one type) considered for the process after testing is

also km. Assume that p is close to 1, and that ‘automatic’ non-informative choice

of hyperparameters for the Beta prior distributions in each case is used, say α > 0

and β ≥ 0 in case (A), and αi = α and βi = β for all i = 1, . . . , k in case (B).

Moreover, for simplicity, assume that β = 0 has been chosen (but the same applies

for other values of β as well). Then, (3.1) implies that, for case (A), we would

need a total number of successful tests (with no failures observed) of approximately
p

1 − p
kαm. For case (B), from (3.3) we would need approximately the same number

of successful tests for each type of task, so we would need approximately k times

as many tests, hence approximately
p

1 − p
k2αm in total (as always without any

failures) to meet the same reliability requirement. This is easily explained via the

interpretation that the required number of tests without failures (per type of task)

depends on how much evidence will effectively cancel out the imaginary number of

failures α, and for case (B) we have effectively assumed kα such prior failures. This



3.3. Multiple types of tasks 35

problem is easily overcome by changing the parameters αi used per type of task in

case (B) to αi = α/k, in which case the total number of successful tests required

becomes approximately the same for cases (A) and (B). This is illustrated in Cases

(a) (b) and (f) in Example 3.3.2. We regard this as a serious argument against

‘automatically assumed non-informative prior distributions’, which is in line with

our repeated observation that these inferences are very sensitive to the choice of α.

If one wishes to choose a non-informative prior in such situations, we would

support α = 1 and β = 0 in case of a single type of task, and consistent with that

we would also support the choice αi = 1/k and βi = 0, for all i = 1, . . . , k, in case

of k different types of tasks. Of course, one could equally well defend the use of any

positive constant times these α’s, e.g. taking α = k in case (A) and αi = 1 in case

(B).

If, in case (B), the mi’s are not all the same, then we would also end up with a

larger total number of tests required than for the corresponding case (A), if we would

take all αi’s in case (B) the same as the α in case (A). Examples we computed suggest

that, in this situation, taking the αi’s in case (B) such that they are proportional

to the corresponding mi’s, and sum up to α (so αi = mi
Pk

i=1 mi
α), will lead to a

total number of required successful tests in case (B) which is nearly identical to the

number required in case (A), e.g. see Cases (d) and (h) in Example 3.3.2. We have

not achieved a full analytical justification for this.

For the case with αi = α and βi = β, for all i = 1, . . . , k, and a total number

of tasks required in the process equal to
∑k

i=1 mi = km, the largest total number

of successful tests is required in the case mi = m, for all i = 1, . . . , k. Intuitively,

we can explain this as follows. Compared to the situation where all mi are equal,

in which case we test equal numbers ni, if, say, m1 is reduced by the same number

as m2 is increased, then the overall reliability will be reached via a slightly larger

probability of zero failures for tasks of type 1 than for tasks of type 2, which, due

to the manner in which the optimal ni depend on these probabilities of zero failures

per type, then implies that we would still have to perform some extra tests of type

2, but far fewer of type 1 than was the case if m1 and m2 had been equal, thus

reaching the same overall reliability with a saving on the total number of tests, e.g.
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see Cases (b), (d) and (e) in Example 3.3.2.

The situation with αi = 1 and βi = 0, for all i = 1, . . . , k, but allowing different

mi for each type of task, is of interest as, for this choice of prior distributions, we

can actually get close to an analytical solution for the optimisation problem in this

section. This is presented in more detail for the more general case in Section 3.4,

showing that in this situation the k-dimensional optimisation problem can be re-

duced to a 1-dimensional search problem, hence simplifying required computational

effort, in particular for larger values of k. With these prior distributions, the opti-

mal numbers of successful tests for each type, ni, are approximately proportional to
√

mi. For example, if we have k = 2 types of tasks in such a case, with m1 = 25 and

m2 = 100, it would be optimal to test approximately twice as many tasks of type 2

than tasks of type 1 (of course, the total number of tests needed would depend on

the reliability requirement p), see Cases (d) and (e) in Example 3.3.2.

With random quantities Mi representing the numbers of tasks to be completed

in a specified period in the process after testing, the convexity argument used in

Section 2.4.2 showed that the deterministic case, with known mi, requires at least

as many successful tests as are required for any random Mi with expected value

E(Mi) = mi, for each of these P (FFPi|(ni, 0)). When restricting attention to

probability distributions with E(M) = m, one can always find a distribution which

guarantees a failure-free period with probability p arbitrarily fixed in the range

0 < p < 1, even without any tests to be performed, so with n = 0. This can be

achieved by taking any probability distribution with P (M = 0) greater than or

equal to p, where the residual probability mass 1− p can be put at such values that

E(M) = m, in which case clearly the probability of a failure-free period exceeds p.

We illustrate the optimal test numbers, according to the problem criterion con-

sidered in this section, via two examples. First, a small example, to give a clear idea

of how the optimal numbers of tests of different types of tasks are related to each

other. Then a detailed example to illustrate all the cases discussed in this section.

Example 3.3.1

For m = (1, 2, 4, 9), αi = 1, βi = 0, ∀i = 1, . . . , 4, and for different required p, we can



3.3. Multiple types of tasks 37

aim to minimise the total number of tests, assuming they reveal no failures, such

that the resulting predictive probability of zero failures in the process is at least p.

The corresponding optimal test numbers are given in Table 3.2.

p n1 n2 n3 n4

0.90 70 98 139 207

0.95 144 204 287 429

0.99 737 1042 1474 2209

0.995 1479 2091 2956 4433

0.999 9457 10553 13943 21505

Table 3.2: Minimal test numbers required for different p.

Table 3.2 illustrates that very high reliability, according to the problem criterion

in this section, can only be achieved by very many zero-failure tests. All cases in

Table 3.2 illustrate that the optimal ni’s are approximately proportional to
√

mi.

For example, it would be optimal to test approximately three times as many tasks

of type 4 than tasks of type 1. For this setting, if tasks are assumed to arrive

according to Poisson processes, with their expected numbers equal to the mi used

above, then the numbers of zero-failure tests required are indeed nearly identical to

those in Table 3.2. If we increase the mi, then the required test numbers increase

by about the same factor, for example optimal testing for m = (10, 20, 40, 90), and

p = 0.90, is achieved by tasking n = (699, 985, 1387, 2067). Of course, the required

test numbers decrease substantially if we take a smaller value for the αi. This is

illustrated, for example in Table 3.1 and in the example below, Example 3.3.2, e.g.

comparing Cases (b) with (f).

Example 3.3.2

In this example, we illustrate some of the results discussed in this section, namely

the implication of (3.3) when comparing two possibilities for such reliability demon-

stration for a system (A), where all tasks are of one type, and for a system (B),

where we distinguish between tasks of different types performed by the system. We

performed calculations for a wider range of values of p than reported here, and for

more combinations of values for the variables in this problem, all of which supported
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the above results and insights similarly.

Table 3.3 gives the minimal required integer-valued numbers of tests in the form

of a k-vector n, for several cases under the zero-failure assumption. We assume

that the total (expected) number of tasks that the system needs to deal with in the

process after testing is 100, and the values βi are equal to 0. All the cases reported

are for the deterministic situation with regard to the required number of tasks to

be dealt with in the process after testing, except for Cases (i)-(l) where the Poisson

case is considered, with the expected number of tasks in the process denoted by λi

for tasks of type i = 1, . . . , k, or just λ in the situation of a single type of tasks. We

consider the following cases:

(a) k = 1, m = 100, α = 1

(b) k = 2, m1 = m2 = 50, α1 = α2 = 1

(c) k = 4, mi = 25 and αi = 1 for i = 1, . . . , 4

(d) k = 2, m1 = 25, m2 = 75, α1 = α2 = 1

(e) k = 2, m1 = 10, m2 = 90, α1 = α2 = 1

(f) k = 2, m1 = m2 = 50, α1 = α2 = 0.5

(g) k = 4, mi = 25 and αi = 0.25 for i = 1, . . . , 4

(h) k = 2, m1 = 25, m2 = 75, α1 = 0.25, α2 = 0.75

(i) k = 2, m1 = 10, m2 = 90, α1 = 0.10, α2 = 0.90

(j) k = 1, Poisson, λ = 100, α = 1

(k) k = 2, Poisson, λ1 = λ2 = 50, α1 = α2 = 1

(l) k = 2, Poisson, λ1 = 25, λ2 = 75, α1 = α2 = 1

Cases (a), (b) and (c) illustrate that, by dividing the total number of tasks in

the process, m, into equal numbers mi = m/k for k types, the number of tasks

that need to be tested per type remains close to the total number needed if all tasks

were assumed to be of one type, as long as we take the ‘automatic’ choice αi = 1

for all types. However, if we use αi = α/k together with mi = m/k, with α the

hyperparameter used in the case of all tasks being of a single type, then we need

in total (about) the same number of tests as in the case with a single type, which

is illustrated by comparing Cases (f) and (g) to Cases (a), (b) and (c). Cases (d)
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Case p n
∑k

i=1
ni

(a) 0.90 900 900

0.95 1900 1900

0.99 9900 9900

(b) 0.90 (924, 925) 1849

0.95 (1925, 1925) 3850

(c) 0.90 (936, 937, 937, 937) 3747

0.95 (1937, 1937, 1937, 1938) 7749

(d) 0.95 (1319, 2270) 3589

(e) 0.95 (775, 2295) 3070

(f) 0.90 (450, 451) 901

0.95 (950, 951) 1901

(g) 0.90 (225, 225, 226, 226) 902

0.95 (475, 475, 476, 476) 1902

(h) 0.90 (226, 675) 901

0.95 (476, 1425) 1901

(i) 0.95 (190, 1711) 1901

(j) 0.90 900 900

0.95 1900 1900

(k) 0.90 (923, 924) 1847

0.95 (1924, 1924) 3848

(l) 0.95 (1318, 2269) 3587

Table 3.3: Minimal test numbers required in Cases (a)-(l).

and (e), when compared to Case (b), illustrate that mi = m/k represents the worst

case (in terms of total number of tests needed) when using k types of tasks, and

dividing the m tasks in the process over these k types. Cases (h) and (i), when

compared to Cases (d) and (a), illustrate our suggestion that even when the mi’s

are not equal, taking the αi’s proportional to the mi’s and such that they sum up to

α, leads to (about) the same total number of tests required as for the case with only

a single type. We got the same results in other examples, but have not managed a

theoretical proof.

Cases (j), (k) and (l), when compared to Cases (a), (b) and (d), illustrate that

the Poisson case is (nearly) as bad as the deterministic situation. Finally, Cases (d)
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and (e), in which the mi-values vary, and with αi = 1, illustrate that the minimal

required number of tests per type is, for such cases, approximately proportional to

the
√

mi, as e.g. for Case (e) we have that
√

90/
√

10 = 3 and 2295/775 = 2.961.

3.4 Considering costs

So far in this chapter, we have not yet considered costs of testing, which are of

particular interest for determining suitable test sizes for multiple types of tasks if

these costs differ per type of task. Suppose that the cost of testing is linear in the

number of tasks tested per type, and let ci > 0 be the cost of testing a task of type

i, for i = 1, . . . , k. Then we may wish to minimise the total testing costs

k
∑

i=1

nici, (3.4)

again assuming that all tests reveal no failures, such that a minimal required re-

liability level p ∈ (0, 1) is achieved, that is P (0|m, (n, 0)) ≥ p if m is known, and

P (FFP |(n, 0)) ≥ p in case of random M .

We can generalize this optimisation criterion by also including cost of failure

during the process. Let C ≥ 0 be the total costs incurred by a failure in the process,

explicitly assuming that any such failure is catastrophic in the sense that functioning

of the system in the process is ended on occurrence of any failure. Typically, such

cost C may include considerations on possibly lost life, or environmental disaster,

or lost trust in business relations, etc. For the sake of this analysis, we assume C

to be a fixed constant, but we acknowledge that it may be difficult in practice to

assign it a precise value. For this generalized situation, our objective is to minimise

the total expected cost of testing and process failure,

EC(n, c, m, C) =

k
∑

i=1

nici + [1 − P (0|m, (n, 0))]C. (3.5)

We can include the constraint P (0|m, (n, 0)) ≥ p, leading to a k-dimensional con-

strained optimisation problem, which needs to be solved numerically. Of course, in

case of random M we again change the probability of zero failures in the process to

the appropriate term, P (FFP |E(M) = m, (n, 0)). The situation studied in Section
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3.3 is the special case of this constrained problem with C = 0 and ci = 1 for all

i = 1, . . . , k.

For the special case with Beta prior distributions with hyperparameters αi = 1

and βi = 0, for all i = 1, . . . , k, we can achieve an analytical result. The problem

then becomes minimisation of

k
∑

i=1

nici +

(

1 −
k
∏

i=1

ni

ni + mi

)

C, (3.6)

subject to
k
∏

i=1

ni

ni + mi
≥ p. (3.7)

Of course, the solution should consist of positive integers ni, but we study this

problem as if real-valued numbers of zero-failure tests, say n∗
i , for all i, are allowed;

the actual optimal solution, due to convexity, will then be found by comparing the

value of this function for all integer k-vectors n, which are ‘neighbours’ to the real-

valued optimal solution, to choose the ones that give the minimum total expected

costs and which still satisfy the constraint (3.7). The well-known Kuhn-Tucker (KT)

conditions for this constrained optimisation problem are (see e.g. Luenberger [34]

for the relevant mathematical theory of optimisation):

ci − (C + µ)
mi

(ni + mi)2

∏

l 6=i

nl

nl + ml

= 0, (3.8)

for i = 1, . . . , k, and either the constraint is active or the Lagrange multiplier µ = 0.

Note here that, if C = 0 (as in Section 3.3), the constraint will necessarily be active,

so the latter term never disappears. Let us take i, j ∈ {1, . . . , k}, with i 6= j, and let

D = (C + µ)
∏

l 6=i,j

nl

nl + ml
, (3.9)

where we define the product term as one in the case k = 2. Then the KT conditions

become

D
mi

(ni + mi)2

nj

nj + mj
= ci, (3.10)

D
mj

(nj + mj)2

ni

ni + mi

= cj. (3.11)

So that
nj(nj + mj)

ni(ni + mi)
=

ci

cj

mj

mi

. (3.12)
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As this holds for all i, j, we can introduce a constant q > 0 such that ni(ni + mi) =

q
mi

ci
, and consequently

n∗
i =

1

2

(

−mi +

√

m2
i + 4q

mi

ci

)

. (3.13)

If we define the function Q(q) by

Q(q) =

k
∏

i=1





−mi +
√

m2
i + 4q mi

ci

mi +
√

m2
i + 4q mi

ci



 , (3.14)

then the constraint (3.7) is Q(q) ≥ p. It is easy to show that Q(·) is a continuous

and strictly increasing function of q, with Q(0) = 0 and Q(q) → 1 for q → ∞. This

implies that (i) if the constraint is active at the optimal solution, we compute the

value q∗ for which Q(q∗) = p, which is a one-dimensional search problem, and (ii)

if the optimum is achieved for a solution n at which the constraint is not active,

the components of n as function of q, are given by (3.13), for some q ∈ (q∗,∞). So

again, we can search for the solution by varying only the value of q.

Typically, if p is close to 1, q∗ will be very large compared to the values mi.

Consequently, from (3.13), ni is approximately equal to
√

qmi

ci
, with q = q∗ if the

constraint is active at the solution, and q > q∗ if not. Hence, in such situations, the

ratio between two optimal numbers to be tested, n∗
i /n

∗
j , is approximately equal to

√

mi

ci

√

mj

cj

. (3.15)

For the special case with mi = m and ci = c for all i = 1, . . . , k, and the

constraint active at the optimal solution, then from solving the equation Q(q) = p

which in this case is
[

−m +
√

m2 + 4q m
c

m +
√

m2 + 4q m
c

]k

= p, (3.16)

it yields

q∗ = cm
p1/k

(1 − p1/k)2
, (3.17)

leading to optimal test numbers

n∗
i = m

(

p1/k

1 − p1/k

)

, (3.18)



3.4. Considering costs 43

which agrees with (3.3) for αi = 1, for all i = 1, . . . , k.

Although it appears that c plays no role in this solution, its value relative to C

determines whether or not the constraint will be active at the optimal solution. This

method reduces this k-dimensional constrained optimisation problem to a relatively

straightforward 1-dimensional search problem. Apart from significantly reducing the

computational effort required to solve this problem, this also provides the following

equation for optimal test numbers of types i and j:

nj(nj + mj)

ni(ni + mi)
=

cimj

cjmi
,

for all i, j ∈ {1, . . . , k}, where of course the equality can only be achieved for real-

valued n∗
i and n∗

j , so will hold approximately for integer numbers of tests. This

also implies that, for p close to 1, the optimal test numbers are approximately

proportional to
√

mi

ci
, (3.19)

where the optimal total number of tests
∑k

i=1 n∗
i , of course, depends on p and C.

This result gives clear insight into the way that the mi and the ci influence the

optimal numbers of tasks of each type to be tested, for this particular choice of

hyperparameters αi = 1 and βi = 0. It turns out that, in this situation, replacing

the known numbers mi again by Poisson distributed random quantities Mi; with

E(Mi) = mi, seems again to lead to approximately the same optimal results.

Although numerical examples showed us that such a relation also approximately

tends to hold for other values of αi and βi, we have not been able to prove this more

generally due to the complexity of the probability of zero failures involved. This is

illustrated in Example 3.4.2.

It is worth mentioning here that for the special case with C = 0 and αi = 1, for

i = 1, . . . , k, we achieved a conjectured solution in a closed form for the real-valued

zi = ni + βi which is,
pmi

√
ci +

∑k
j 6=i

√
pmimjcj

(1 − p)
√

ci

.

This solution, which we could not prove for general k due to the complexity of

the probability of zero failures involved, gave precise answers to all the numerical
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examples that were explored. For k = 2 and k = 3, this conjectured solution

can be obtained by using the first-order KT conditions, although this is somewhat

tedious. Moreover, it is easy to see that, if true, this conjecture would agree with

the reliability constraint (3.7), which for this case is an active constraint.

Example 3.4.1

In this example we illustrate the method discussed in this section, both for the

deterministic (Cases (1)-(3)) and the Poisson cases (Case (4)). Throughout, we

take all the αi = 1 and βi = 0. The results are presented in Table 3.4. As our

interest is explicitly in the required test numbers, we do not report the associated

optimal total expected costs. We consider the following cases:

(1) k = 3, m = (1, 3, 6), c = (20, 50, 50), C = 10, 000

(2) k = 3, m = (1, 3, 6), c = (20, 50, 50), C = 1, 000, 000

(3) k = 4, m = (1, 2, 4, 9), c = (1, 5, 1, 5), C = 0

(4) k = 4, Poisson, λ = (1, 2, 4, 9), c = (1, 5, 1, 5), C = 0

Case p n

(1) 0.90 (71, 78, 109)

0.95 (148, 161, 227)

0.99 (758, 828, 1170)

(2) 0.90 (219, 239, 337)

0.95 (219, 239, 337)

0.99 (758, 828, 1170)

(3) 0.90 (122, 76, 242, 160)

0.95 (250, 158, 500, 332)

(4) 0.90 (121, 75, 241, 159)

0.95 (249, 157, 499, 331)

Table 3.4: Optimal test numbers required in Cases (1)-(4).

In the cases presented in Table 3.4, the ‘probability of zero failures’ constraint

(3.7) is active in all situations, except in Case (2) for p = 0.90 and p = 0.95;

in these two situations that probability, at the optimum n, is actually equal to

0.966. In relation to Cases (1) and (2), we also calculated the optimum solutions for
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C = 100, 000, which gave precisely the same solutions as Case (1), as the constraint

was still active for this value of C, for all these values of p. In any situation, for

all values of C such that the constraint is active, the optimal solution is identical.

Once the constraint is not active anymore, due to a relatively large value of C, the

optimum starts to change with changing C.

All cases in this example illustrate the presented approximate relationship in

(3.19) between the optimal ni, mi and ci, as can be confirmed easily. Cases (3) and

(4) allow comparison between the deterministic and Poisson cases, again the differ-

ence between these situations is very small, with the deterministic case requiring

most tasks to be tested.

Example 3.4.2

In this example we illustrate the optimal zero-failure tests for the Cases (1), (3)

and (4) stated in Example 3.4.1, but for different values of αi and βi. Table 3.5

illustrates the fact that the relationship between ni, mi and ci in (3.19) also appears

to hold for values of αi and βi other than αi = 1 and βi = 0, for all i = 1, . . . , k.

Moreover, it illustrates that, in our setting, where we assume no failures in the tests,

the choice of βi do not have much impact on ni. For example, comparing the first

column in Table 3.5 with Table 3.4 and the second column with the third column in

Table 3.5, shows that increasing βi by 1 decreases ni by 1, in order to demonstrate

the required level of reliability. Table 3.5 also illustrates the great impact that the

choice of αi has on ni, since the reliability demonstration requires ni tests without

failures to effectively counter the prior information of αi ‘imaginary test failures’.
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n

Case p αi = 1, βi = 1 αi = 0.5, βi = 0 αi = 0.5, βi = 1 αi = 2, βi = 0

(1) 0.90 (70, 77, 108) (34, 38, 54) (33, 37, 53) (143, 156, 221)

0.95 (147, 160, 226) (75, 80, 112) (74, 79, 111) (297, 323, 456)

0.99 (757, 827, 1169) (380, 413, 584) (379, 412, 583) (1515, 1657, 2343)

(2) 0.90 (218, 238, 336) (156, 170, 239) (155, 169, 238) (308, 336, 474)

0.95 (218, 238, 336) (156, 170, 239) (155, 169, 238) (308, 336, 474)

0.99 (757, 827, 1169) (380, 413, 584) (379, 412, 583) (1515, 1657, 2343)

(3) 0.90 (121, 75, 241, 159) (61, 38, 119, 78) (60, 37, 118, 77) (243, 153, 486, 323)

0.95 (249, 157, 499, 331) (125, 79, 248, 164) (124, 78, 247, 163) (501, 316, 1002, 668)

(4) 0.90 (120, 74, 240, 158) (61, 37, 121, 77) (60, 36, 120, 76) (242, 152, 484, 321)

0.95 (248, 156, 498, 330) (125, 78, 250, 163) (124, 77, 249, 162) (500, 314, 1001, 667)

Table 3.5: Optimal test numbers required in Cases (a)-(c) for different values of αi

and βi = 1.

3.5 Concluding remarks

In this chapter, we analysed optimal test numbers for a single type of task, and for

multiple types of tasks (with full independence between different types), including

possible costs of testing and process failure for the latter situation. Under the

assumption that testing reveals zero failures, our interest was explicitly in a failure-

free period, of a given length of time, for the process after testing. We studied the

Bayesian approach to this problem, using conjugate Beta(αi, βi) prior distributions

for the probability of a failure for type i = 1, . . . , k. Special attention was given to

the effect of the choices of the hyperparameters αi and βi on the required numbers

of successful tests. Throughout, the emphasis has been on reliability demonstration,

which implies that we assume that the test results must be strong enough to predict

high reliability with very little information added via the prior distribution. For

reliability demonstration, we favour a small value of αi, and βi = 0. For testing a

single type of task, we advocate the choice α = 1. If there are k ≥ 2 types, then

using this same value for all αi will lead to more tests required, in the worst case,

in terms of the number of tests, about k times as many as when all tasks where
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assumed to be of the same type. From this perspective, taking the αi’s such that

they sum up to 1, but are in the same proportions as the mi’s, with mi the required

number of tasks of type i to be dealt with in the process after testing, gets us back

to about the same total number of tests needed as when all tasks are assumed to

be of a single type. This emphasizes possible problems with an ‘automatic’ choice

of non-informative prior, which is often advocated as an advantage of Bayesian

statistics. So, we conclude that careful attention is required to the choice of the

prior distribution in case of reliability demonstration with zero failures in the tests,

in particular because the required test numbers are very sensitive to the choice of

the αi’s.

For the setting in this chapter, we have identified a few ‘worst case’ scenarios in

the sense of requiring the largest number of successful tests in order to achieve a

specified reliability level. These are: (1) Deterministic numbers mi of tasks needed

to be dealt with in the process after testing, are worse than random numbers Mi with

E(Mi) = mi, when expressing reliability in terms of probability of zero failures in the

process. Poisson distributions for Mi are almost equally bad as the deterministic

case. (2) Distinguishing tasks into more different types (assuming independence

between the types) is worse than regarding them all as a single type, if one uses

the same ‘automatically chosen’ values αi = α for all types as one would use for a

single type. In this same situation of ‘automatically chosen’ αi’s, we also have that:

(3) If in total mk tasks appear in the process, with k types of tasks, most testing is

needed if mi = m for all i = 1, . . . , k. The disadvantages mentioned in these insights

(2) and (3) disappear if we adapt the αi’s by taking them proportional to the mi’s,

with the sum of the αi’s remaining at the value one would take in case of a single

type.

In the next chapter we report on a study of reliability demonstration from similar

perspectives as in this chapter, but where we assume that process failures are not

catastrophic, in the sense that they do incur a cost but allow continued use of the

system in the process. There, we study how optimal test numbers, again assuming

no failures in testing, depend on the costs involved, and we also include constraints

on testing opportunities in terms of budget and time available for testing. Expand-
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ing the approach presented here to include constraints on testing would also be of

possible interest, we leave this as a topic for future research.



Chapter 4

Reliability demonstration for

non-catastrophic failures

4.1 Introduction

In this chapter we introduce optimal testing of a technical system in order to demon-

strate reliability with regard to its use in a process after testing, where the system

has to function for different types of tasks, which we assume to be independent.

We assume that process failures are not catastrophic in the sense that they allow

continued use of the system in the process, but do incur a cost. Throughout this

chapter, reliability demonstration is formulated in terms of minimisation of the total

expected costs of testing and process failures. It is assumed that such costs are linear

both in the numbers of tasks tested per type and in the expected number of failures

per type in the process. It is also assumed that the system’s functioning remains

unchanged during the period over which the process is considered, in the sense that

it does not suffer from wear-out and is not repaired. We explicitly assume that

testing reveals zero failures. The optimal numbers of tasks to be tested are derived

by minimisation of a cost function, taking into account the costs of testing and of

failures in the process after testing. We focus on study of the optimal numbers of

tests for different types of tasks, depending on the numbers of tasks in the process

and the costs involved. We briefly compare the results of this chapter with optimal

test numbers in the setting presented in Chapter 3, where the optimality criterion

49
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was more suitable for catastrophic failures. For these two different optimality crite-

ria, the dependence of the optimal numbers to be tested for different types of tasks,

on the costs of testing per type, and on the number of tasks per type in the process

after testing, turns out to be very similar.

The focus is explicitly on the system’s required performance, during a specified

period after testing, with the number of tasks that the system has to perform during

that period either random quantities or known in advance. We study how optimal

test numbers, again assuming no failures in testing, depend on the costs involved.

We also include constraints on testing opportunities in terms of budget and time

available for testing.

Throughout this chapter, we use the setting introduced in Chapter 2, and specif-

ically in Section 2.5. We particularly consider tasks that arrive as Poisson processes

with known arrival rates. We are interested in the required numbers of tasks, of

each type, to be tested, aiming at minimisation of the total expected costs of testing

and process failures, subject to both testing budget and time constraints.

In Section 4.2, optimal testing is considered in the sense of minimal total expected

costs, with constraints on budget and time for testing. In Section 4.3, we present the

main results, with a brief discussion, when the reliability demonstration problem is

formulated in terms of minimisation of the total expected number of failures subject

to a constraint on the total number of tests allowed before the start of the process.

We consider the problem in this section as a special case of Section 4.2, however,

we believe that it is of specific interest in providing an optimal test (ignoring costs)

towards an interesting given reliability requirement, namely the maximum expected

number of failures allowed in the process after testing. In Section 4.4 some main

results on optimal test numbers per type of task according to the approaches in

Chapters 3 and 4 are compared. This leads to a useful conclusion that, for both

optimality criteria, the optimal numbers of tasks per type to be tested depend

similarly on the expected number of tasks in the process and on the different costs

of testing per type. Some concluding remarks are given in Section 4.5.
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4.2 Minimising total expected costs

In this section we consider the optimal number of tasks to be tested, assuming

that the system will only be released for use in the process after testing, if testing

revealed no failures, for a system of k ≥ 1 independent types of tasks. We aim at

minimisation of the total expected costs, that is the costs of testing and the expected

costs of failures in the process during the period of length t > 0 after testing, under

constraints on budget and time for testing. We assume that the costs of testing are

linear in the number of tests per type of task, and that failure in the process is not

catastrophic, in the sense that the process continues after failure as before, yet such

failure does incur a (possibly high) cost. In this section, we will particularly consider

tasks that arrive as Poisson processes with known arrival rates after testing, but the

same general results hold for other processes since we only take the expected number

of failures in the process into account. Poisson processes have the advantage that

the effect of the length t > 0 of the process considered, on the optimal numbers to

be tested, can be studied explicitly.

For tasks of type i, for i = 1, . . . , k, let ni be the number of tasks to be tested,

and let λi > 0 be the arrival rate in the process after testing, which is assumed to

be known. The cost of testing one task of type i is denoted by ci > 0, and the

time needed for one such test is ti > 0. A failure in the process, for a task of type

i, costs fi > 0, and the total budget and time available for testing are B > 0 and

T > 0, respectively. The total expected number of failures in such a process during

a period of length t immediately after testing, is presented in (2.21).

The optimisation problem considered here is minimisation, by choice of ni, for

i = 1, . . . , k, of the total expected costs of failures in the process and the cost of

testing,

t
k
∑

i=1

fiαiλi

αi + βi + ni
+

k
∑

i=1

nici, (4.1)

subject to the cost and the time constraints on testing,

k
∑

i=1

nici ≤ B, (4.2)



4.2. Minimising total expected costs 52

k
∑

i=1

niti ≤ T, (4.3)

We analyse this problem as if ni is not restricted to be an integer. The actual

solution is then easily found by considering all ‘nearest’ integers ni which satisfy the

constraints, because the function to be minimised is convex, which is easily confirmed

as its Hessian matrix is positive definite with respect to ni, for i = 1, . . . , k.

This convexity, together with the linearity of the two constraints as functions of

ni, implies that the necessary first-order Kuhn-Tucker conditions for the solution of

a constrained minimisation problem are actually sufficient conditions [34]. As our

main interest is in the testing requirements, we do not consider the corresponding

values of the object function in detail. However, as this function is fairly flat around

the real-valued optimum, rounding to a ‘nearest’ integer solution would not have

much effect on the total expected costs. The solution of this optimisation problem

depends on whether or not there are active constraints, and is derived via the Kuhn-

Tucker conditions. The first-order necessary conditions are

−tfiαiλi

(αi + βi + ni)2
+ ci + µcci + µtti = 0, i = 1, . . . , k, (4.4)

µc

(

k
∑

i=1

nici − B

)

= 0, (4.5)

µt

(

k
∑

i=1

niti − T

)

= 0, (4.6)

µc ≥ 0, and µt ≥ 0,

where, µc and µt are the Lagrange multipliers [34], and of course, we also restrict

to ni ≥ 0. We present and discuss the solutions to the four possible combinations

of active and inactive constraints (4.2) and (4.3). The real-valued optimal ni will

be denoted by n∗
i , with additional superscripts to indicate the corresponding active

constraints. When rounding n∗
i to an integer-valued solution, the constraints must

still be satisfied. However, for the integer-valued solution a small amount of the

budget or the time may be left unused, depending on which of the constraints are

active. These results are illustrated, and discussed in more detail, in Example 4.2.1.
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1. Cost and time constraints active (µc, µt ≥ 0):

If both constraints, (4.2) and (4.3), are active, then the set of equations (4.4), (4.5)

and (4.6) becomes

−tfiαiλi

(αi + βi + ni)2
+ ci + µcci + µtti = 0, i = 1, . . . , k,

k
∑

i=1

nici − B = 0,

k
∑

i=1

niti − T = 0,

µc ≥ 0, µt ≥ 0.

By solving these equations, the optimal real-valued ni, which we denote by n∗ct
i , for

i = 1, . . . , k, are functions of Lagrange multipliers µc and µt, corresponding to cost

and time constraints, respectively

n∗ct
i =

√

tfiαiλi

(µc + 1)ci + µtti
− (αi + βi), (4.7)

where µc and µt can be derived from the equations

k
∑

j=1

cj

√

fjαjλj

(µc + 1)cj + µttj
=

B +
∑k

j=1(αj + βj)cj√
t

(4.8)

and
k
∑

j=1

tj

√

fjαjλj

(µc + 1)cj + µttj
=

T +
∑k

j=1(αj + βj)tj√
t

. (4.9)

The solutions n∗ct
i depend on t in a way that may not be directly clear from these

equations, since the Lagrange multipliers µc and µt also depend on t. These solutions

will vary only a little with increasing t. The only change is due to the presence of

the term ‘+1’ in the denominators (µc + 1)cj + µttj under the square-roots in these

equations, as this prevents the µc and µt corresponding to the optimal solution to

be linear in t, and therefore they remain dependent on the individual values cj and

tj. However, for reasonably large t this minor effect becomes neglectable, and the

real-valued solutions n∗ct
i hardly change anymore with increasing t, hence changes in

the integer solutions become very unlikely. For Case 3, with only the time constraint

active, we will see that a similar effect occurs, but stronger than in this case.
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The solutions for situations with one or two inactive constraints are derived by

setting the corresponding Lagrange multipliers equal to zero, and deleting the equa-

tions related to the inactive constraints.

2. Cost constraint active, time constraint inactive:

If the cost constraint (4.2) is active but the time constraint(4.3) is inactive, so we

use the entire test budget but there is sufficient time available for testing, then from

(4.7) and (4.8), with µc ≥ 0 and µt = 0, the real-valued solution to our optimisation

problem is

n∗c
i =

√

fiαiλi

ci

[

B +
∑k

j=1(αj + βj)cj
∑k

j=1

√

fjαjλjcj

]

− (αi + βi), (4.10)

with corresponding Lagrange multiplier

µc = t

[

∑k
j=1

√

fjαjλjcj

B +
∑k

j=1(αj + βj)cj

]2

− 1.

This optimal n∗c
i does not depend on t, but the Lagrange multiplier corresponding

to this solution does depend on t, implying that the benefit of relaxing the active

constraint (testing budget) a little, on the total expected costs, increases with t.

3. Cost constraint inactive, time constraint active:

If the cost constraint (4.2) is inactive but the time constraint(4.3) is active, so

optimal testing is restricted by the time available but not by the test budget, then

µc = 0 and µt ≥ 0, and from (4.7) and (4.9), the real-valued solution to this

optimisation problem is

n∗t
i =

√

tfiαiλi

ci + µtti
− (αi + βi), (4.11)

and the Lagrange multiplier µt can be derived from the equation

k
∑

j=1

tj

√

fjαjλj

cj + µttj
=

T +
∑k

j=1(αj + βj)tj√
t

. (4.12)

This solution varies again as a function of t in the following manner, where we

assume that on increasing t the cost constraint remains inactive. The Lagrange

multiplier µt is uniquely determined by (4.12), and is an increasing function of
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t. So, for smaller values of t for which this case applies, n∗t
i is relatively more

influenced by its approximate inverse proportionality to
√

ci. Whereas for larger t,

n∗t
i is relatively more influenced by its approximate inverse proportionality to

√
ti.

This implies that for smaller t we should test more of the tasks which are cheap to

test, while for large t we test more of the tasks which take less time to test, and

costs of testing become less relevant with increasing t, which is intuitively logical

due to the influence of the testing costs on the total expected costs. Of course, such

a shift from cheap tests to short tests, for increasing t, is only intuitively clear when

the cost constraint remains inactive. This is a similar, but stronger, effect as we

briefly discussed in Case 1, where both constraints active. This might be clearer

when the time constraint becomes active (keeping the cost constraint inactive) at

t =

[

T+
Pk

j=1
(αj+βj)tj

Pk
j=1

tj
√

fjαjλj/cj

]2

, with µt = 0, (see (4.15) in Case 4) for which there will be a

change from the case with no active constraint (Case 4) to this case. At this value

of t, the optimal real-valued n∗t
i becomes equal to (4.17), which is more influenced

by its approximate inverse proportionality to
√

ci than to
√

ti.

If t increases to infinity, with the time constraint remaining active and the cost

constraint remaining inactive, then the limiting solution can be found by minimising

the total expected costs due to process failures, without taking the testing costs
∑k

i=1 nici into account, as the expected costs due to failures increases to infinity

(as a technical detail we should remark that the optimal solution converges as it

becomes independent of t in the limiting situation). The optimal test numbers in

this limiting situation are

n∞t
i =

√

fiαiλi

ti

[

T +
∑k

j=1(αj + βj)tj
∑k

j=1

√

fjαjλjtj

]

− (αi + βi), (4.13)

so n∞t
i is approximately inversely proportional to

√
ti. The Lagrange multiplier

corresponding to n∞t
i is infinite. For large but finite t, in this case, the Lagrange

multiplier is approximately

µt ≈ t

[

∑k
j=1

√

fjαjλjtj

T +
∑k

j=1(αj + βj)tj

]2

,

which can also be simply derived from (4.12), with cj = 0, for j = 1, . . . , k.
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4. No active constraints:

If both constraints are inactive, the budget and time constraints do not affect optimal

testing any more, i.e. µc = µt = 0 and the equations related to both constraints,

(4.5) and (4.6) are deleted. Hence, the k equations of (4.4), or simply substituting

µc = µt = 0 in (4.7), gives the real-valued solution to this optimisation problem as

n∗
i =

√

tfiαiλi

ci

− (αi + βi). (4.14)

This situation occurs for small values of t, when both constraints are inactive, so if

t ≤ min







[

B +
∑k

j=1(αj + βj)cj
∑k

j=1

√

fjαjλjcj

]2

,

[

T +
∑k

j=1(αj + βj)tj
∑k

j=1 tj
√

fjαjλj/cj

]2






. (4.15)

If the process after testing is only considered over a relatively short period, the

optimal solution may not use the entire test budget and time, which is intuitively

logical. However, this does not appear in the more traditional approaches to re-

liability demonstration, referred to in Chapter 1, as there the reliability or cost

targets are not formulated predictively, but only consider estimates of summaries

(e.g. quantiles) of underlying probability distributions, the interpretation and use of

which are often hard to understand.

Intuitively, for larger t one would expect to test more as long as the two con-

straints are still satisfied (testing budget is still not totally used and the allowed

testing time has not elapsed yet). Therefore, by increasing time t to reach the value
[

B+
Pk

j=1
(αj+βj)cj

Pk
j=1

√
fjαjλjcj

]2

, when this is the minimum in (4.15), where the whole budget is

used, µc = 0 but the allowed testing time has not elapsed yet, then we better test

the closest integer combination to (∀ i = 1, 2, . . . , k)

n∗c
i =

√

fiαiλi

ci

[

B +
∑k

j=1(αj + βj)cj
∑k

j=1

√

fjαjλjcj

]

− (αi + βi), (4.16)

which is equal to n∗c
i as given by (4.10).

On the other hand, by increasing time t to reach the value

[

T+
Pk

j=1(αj+βj)tj
Pk

j=1
tj
√

fjαjλj/cj

]2

,

where this is now the minimum in (4.15), where the total testing time has elapsed

before finishing the available testing budget and µt = 0, then it is optimal to test

n∗t
i =

√

fiαiλi

ci

[

T +
∑k

j=1(αj + βj)tj
∑k

j=1 tj
√

fjαjλj/cj

]

− (αi + βi). (4.17)
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Logically, increasing time t could lead to the situation where the two constraints are

active and equal, which is not very likely to happen, then

t =

[

B +
∑k

j=1(αj + βj)cj
∑k

j=1

√

fjαjλjcj

]2

=

[

T +
∑k

j=1(αj + βj)tj
∑k

j=1 tj
√

fjαjλj/cj

]2

, (4.18)

and µc = µt = 0. Therefore, (4.16) and (4.17) become identical, hence a closed form

of n∗ct
i would be derived.

To solve an optimisation problem as considered here, we should check which

constraints are active via the condition on t shown in Case 4, or just find the optima

for all four cases above, and compare the corresponding expected costs to find the

solution. In all situations, we will need to round off the real-valued solutions to

integer-valued solutions, where we should be careful that the constraints must be

satisfied. For an integer-valued solution, a part of the test budget may be left unused,

even if the cost constraint is active for the corresponding real-valued solution, but

this amount not used will be smaller than the maximum of the ci, i = 1, . . . , k, and

a similar fact holds of course for the ti if the time constraint is active at the real-

valued solution. For example, if c1 is very large compared to the other ci, the cost

constraint can be active only in the sense of not allowing an unconstrained optimal

value for n1, but allowing all other ni to take their unconstrained optimal values.

If the tasks in the process do not arrive as Poisson processes, the analysis in

this section remains effectively the same, as we only use the expected numbers of

tasks in the process. Of course, throughout the analysis, tλi would be replaced by

the expected number of tasks of type i in the process during a period of length t

immediately after testing. However, the dependence of the optimal solution on t

might become far more complex than in the analysis above, in particular of course

if the tasks arrive as non-homogeneous Poisson processes [2], with arrival rates not

constant over time.

All the optimal n∗
i ’s, and therefore also the corresponding integer-valued solu-

tions, imply that these optimal numbers of tests are in constant ratio to each other,

independent of t, and are approximately proportional to
√

fi,
√

αi,
√

λi, and to
(√

ci

)−1
, and, if the time constraint is active, to

(√
ti
)−1

. The optimal ni’s are af-
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fected by the choice of βi such that, if we increase βi by 1, the optimal ni decreases

(approximately, in the case where only the cost constraint is active) by 1. Clearly,

the optimal ni are much more sensitive to the value of αi than to the value of βi.

Example 4.2.1

Suppose we have k = 4 fully independent types of tasks arriving according to Poisson

processes during a period of length t after testing. The relevant parameters are given

in Table 4.1.

Type i λi ci ti fi

1 1 1 1 10

2 2 5 1 10

3 4 1 4 5

4 9 5 4 1

Table 4.1: Parameters for 4 types of tasks.

Throughout this example, we use Beta prior distributions for the failure prob-

ability of type i with αi = 1 and βi = 0, for all i = 1, . . . , 4. Table 4.2 gives the

optimal numbers to be tested, depending on the length t of the process after testing,

with B = 1000 and T = 500.

t n1 n2 n3 n4

∑

nici

∑

niti

10 9 5 13 3 62 78

100 31 19 44 12 230 274

324 56 35 79 23 425 499

325 56 35 79 23 425 499

700 67 49 67 29 524 500

5,000 71 85 53 33 714 500

100,000 70 98 50 33 775 500

Table 4.2: Optimal test numbers with B = 1000 and T = 500.
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The time constraint becomes active at t = 322.09, in the sense that it affects

the real-valued solution to this optimisation problem. The first integer value of t

for which the integer-valued solution to this optimisation problem is affected by the

active time constraint is t = 325, for which the unconstrained integer-valued solution

would be n = (56, 35, 80, 23). For the limiting case t → ∞, the cost constraint

remains inactive, and the real-valued optimal limiting solution, from (4.13), is n∞t =

(70.43, 100.02, 49.51, 32.88). This illustrates that, with only the time constraint

active, increasing t leads to a shift towards testing more tasks with small ti-values,

as the influence of the costs of testing on the total expected costs decreases. This

allows in particular more tasks of type 2 to be tested, for which the corresponding

failure is relatively expensive, and which arrive at a rate that is twice the arrival

rate of tasks of type 1.

If we take the same parameters as above, but set T = 2000, then the cost

constraint becomes active at t = 1728.33, and the time constraint remains inactive

for all t. In this case, the optimal real-valued solution n∗c
i , given by (4.10), remains

constant as function of t when the cost constraint is active, and the corresponding

integer-valued solution also remains constant, namely n = (130, 82, 185, 55). Hence,

with the cost constraint active, we tend to test relatively more of the tasks that are

cheap to test, i.e. tasks of types 1 and 3.

Example 4.2.2

Suppose that we have the same information considered in Example 4.2.1, but with

B = 425 instead. Table 4.3 illustrates that, for values of T and B such that both

constraints are active, the real-valued solutions change very little (only in a few

decimals), while the integer-valued solutions tend not to change over all the t values

for which the constraints are active. In the real-valued optimisation problem, both

constraints are active for t ≥ 323. However, for the corresponding integer-valued

solutions, which remain constant, namely n = (56, 35, 79, 23), for t ≥ 320, the test

budget is fully used while one unit of time remains unused.
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t n∗
1 n∗

2 n∗
3 n∗

4

∑

n∗
i ci

∑

n∗
i ti

10 9.001 5.325 13.142 3.243 64.983 79.866

100 30.623 19.000 43.721 12.416 231.424 274.171

300 53.772 33.641 76.460 22.238 409.627 482.205

320 55.568 34.777 79.001 23.000 423.454 498.349

323 55.774 34.910 79.242 23.087 425.001 500.000

100,000 55.770 34.910 79.243 23.087 424.998 500.000

Table 4.3: Optimal real-valued numbers of tests, with B = 425 and T = 500.

4.3 Minimising total expected number of failures

The general problem formulation in Section 4.2 has several special cases which could

be of practical interest. For example, if one or both of the constraints are not

relevant, clearly this can be taken into account by taking B or T very large, reducing

the possible combinations of active constraints that need to be considered. An

interesting special case occurs when one sets all fi = 1, ci = 0, ti = 1 and T = nmax,

in which case the above problem represents optimal testing in the sense of minimising

the total expected number of failures in the process, during a period of length t after

testing, such that the total number of tests should not exceed nmax. Clearly, for this

situation, the optimal solution will be achieved with the constraint active, as we

still assume that no failures are discovered during testing, and hence from (4.11)

and (4.12) the corresponding real-valued solution is

n∗n
i =

√

αiλi

[

nmax +
∑k

j=1(αj + βj)
∑k

j=1

√

αjλj

]

− (αi + βi), (4.19)

with Lagrange multiplier

µ = t

[

∑k
j=1

√

αjλj

nmax +
∑k

j=1(αj + βj)

]2

. (4.20)

Substituting these real-valued n∗n
i , which indeed sum up to nmax, in (2.21), the

corresponding expected number of failures is

t
[
∑k

i=1

√
αiλi]

2

∑k
i=1(αi + βi) + nmax

. (4.21)
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Hence, even though the n∗n
i vary per type of task, due to the values of the λi, αi and

βi, this minimum expected number of failures in the process only depends on nmax,

so not on the particular values n∗n
i . This is convenient for determining the total

number of tests (without failures) required to get the expected number of failures

in the process, over a period of length t, below a chosen target value by (4.21). For

i, j = 1, . . . , k,
n∗n

i + αi + βi

n∗n
j + αj + βj

=

√
αiλi

√

αjλj

,

which, again implies that the optimal ni are in constant ratio to each other, inde-

pendent of t, and are approximately proportional to
√

αi and to
√

λi.

If one allows one more test, the optimal integer-valued ni’s all remain the same

except for one, which is increased by one. This can be justified as follows. Suppose

that the optimal real-valued solution of the number of tests of type i is n
′

i, given

that we are allowed to test nmax + 1 tasks in total so,
∑k

i=1 n
′

i = nmax + 1. Then

from (4.19) yields

n
′

i =
√

αiλi

[

(nmax + 1) +
∑k

j=1(αj + βj)
∑k

j=1

√

αjλj

]

− (αi + βi)

=
√

αiλi

[

nmax +
∑k

j=1(αj + βj)
∑k

j=1

√

αjλj

]

− (αi + βi) +

√
αiλi

∑k
j=1

√

αjλj

= n∗n
i +

√
αiλi

∑k
j=1

√

αjλj

, i = 1, . . . , k.

By the same convexity argument as before,

√
αiλi

∑k
j=1

√

αjλj

≤ 1, the integer-valued

of n
′

i (for all i = 1, . . . , k) is either ni or ni + 1, given that
∑k

i=1 n
′

i = nmax + 1.

Hence, the optimal numbers of tests should be one of the following combinations:

(n1 +1, n2, n3, . . . , nk), (n1, n2 +1, n3, . . . , nk), . . ., or (n1, n2, n3, . . . , nk +1).

This is intuitively logical, and it has advantages if it is not clear from the start how

many tests are allowed in total, and it can be useful for computation of the optimal

numbers of tasks of different types to be tested.

Example 4.3.1

Suppose that we have a process similar to the one considered in Example 4.2.1,
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but we do not consider costs and times of testing. So, the relevant parameters

are λ = (1, 2, 4, 9), αi = 1, and βi = 0, for all i = 1, . . . , k. Suppose now that

we are allowed to test in total nmax = 50 tasks. The optimal real-valued numbers

of tests are n∗ = (6.2835, 9.3004, 13.5661, 20.8500), regardless to the value of t (as

these n∗
i are independent of t). As the numbers of tasks that should be tested

are non-negative integers and the function for the expected number of failures is

convex, we should look at all the combinations of integers that surround the optimal

real-valued solution. In this example, the optimal integer solution that satisfies the

corresponding constraint
∑4

i=1 ni ≤ 50, is n = (6, 9, 14, 21), which leads to a minimal

expected number of failures equal to 10.1861 for a process with t = 10. Of course, if

we had considered t = 100 instead, the minimal expected number of failures would

be 10 times that for t = 10, namely 101.861, which follows from (4.21).

Suppose now that we are allowed to test one more extra task, so nmax = 51, and

with t = 10, then according to our analysis it is optimal to test one extra task of

the second type, so n = (6, 10, 14, 21), as this gives the minimum expected number

of failures, 10.0043, from all other possible integer combinations.

If, the expected number of failures in the process is required not to exceed 5

during the length of time t = 10, then, from (4.21), at least 106 tests in total are

required, and the optimal solution is then n = (14, 20, 29, 43).

4.4 Comparison with failure-free periods

In Chapter 3, we presented a similar setting for zero-failure reliability demonstration

as in Section 4.2, but assuming that failures in the process after testing are catas-

trophic, in the sense that the system would stop functioning for all types of tasks

on occurrence of the first failure, at a (probably large) fixed cost. The optimisation

problem in Chapter 3 is explicitly formulated in terms of the predictive probability

of a failure-free period in the process after testing. In that setting, it turns out

that most tests are required if the number of tasks in the process after testing is

deterministic, for each type of task. However, in many examples we calculated, the

case where the numbers of tasks of each type in the process after testing have Pois-
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son distributions, required almost the same numbers of tests without failures. In

Chapter 3, we mostly restricted to Beta prior distributions with αi = 1 and βi = 0

for the probability of a failure of type i, and we considered minimisation of the to-

tal expected costs of testing and process failure, similar to the approach in Section

4.2, but without constraints on the budget and time available for testing. A main

conclusion reached in Chapter 3, with tasks of different types arriving according

to independent Poisson processes, and presented in the same notation as used in

Section 4.2, is that the optimal required number of tests of tasks of type i is ap-

proximately proportional to
√

λi/ci, see (3.19), where the proportionality constant

depends on the cost of process failure and the length t of the period during which

the process is considered.

Comparing the optimal test numbers when focusing on failure-free periods, Chap-

ter 3, with our results in Section 4.2, we can conclude that the same approximate

proportionality results hold for the optimal number of tests per type of task, when

considered as a function of λi and ci. We consider this a useful result, in particular

because when speaking about ‘reliability demonstration’ one may not always have

a clear optimality criterion in mind. The results in Section 4.2 and in Chapter 3

imply that, when using Beta prior distributions with αi = 1 and βi = 0 for all types

i, and assuming that testing time is not a major restriction, and that failures in the

process are either catastrophic or lead to fairly similar costs for different types of

tasks, testing ni tasks of type i, with

ni ∝
√

λi

ci
,

will be very reasonable. This will not be too far away from an optimal test scheme

according to the different optimality criteria considered in these two chapters, which

we think are both natural and attractive, as they are explicitly formulated in terms

of minimal costs considering the actual test effort and expected failure costs in the

process. The proportionality constant for these ni depends of course on the actual

criterion used and on the possible constraints on testing. Of course, we do not claim

that testing in such proportions as functions of the λi and ci is close to optimal

for any possible optimality criterion. But our results suggest that, when explicitly

focusing on the system’s functioning in the process after testing, and when assuming
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that testing reveals zero failures, testing in these proportions will be sensible. This

is, for example, also useful if at the start of testing one does not yet know precisely

the total number of tests one can actually perform.

4.5 Concluding remarks

Throughout our study of Bayesian reliability demonstration, with the explicit as-

sumption that the system will only be used after testing if no failures occur during

testing, we have restricted attention to Beta priors, which simplifies computations

and enables interpretation of the hyperparameters. One could use any prior dis-

tribution to reflect prior knowledge, and use powerful computational methods (e.g.

MCMC [22]) for the final inferences. However, as we are aiming at optimising test

numbers, this could easily lead to an enormous computational burden. We think

it is more important to focus on the choice of appropriate hyperparameters for the

Beta priors. According to the optimality criteria in this chapter and in Chapter 3,

the βi only influence the optimal test numbers a little, in the sense that the sums of

the required ni and βi remain approximately constant, so indeed the choice of βi can

be regarded as if you have already seen βi successful tests of tasks of type i before

the actual tests take place. Hence, from the perspective of reliability demonstration,

we feel that it is appropriate to advocate the use of the value βi = 0. The αi play a

far more important role. Effectively, one can interpret this as ‘having seen αi tests

failing’, and then demanding sufficiently many tests without failure such that, on

the basis of the combined information represented by this prior and test information,

the resulting confidence in the system’s reliability is high.

From a Bayesian statistical perspective, it may seem natural to propose the use

of very small values of αi (possibly in combination with large values of βi), to reflect

prior beliefs that the system will be highly reliable, which would also be a natural

requirement to justify explicit restriction to test results without failures. In our

methods, the optimal numbers of tasks to test, per type of task, depend strongly

on the choice of the αi, where in particular the sum of these αi’s influences any

measure of predicted system reliability after testing, whereas the individual values
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αi influence the optimal values ni. From the perspective of reliability demonstration,

we are in favour of the value αi = 1 for each type i, unless, for example, one has

particular information that suggests that the system is more reliable with regard to

tasks of type 1 than with regard to tasks of type 2, in which case one may wish to

use α1 < α2. This may occur, for example, if tasks of type 2 are part of newly added

system functionality, whereas the system has not been changed with regard to tasks

of type 1 (note that one may still want to test tasks of type 1 to ensure that adding

new functionality has not affected the system’s further functioning).



Chapter 5

Reliability demonstration for

systems with redundancy

5.1 Introduction

Systems with built in redundancy can provide high availability, reliability, and safety.

Therefore, they are used in critical processes that require maximum operational

readiness and system availability. In other words, they can be required when high

reliability is essential, such as in security or safety systems, communications, com-

puter systems (data storage in particular), process controls etc. In this chapter, we

consider redundancy where reliability prediction is only considered at the system

level. The references [38–40,42] discuss reliability at system, subsystem and compo-

nent levels. Components here are regarded as either functional or not (pass or fail

components) [30, 39, 40], and we only consider systems consisting of exchangeable

components.

We consider a system that has to perform tasks of k ≥ 1 different types, dealing

with tasks of different types fully independently. The system consists of y ≥ 1 ex-

changeable components, which function independently in the system for each type

of task. For example, we can think of a safety system for a large plant, with compo-

nents being detectors at several sites within the plant, where each detector should be

able to detect a variety of possible risks. Another possible setting for such systems is

in critical data management, where components could be copies of data bases stored

66
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at different locations, and communicating through an overall software system.

The main interest in this chapter is to find the optimal number of zero-failure

tests in order to achieve a required reliability level for such systems, where reliability

demonstration is only considered at the component level. This study considers x-

out-of-y systems, including the two extreme cases of parallel and series systems,

which includes those presented in Chapters 2 to 4 where x = y = 1, which are, in

this chapter, referred to as unit-systems.

The Bayesian approach with a Binomial model and Beta prior distribution for

θi, for all types of tasks i = 1, . . . , k, is used again, as in the previous chapters of

this thesis.

We assume, again, that the system does not wear-out or improve over time, and

that it performs tasks of one type exchangeably (so not identically), so that failures

of tasks of the same type can be represented by exchangeable Bernoulli random

quantities, enabling a simple Bayesian model. We assume further, as in Chapter 3,

that process failures are catastrophic in the sense that failures stop the use of the

system in the process and might incur a high cost. We assume that such a cost is

a fixed constant, but we acknowledge that it may be difficult in practice to assign

it a precise value, making sensitivity studies with regard to this cost figure useful.

The focus is on the following two important questions: How many zero-failure tests

should be performed, and how many components, y (≥ x), should be installed in the

system, for known required x, to demonstrate a certain required level of reliability

for the process after testing. We also take costs into account to achieve a certain

reliability level, p, again assuming that all tests reveal no failures. The required

reliability level for the process after testing is in terms of a minimal probability p

that the system will perform, without any failures, all the required mi tasks for types

i = 1, . . . , k, after testing, or, for the random case, that the system’s performance

will be failure-free in the process during a specified period. We assume that costs

for testing are linear in the number of tasks tested per type, and we are particularly

interested in the effect of these cost parameters, and the required numbers of tasks

mi in the process, on the optimal numbers of tasks to be tested per type.

The same notation as introduced earlier in this thesis is used throughout this
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chapter, with some additional straightforward notation. In Section 5.2, prediction of

the reliability of such systems is discussed. In Section 5.3, reliability demonstration

is studied for a single task, to allow clear analysis and a deep insight. In Section 5.4,

m tasks of a single type are considered for reliability demonstration. In Section 5.5,

reliability demonstration is studied when the system has to perform multiple types of

tasks. In Section 5.6, costs for testing and failures are also taken into account. Both

the deterministic and the random cases are considered, in the later case the focus

is again on the Poisson case. In Section 5.7, we focus on how many tests should be

performed and how many components y ≥ x should be used, providing redundancy,

to minimise expected total costs while meeting a specific reliability requirement. We

end with some concluding remarks for this chapter, as well as for the whole thesis,

in Section 5.8, and some suggestions for related future research in Section 5.9.

5.2 Reliability prediction

Let θ ∈ [0, 1] be the parameter that can be interpreted as the unknown probability of

a component failure, where components are exchangeable, when the system performs

a task. We denote the x-out-of-y system reliability, which is the probability of

performing one task successfully, by r(x, y|θ), using the Binomial distribution

r(x, y|θ) =

y
∑

j=x

(

y

j

)

(1 − θ)jθy−j , (5.1)

which is decreasing in x. Hence for series systems, with x = y, the system reliability,

r(y, y|θ) = (1 − θ)y. (5.2)

This is can be interpreted as the probability of zero failures in y tasks for a unit-

system as studied in Chapter 3. This is indeed logical if we think of the number of

identical components as the number of tasks in a process of a single type of task.

For parallel systems, x = 1,

r(1, y|θ) =

y
∑

j=1

(

y

j

)

(1 − θ)jθy−j = 1 − θy, (5.3)

which can be interpreted as the probability of zero failures for a unit-system with

failure probability equal to θy.
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Clearly, r(x, y|θ) is increasing in y. Using the posterior distribution (2.6) of θ,

the unconditional system reliability after zero-failure testing is

r(x, y|(n, 0)) =

∫ 1

0

r(x, y|θ) p(θ|(n, 0)) dθ

=

∫ 1

0

y
∑

j=x

(

y

j

)

(1 − θ)j θy−j θα−1(1 − θ)β+n−1

B(α, β + n)
dθ

=

∑y
j=x

(

y
j

)

B(α + y − j, β + n + j)

B(α, β + n)

=
Γ(α + β + n)

∑y
j=x

(

y
j

)

Γ(α + y − j)Γ(β + n + j)

Γ(α + β + n + y)Γ(α)Γ(β + n)

=

∑y
j=x

(

y
j

)
∏y−j

l=1 (α + l − 1)
∏j

h=1(β + n + h − 1)
∏y

i=1(α + β + n + i − 1)
, (5.4)

where we define
∏

∅
= 1 (as we do throughout this thesis). Interchanging the

integral and the summation in the third equality is justified since all converges

uniformly [35]. As in Chapter 2, β appears in the form β + n, so an increase in β

will mean that the optimal or required n is reduced by the same number, hence we

again advocate the choice β = 0. However, (5.4) is decreasing as function of α and

is highly sensitive to its choice, as effectively the reliability demonstration requires n

tests without failures to counter the prior information of α ‘imaginary test failures’,

which of course agrees with the analysis we presented in previous chapters.

Obviously, (5.4) is a decreasing function of x. As r(x, y|θ) is increasing in y and

p(θ|(n, 0)) is independent of y, r(x, y|(n, 0)) is increasing in y, confirming that adding

more redundant components to the system increases its reliability. Moreover, (5.4)

is strictly increasing function of n, which is intuitively correct and can be justified

by

r(x, y|(n + 1, 0)) − r(x, y|(n, 0)) =

y
∑

j=x

(

y

j

) y−j
∏

l=1

(α + l − 1)

j−1
∏

h=1

(z + h)[j(α + z) − zy]

=
Γ(y − x + α + 1)Γ(y + 1)Γ(z + x)

Γ(x)Γ(z + 1)Γ(y − x + 1)Γ(α)
> 0, (5.5)

where z = β + n. See Appendix A.1 for the proof of (5.5).

For a series system (y-out-of-y system), the unconditional system reliability, for any

value of α > 0 and β ≥ 0, is

r(y, y|(n, 0)) =

y
∏

j=1

β + n + j − 1

α + β + n + j − 1
, (5.6)
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which is a decreasing function of α. If we restrict attention to integer values α > 0

and β ≥ 0, then a second expression for this reliability is

r(y, y|(n, 0)) =
α
∏

j=1

β + n + j − 1

y + β + n + j − 1
. (5.7)

Clearly, r(x, y|(n, 0)) ≥ r(y, y|(n, 0)), which can be confirmed by comparing the right

hand sides of (5.6) with (5.4), which is intuitively correct as the more redundant

components are in the system, the more reliable this system gets.

For a parallel system (1-out-of-y system), the unconditional system reliability,

where r(1, y|θ) = 1 − θy, is

r(1, y|(n, 0)) =

∫ 1

0

[1 − θy]
θα−1(1 − θ)β+n−1

B(α, β + n)
dθ

= 1 − Γ(α + y)Γ(α + β + n)

Γ(α + β + n + y)Γ(α)

= 1 −
y
∏

j=1

α + j − 1

α + β + n + j − 1
, (5.8)

which is an increasing function of y and n. Obviously, parallel system reliabil-

ity, r(1, y|(n, 0)), can also be derived directly from (5.4) by substituting x by 1,

which then confirms the fact that r(1, y|(n, 0)) ≥ r(x, y|(n, 0)). And of course,

r(1, y|(n, 0)) ≥ r(y, y|(n, 0)) which is also intuitively correct, as the smaller x is, the

more reliable the system gets.

If the system has to perform m ≥ 0 tasks, assuming that each component fails

in functioning any task with probability equal to θ, then the probability that the

x-out-of-y system performs m tasks successfully is

r(x, y|m, θ) = [

y
∑

j=x

(

y

j

)

(1 − θ)jθy−j]m, (5.9)

which is a decreasing function of m. Similarly, the unconditional x-out-of-y system

reliability, after n zero-failure tests, is

r(x, y|m, (n, 0)) =

∫ 1

0

r(x, y|m, θ) p(θ|(n, 0)) dθ

=

∫ 1

0

[

y
∑

j=x

(

y

j

)

(1 − θ)j θy−j ]m
θα−1(1 − θ)β+n−1

B(α, β + n)
dθ, (5.10)
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which is a decreasing function of m. Due to the power m over the sum in (5.10),

which prevents exchanging the orders of the sum and the integral, we could not

simplify this equation any further. Let us denote the right-hand side (RHS) of

(5.10), as function of m, by g(m). As g(m) ≥ 0 is decreasing, and

g(m) − g(m + 1) =
∫ 1

0

[

y
∑

j=x

(

y

j

)

(1 − θ)jθy−j ]m
θα−1(1 − θ)β+n−1

B(α, β + n)
[1 −

y
∑

j=x

(

y

j

)

(1 − θ)jθy−j ]dθ, (5.11)

is decreasing in m, it follows that g(m) is a convex function of m.

From (5.10), we have for a series system,

r(y, y|m, (n, 0)) =

∫ 1

0

r(y, y|m, θ) p(θ|(n, 0)) dθ

=

∫ 1

0

(1 − θ)ym θα−1(1 − θ)β+n−1

B(α, β + n)
dθ

=

my
∏

j=1

β + n + j − 1

α + β + n + j − 1
, (5.12)

for any value of α, and

r(y, y|m, (n, 0)) =

α
∏

j=1

β + n + j − 1

ym + β + n + j − 1
, (5.13)

for integer values of α.

Using (a + b)n =
∑n

r=0

(

n
r

)

an−rbr, we get for a parallel system,

r(1, y|m, (n, 0)) =

∫ 1

0

(1 − θy)m θα−1(1 − θ)β+n−1

B(α, β + n)
dθ

=

∫ 1

0

m
∑

r=0

(

m

r

)

(−θy)r θα−1(1 − θ)β+n−1

B(α, β + n)
dθ

=
1

B(α, β + n)

m
∑

r=0

(

m

r

)

(−1)r

∫ 1

0

θyr+α−1(1 − θ)β+n−1 dθ

=
m
∑

r=0

(

m

r

)

(−1)r B(yr + α, β + n)

B(α, β + n)
(5.14)

=
m
∑

r=0

(

m

r

)

(−1)r

yr
∏

j=1

α + j − 1

α + β + n + j − 1
.

Let us now consider the case of random M , with probability distribution P (M =

u) for nonnegative integers u. The same analysis as in Section 2.4.2, using Jensen’s
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inequality for convex functions, yields that the x-out-of-y system reliability for M

tasks in the process after zero-failure testing, is at least as large as the x-out-of-

y system reliability for a known number m tasks after n tests without failures,

when we restrict attention to probability distributions for M with expected value

E(M) = m. So, again, one could consider the exact knowledge of the value of the

random quantity M , to be disadvantageous.

For the situation in which we assume a Poisson distribution for M , as occurs if

in the process after testing tasks arrive according to a homogeneous Poisson process

with expected value E(M) = λt = µ, the corresponding x-out-of-y system reliability,

after n zero-failure tests, is

r(x, y|M ∼ Po(µ), (n, 0)) =

∞
∑

u=0

r(x, y|u, (n, 0))e−µµu

u!

=

∞
∑

u=0

∫ 1

0

[

y
∑

j=x

(

y

j

)

(1 − θ)j θy−j ]u
θα−1(1 − θ)β+n−1

B(α, β + n)
e−µ µu

u!
dθ

=

∫ 1

0

∞
∑

u=0

[

y
∑

j=x

(

y

j

)

(1 − θ)j θy−j ]u
µu

u!
e−µ θα−1(1 − θ)β+n−1

B(α, β + n)
dθ

=

∫ 1

0

e

−µ[1 −
y
∑

j=x

(

y

j

)

(1 − θ)j θy−j ]
θα−1(1 − θ)β+n−1

B(α, β + n)
dθ, (5.15)

where again, the interchanging of the integral and the summation is justified as

before. Clearly, (5.15) is decreasing as function of µ and x, and increasing as function

of y.

In the following example, we illustrate the above probabilities, for the deter-

ministic and for the Poisson cases, showing the influence of prior knowledge on the

reliability function.

Example 5.2.1

We consider 1-out-of-2 system, when n = 20 tests on exchangeable components did

not reveal any failure. Table 5.1 gives the 1-out-of-2 system reliabilities for: (1)

m = 5 future tasks; (2) a random M that has a Poisson distribution with expected

value E(M) = µ = λt = 5 within the period of length t.

As in Example 2.4.1, this example demonstrates the influence of changes to the

value of α, and the far weaker influence the value of β has. Table 5.1 illustrates
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that system reliability for a process with a random M , with E(M) = m, is at least

as large as the system reliability in a known number of tasks, m. It also shows

that these reliabilities are again very similar for the Poisson and the deterministic

cases. Comparing Table 5.1 with Table 2.1 confirms the fact that systems with

redundancy are more reliable than unit-systems. Moreover, comparing these two

tables illustrates that systems with redundancy are less sensitive to the choice of

α than unit-systems, which is intuitively logical as installing more components in

the system reduces the effect of what we call the number of imaginary test failures

α. For example, changing the values of α from 1 to 2 (or from 1 to 3), for β = 0,

decreases the reliability of the corresponding system with redundancy by 0.0349

(0.0787). While the corresponding reduction of reliability of the unit-system was

much larger, namely 0.1538 (0.2735).

α β r(1, 2|m = 5, (20, 0)) r(1, 2|M ∼ Po(5), (20, 0))

1 0 0.9793 0.9795

1 1 0.9810 0.9812

1 2 0.9825 0.9827

1 5 0.9862 0.9863

1 10 0.9901 0.9902

1 100 0.9993 0.9993

2 0 0.9444 0.9452

3 0 0.9006 0.9025

0.5 0 0.9918 0.9918

Table 5.1: r(1, 2|m = 5, (20, 0)) and r(1, 2|M ∼ Po(5), (20, 0)) for varying α, β.

In the following sections, we will show that fewer zero-failure tests are required

for systems with redundancy than for unit-systems, in order to demonstrate the

same level of reliability.

5.3 Reliability demonstration for a single task

Our main interest in this section is to determine the minimal number of zero-failure

tests required to demonstrate a specific level of reliability, say p, before the system
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is used in a process. We consider a single task, m = 1, which allows us to introduce

the basic concepts used in later sections.

From (5.4), which is an increasing function of n, the minimal required real-

valued number of zero-failure tests, say n∗, assuming again that the system functions

successfully for all tasks tested, can be found numerically by solving the following

equation.
∑y

j=x

(

y
j

)
∏y−j

l=1 (α + l − 1)
∏j

h=1(β + n + h − 1)
∏y

z=1(α + β + n + z − 1)
= p. (5.16)

Of course, the optimal number of tests is the closest integer that is larger than or

equal to n∗, i.e. n = dn∗e .

As before, we advocate the use of β = 0, while α again has a greater effect

on r(x, y|(n, 0)), and hence on the minimal test size required for r(x, y|(n, 0)) ≥ p,

which is illustrated in the following example.

Example 5.3.1

Table 5.2 shows the optimal number of zero-failure tests of a 6-out-of-8 system, to

achieve a required reliability level of p, for different values of α with β = 0. The

optimal number of tests increases significantly with the increasing values of p and

α.

α

p 0.001 0.5 1 1.5

0.90 1 5 8 12

0.95 1 8 12 17

0.97 1 10 16 21

0.99 1 17 26 34

0.995 1 22 34 45

0.999 2 42 63 83

Table 5.2: Minimal test numbers for a 6-out-of-8 system.

Notice that for α = 0.001 there will be no need to do any testing if β ≥ 1, in

order to achieve any p ≤ 0.995.
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If n is large compared to α, for a positive integer α, with β = 0 and p close to

1, then similar to results in Section 3.2, (5.7) can be approximated by [n/(n + y)]α,

hence the minimal required number of tests to meet a reliability requirement in a

series system, say nser, is close to

p1/(α)

1 − p1/(α)
y ≈ p

1 − p
αy. (5.17)

For example, for p = 0.95, taking α equal to two will lead to a required nser of just

more than twice the size than would be required for α = 1, e.g. see Example 5.4.1.

For the case of α = 1 and β = 0, the RHS of (5.17) gives the exact value of the

optimal real-valued n∗.

For a parallel system and any value of α, with β = 0, from (5.8) the minimal

required number of tests, say npar, to meet a reliability requirement r(1, y|(n, 0)) ≥ p,

is the minimal integer value for which

y
∏

j=1

α + j − 1

α + n + j − 1
≥ 1 − p, (5.18)

which is the corresponding system unreliability. The LHS of (5.18) is decreasing

in y and n, so for larger y, fewer tests are required in order to achieve a specific

reliability level, p.

Again, as discussed in Sections 3.5 and 4.5, from the perspective of reliability

demonstration of a highly reliable system (restricted to zero-failure tests), the use

of a very small value of α to reflect prior beliefs of how reliable the system is, may

be appropriate. From the point of view of reliability demonstration, we are again in

favour of α = 1. For β = 0 and α = 1, (5.4) yields

r(x, y|(n, 0)) =
ny!

(n + y)!

y
∑

j=x

(n + j − 1)!

j!
= 1 − y!(n + x − 1)!

(x − 1)!(n + y)!
, (5.19)

the proof of which is given in Appendix A.2. Hence, the minimal number of zero-

failure tests, n, required to demonstrate a level of reliability p, can be obtained

from
(n + x − 1)!

(n + y)!
=

(1 − p)(x − 1)!

y!
, (5.20)

which leads to
y
∏

j=x

(n + j) =
y!

(1 − p)(x − 1)!
. (5.21)
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From (5.21), the real-valued solution of optimal tests for a parallel system satisfies

y
∏

j=1

(n + j) =
y!

(1 − p)
, (5.22)

and for a series system is
yp

1 − p
, (5.23)

These results are illustrated in the example below.

Example 5.3.2

Table 5.3 presents npar, nser, and n of a 6-out of-8 system for Beta(1, 0) prior dis-

tribution and for different reliability levels. We see that the required number of

zero-failure tests increases as a function of p and as a function of x. So indeed,

using more redundant components in the system decreases the required number of

zero-failure tests to achieve a specific level of reliability. For example, a very high

number of tests, nser = 7992, is required to achieve p = 0.999, whereas only 5 zero-

failure tests will be needed to achieve the same reliability level for a parallel system,

x = 1.

p npar n nser

0.90 2 8 72

0.95 2 12 152

0.97 2 16 259

0.99 3 26 792

0.995 4 34 1592

0.999 5 63 7992

0.9995 6 81 15992

Table 5.3: Minimal n, npar, and nser for y = 8 and for different p.

5.4 Reliability demonstration for multiple tasks

of one type

Now we are interested in finding the minimal number of zero-failure tests, for a

process with m tasks that the system is required to perform successfully after testing,
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and with a Beta(α, β) prior distribution for θ. The optimal number of tests, n, for

an x-out-of-y system to achieve a certain reliability level p, is the minimal integer

value that is larger than or equal to the real-valued for which

r(x, y|m, (n, 0)) =

∫ 1

0

[

y
∑

j=x

(

y

j

)

(1 − θ)j θy−j ]m
θα−1(1 − θ)β+n−1

B(α, β + n)
dθ = p, (5.24)

which can be solved numerically. As r(x, y|m, (n, 0)) is a decreasing function of m

and an increasing function of n, then if m increases, one requires an increased n

in order to demonstrate the reliability level p. In other words, the more tasks the

system is required to perform successfully after testing, the more zero-failure tests

are needed to achieve the required reliability level.

From (5.12), the minimal tests for a series system, nser, is the closest integer value

that is larger than or equal to the real-valued solution of the following equations

my
∏

j=1

β + n + j − 1

α + β + n + j − 1
= p, (5.25)

for any value of α, and (5.13) yields

α
∏

j=1

β + n + j − 1

ym + β + n + j − 1
= p, (5.26)

for integer values of α. If n is large compared to a positive integer α, with β = 0

and p close to 1 then, using the same justifications used in Section 3.2, nser is close

to
p1/(α)

1 − p1/(α)
ym ≈ p

1 − p
αym. (5.27)

For the case with α = 1, (5.27) gives the exact value of the optimal nser, as shown

in Section 3.3 and also illustrated in Example 5.4.1.

The minimal required number of zero-failure tests of a parallel system, npar,

using (5.14), is the minimal integer value larger than or equal to the real-valued n∗

for which
m
∑

r=0

(

m

r

)

(−1)r

n
∏

j=1

α + j − 1

α + yr + j − 1
= p. (5.28)

Example 5.4.1

Table 5.4 presents minimal numbers of zero-failure tests for parallel and series sys-

tems, npar and nser respectively. It also presents the minimal numbers of zero-failure
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tests n for 6-out-of-8 and 6-out-of-9 systems. Again, we consider the Beta(1, 0)

prior distribution. Systems are required to function m tasks successfully to achieve

p = 0.95. We see that the required number of tests increases as function of m,

and as function of x, and decreases as function of y. Table 5.4 also shows that nser

increases by about the same factor as m and (or) y increase, which agrees with the

results in Section 3.2.

y =8 y =9

m npar n nser npar n nser

1 2 12 152 2 9 171

2 2 17 304 2 11 342

3 3 20 456 2 13 513

4 3 22 608 2 14 684

6 3 26 912 3 16 1026

9 3 30 1368 3 18 1539

10 3 31 1520 3 19 1710

100 5 73 15200 4 37 17100

Table 5.4: Minimal npar, n, and nser for y = 8 and y = 9 and for different m.

If we take α = 2, then for m = 1 we need nser = 308 tests without failures

to demonstrate reliability 0.95 for the 8-out-of-8 system, which is about twice the

optimal number of tests for α = 1, which agrees with (5.27).

5.5 Reliability demonstration for multiple inde-

pendent types of tasks

Suppose that an x-out-of-y system has to perform k ≥ 1 independent types of tasks,

with mi tasks of type i, for i = 1, 2, . . . , k. The probability of performing all of these

tasks without failures, after ni zero-failure tests of type i, is

r(x, y|m, (n, 0)) =
k
∏

i=1

∫ 1

0

[

y
∑

j=x

(

y

j

)

(1 − θi)
j θi

y−j ]mi
θi

αi−1(1 − θi)
βi+ni−1

B(αi, βi + ni)
dθi.

(5.29)
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The minimal required number of tests, n∗
i , for such a system to demonstrate a

reliability level p, is the smallest such that

r(x, y|m, (n, 0)) ≥ p. (5.30)

Again as the βi’s appear only in the form βi + ni, we suggest to use βi = 0.

For a series system, the optimal number of tests of type i, nser,i, the smallest

integer ni such that
k
∏

i=1

miy
∏

j=1

βi + ni + j − 1

αi + βi + ni + j − 1
≥ p, (5.31)

for any value of αi, and

k
∏

i=1

αi
∏

j=1

βi + ni + j − 1

ymi + βi + ni + j − 1
≥ p, (5.32)

for integer values of αi. Again for positive integer αi, βi = 0, and p close to 1,

and if nser,i is large compared to αi, then using same justification as in the previous

section, nser,i is close to (see Section 3.3 for details)

p1/(kαi)

1 − p1/(kαi)
ymi ≈

p

1 − p
αikymi. (5.33)

Similarly, the minimal number of tests, without failures, of type i for a parallel

system, npar,i, with βi = 0, using (5.14), is the smallest integer ni such that

k
∏

i=1

mi
∑

r=0

(

mi

r

)

(−1)r

ni
∏

j=1

αi + j − 1

αi + yr + j − 1
≥ p. (5.34)

Example 5.5.1

To illustrate the results in this section and compare them with results of Section

3.3, we consider the same situation considered in Example 3.3.2. Table 5.5, and

Table 5.6 for big systems, give the minimal required numbers of zero-failure tests

for systems with redundancy, with βi = 0 for all i = 1, . . . , k, for the following cases:

(a) k = 1, m = 100, α = 1

(b) k = 2, m1 = m2 = 50, α1 = α2 = 1
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(c) k = 4, mi = 25, αi = 1 for i = 1, . . . , 4

(d) k = 2, m1 = 25, m2 = 75, α1 = α2 = 1

(e) k = 2, m1 = 10, m2 = 90, α1 = α2 = 1

(f) k = 2, m1 = m2 = 50, α1 = α2 = 0.5

(g) k = 4, mi = 25 and αi = 0.25 for i = 1, . . . , 4

(h) k = 2, m1 = 25, m2 = 75, α1 = 0.25, α2 = 0.75

(i) k = 2, m1 = 10, m2 = 90, α1 = 0.10, α2 = 0.90

(j) k = 1, Poisson, µ = 100, α = 1

(k) k = 2, Poisson, µ1 = µ2 = 50, α1 = α2 = 1

(l) k = 2, Poisson, µ1 = 25, µ2 = 75, α1 = α2 = 1

1-out-of-2 1-out-of-3 2-out-of-3

Case p n
Pk

i=1
ni n

Pk
i=1

ni n
Pk

i=1
ni

(a) 0.90 38 38 14 14 66 66

0.95 58 58 19 19 100 100

0.99 138 138 37 37 239 239

(b) 0.95 (60, 59) 119 (20, 20) 40 (103, 103) 206

0.99 (139, 139) 278 (37, 37) 74 (241, 240) 481

(c) 0.95 (60, 60, 60, 61) 241 (20, 20, 20, 21) 81 (104, 104, 104, 105) 417

0.99 (139, 139, 139, 140) 557 (37, 37, 37, 37) 148 (241, 241, 241, 242) 965

(d) 0.95 (46, 67) 113 (16, 22) 38 (80, 116) 196

(e) 0.95 (33, 68) 101 (13, 22) 35 (57, 118) 175

(f) 0.95 (35, 36) 71 (13, 13) 26 (61, 61) 122

0.99 (84, 85) 169 (24, 25) 49 (146, 146) 292

(g) 0.95 (23, 23, 23, 22) 91 (9, 9, 9, 9) 36 (39, 39, 39, 39) 156

0.99 (55, 55, 55, 55) 220 (18, 18, 18, 17) 71 (95, 95, 95, 96) 381

(h) 0.90 (13, 32) 45 (6, 12) 18 (23, 55) 78

0.95 (20, 49) 69 (8, 17) 25 (35, 84) 119

0.99 (50, 116) 166 (16, 32) 48 (86, 201) 287

(i) 0.95 (12, 71) 83 (5, 22) 27 (21, 124) 145

(j) 0.90 38 38 14 14 66 66

0.95 58 58 19 19 100 100

0.99 138 138 37 37 239 239

(k) 0.95 (59, 60) 119 (20, 20) 40 (103, 103) 206

0.99 (139, 139) 278 (37, 37) 74 (241, 240) 481

(l) 0.95 (46, 67) 113 (16, 22) 38 (80, 116) 196

Table 5.5: Minimal test numbers required for different x-out-of-y systems and for

different cases, Cases (a)-(l).
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5-out-of-8 6-out-of-8 7-out-of-8

Case p n
Pk

i=1
ni n

Pk
i=1

ni n
Pk

i=1
ni

(a) 0.95 32 32 73 73 305 305

0.99 56 56 140 140 731 731

(b) 0.95 (33, 34) 67 (76, 76) 152 (314, 314) 628

0.99 (56, 57) 113 (141, 141) 282 (735, 735) 1470

(c) 0.95 (35, 35, 35, 34) 139 (78, 78, 78, 77) 311 (319, 319, 318, 318) 1274

0.99 (57, 57, 57, 57) 228 (142, 142, 142, 141) 567 (737, 737, 737, 737) 2948

(d) 0.95 (29, 36) 65 (63, 83) 149 (246, 352) 598

(e) 0.95 (23, 37) 60 (48, 85) 133 (174, 359)

(f) 0.95 (22, 22) 44 (48, 48) 96 (185, 186) 371

0.99 (39, 39) 78 (93, 94) 187 (446446) 892

(g) 0.95 (16, 16, 16, 17) 65 (34, 34, 34, 33) 135 (119, 119, 119, 118) 475

0.99 (29, 29, 30, 30) 118 (67, 67, 67, 66) 267 (291, 291, 291, 292) 1165

(h) 0.95 (14, 29) 43 (29, 64) 93 (106, 257) 363

0.99 (26, 50) 76 (59, 123) 182 (261, 615) 876

(i) 0.95 (9, 37) 46 (19, 87) 106 (65, 394) 459

(j) 0.95 32 32 73 73 305 305

0.99 56 56 139 139 731 731

(k) 0.95 (33, 34) 67 (76, 76) 152 (313, 314) 627

0.99 (56, 57) 113 (141, 141) 282 (734, 735) 1469

(l) 0.95 (29, 36) 65 (63, 83) 146 (245, 352) 597

Table 5.6: Minimal test numbers required for different x-out-of-y systems, for Cases

(a)-(l).

Tables 5.5 and 5.6 in comparison with Table 3.3, illustrates the following results.

Systems with built-in redundancy need far fewer tests than unit-systems. It also

shows that systems with redundancy and unit-systems share the following results.

Dividing the total number of tasks in the process, m, into equal numbers mi = m/k

for k types, the number of tasks that need to be tested per type remains close to the

total number needed if all tasks were assumed to be of one type, as long as we take

the ‘automatic’ choice αi = 1 for all types (e.g. Cases (a), (b) and (c)). Moreover,

cases with mi = m/k represent the worst case in terms of total number of tests

needed (e.g. Cases (d) and (e), when compared to Case (b)).

Comparing Cases (f) and (g) with Cases (a), (b) and (c) illustrates the fact that

using αi = α/k together with mi = m/k, with α the hyperparameter used in the

case of all tasks being of a single type, in total fewer zero-failure tests are required

than for cases with αi = α. However, as shown in Table 3.3, the total required
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zero-failure tests for unit-systems becomes (about) the same number of required

tests as in the case with a single type of tasks in the process, which we do not see

in systems with redundancy. This is due to the far stronger influence of αi on ni for

unit-systems than it is for systems with redundancy (see Section 5.2).

Moreover, Cases (h) and (i), when compared to Cases (d) and (a) in Tables 5.5

and 5.6 in comparison with Table 3.3, suggest that even when the mi’s are not equal,

taking the αi’s proportional to the mi’s and such that they sum up to α, leads to a

total number of zero-failure tests that is close to the number required in the case of

all tasks being of a single type. Again, the reduction in the total number of zero-

failure tests for unit-systems here is more than it is for systems with redundancy,

which is also due to the greater effect of αi on ni for unit-systems than it is for

systems with redundancy.

Tables 5.5 and 5.6 also illustrate that the Poisson case is nearly as bad as the

deterministic situation, in terms of minimal numbers of zero-failure tests needed,

(e.g. Cases (j), (k) and (l), in comparison to Cases (a), (b) and (d)).

5.6 Reliability demonstration considering costs

In this section, we generalise the results of Section 3.4, as we are interested in deter-

mining the optimal number of zero-failure tests, taking into consideration costs of

testing and process failures, for an x-out-of-y system that performs k ≥ 1 indepen-

dent types of tasks . Let ci > 0 be the cost of each test of type i, for i = 1, 2, . . . , k,

and C ≥ 0 be the cost of the process failures, where the functioning of the system

in the process is ended on occurrence of any failure.

The objective is to minimise the total expected cost of testing and process failure,

(∀i = 1, 2, . . . , k)

EC(n, c, m, C) =
k
∑

i=1

nici + [1 − r(x, y|m, (n, 0))]C.

Although minimisation of these expected costs already takes the probability of

zero failures in the process into account, one may wish to include the constraint

r(x, y|m, (n, 0)) ≥ p. Unfortunately, we could not achieve an analytical solution
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due to the complexity of the corresponding reliability function (5.29). The situation

studied in Section 5.5 is the special case of this constrained problem with C = 0

and ci = 1, for all i = 1, 2, . . . , k.

For these x-out-of-y systems, the deterministic case is again the worst-case sce-

nario, in precisely the same sense as discussed at Section 2.4.2 for unit systems.

Example 5.6.1

In this example we compare the optimal numbers of zero-failure tests, taking costs

into consideration, for systems with built-in redundancy, with the optimal numbers

of tests for corresponding unit-systems. We consider the four cases stated in Example

3.4.1, for both the deterministic (Cases (1)-(3)) and the Poisson cases (Case (4)),

with all αi = 1 and βi = 0.

In Cases (3) and (4), C = 0 implies that we just aim at minimal costs of zero-

failure testing required to meet the reliability constraint. This gives an attractive

problem formulation in situations where one is not willing or able to provide a

meaningful value related to a failure in the process after testing.

Table 5.7 gives the optimal test numbers for some x-out-of-y systems with ad-

ditional superscript ’J’ to indicate that the constraint r(x, y|m, (n, 0)) ≥ p is not

active.

n

Case(s) p 1-out-of-2 1-out-of-3 2-out-of-3 3-out-of-3

(1) 0.90 (11, 11, 14) (7, 8, 10)J (18, 19, 23) (215, 233, 327)

0.95 (16, 16, 20) (7, 8, 10)J (26, 28, 35) (446, 483, 680)

0.99 (37, 38, 48) (15, 15, 17) (62, 66, 84) (2145, 2501, 3548)

(2) 0.90 (24, 25, 32)J (14, 15, 18)J (82, 87, 110)J (374, 407, 573)J

0.95 (24, 25, 32)J (14, 15, 18)J (82, 87, 110)J (446, 483, 680)

0.99 (37, 38, 48) (14, 15, 18)J (82, 87, 110)J (2145, 2501, 3548)

(3) 0.90 (14, 10, 23, 16) (7, 5, 10, 8) (25, 17, 40, 28) (365, 229, 728, 478)

0.95 (21, 15, 33, 24) (9, 7, 13, 11) (36, 25, 58, 43) (734, 473, 1517, 997)

(4) 0.90 (14, 10, 22, 16) (7, 5, 10, 8) (24, 17, 39, 28) (362, 226, 724, 476)

0.95 (21, 15, 33, 24) (9, 7, 13, 11) (36, 25, 58, 43) (733, 470, 1516, 993)

Table 5.7: Optimal test numbers for x-out-of-y systems.
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Table 3.4, in Example 3.4.1, and Table 5.7 illustrate the logical facts that the

required number of zero-failure tests increases as function of x, and decreases as

function of y, for such systems. It is clear that redundancy can greatly reduce the

required numbers of zero-failure tests. If the reliability constraint is active in the

optimal solution, then the optimal test numbers do not depend on the precise value

of C, see for example Tables 3.4 and 5.7 (3-out-of-3 system), Cases (1) and (2) for

p = 0.99. And if the constraint is inactive at the optimal solution, then the precise

value of p does not influence the (effectively unconstrained) optimum, see for exam-

ple the 1-out-of-3 system, Case (2) for all reported values of p. Cases (3) and (4) in

Table 5.7 enable comparison between the deterministic and Poisson cases, showing

that the differences in the required test numbers are very small.

All cases in Table 5.7, and all other examples that we have calculated, have

suggested an approximate relation between the optimal ni for x-out-of-y systems,

and mi and ci, which generalizes the suggested approximate relation (3.19) for unit-

systems. It appears to be the case that ni is approximately proportional to y−x+2

√

mi

ci
.

Unfortunately, we have not been able to prove this analytically, due to the complex-

ity of the x-out-of-y system reliability, (5.29).

5.7 Optimal testing and redundancy level

Increasing built-in redundancy in a system makes the system more reliable. Hence,

it is interesting to explore the possibility of reducing the required zero-failure test

effort by increasing y, for fixed x, in x-out-of-y systems. As installing additional

components in the system may be expensive, we can include such costs in our ex-

pected total cost function, as presented in Section 5.6, and then again minimise the

resulting expected total costs, with the possible constraint on the system’s predicted

reliability in the process after testing. Such minimisation would involve choosing

the optimal combination of the required numbers of zero-failure tests for each type

of task, and the number of components y in the system, where y ≥ x is required for

system functionality. We assume that x is given by required system functionality,
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or other factors such as safety requirements.

Let us assume that the cost of each of the y components in the system is Q,

and that the setting of Section 5.6 applies again. We can express the total expected

costs as

EC(n, c, m, y, Q, C) = yQ +
k
∑

i=1

nici + [1 − r(x, y|m, (n, 0))]C. (5.35)

We can again include the reliability constraint r(x, y |m, (n, 0)) ≥ p, leading to a

constrained optimisation problem that needs to be solved numerically. We illustrate

this combined optimisation of y and the test numbers ni in Examples 5.7.1 and

5.7.2.

Example 5.7.1

Let us consider the method presented above for a 2-out-of-y system, so at least 2

components that must function to ensure system functionality. Again, we use Beta

prior distributions with αi = 1 and βi = 0 for all types of tasks. In this example,

we focus only on a single type of task in this example, simplifying notation in the

obvious way, using n instead of n1, etc. Tables 5.8, 5.9 and 5.10 present optimal

numbers of zero-failure tests, n, and components, y, in an x-out-of-y system, for

given x, corresponding to minimal total expected costs (5.35), under the reliability

constraint with p = 0.95 in Tables 5.8 and 5.9, and with p = 0.99 in Table 5.10.

These tables illustrate that the optimal y and n tend to increase in m. However, once

m has increased sufficiently to cause the integer-valued optimal y to increase, the

corresponding optimal n will decrease due to the fact that higher built-in redundancy

level requires fewer zero-failure tests in this constrained optimisation problem.

Table 5.8, where c = 1, illustrates that if the cost Q per component increases,

the optimal solution tends to be achieved for a smaller number of components and

more tests. However, for a small increase in Q and with the reliability constraint

remaining inactive, the optimal combination of n and y does not change (e.g. Cases

with m = 2 and m = 10 with Q changes from 150 to 300 in Tables 5.8, 5.9 and

5.10). Table 5.8 also illustrates that increasing process failure costs C requires an

increased number of components or more zero-failure tests, to minimise the total

expected costs. For example, it is optimal to test 131 tasks (without failures) and to
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have 3 components installed in the system for C = 100, 000 whereas, it is optimal to

test 70 tasks with 4 components in the system when C = 200, 000 instead, in order

to achieve the same reliability level, p = 0.95 with m = 2 and Q = 150.

C = 10, 000 C = 100, 000 C = 200, 000

Q = 150 Q = 300 Q = 3000 Q = 150 Q = 150

m n y n y n y n y n y

1 47 3 139 2 139 2 104 3 131 3

2 59 3 59 3 196 2 131 3 70 4

10 103 3 103 3 427 2 89 4 106 4

100 88 4 222 3 221 3 160 4 192 4

150 98 4 253 3 253 3 178 4 104 5

Table 5.8: Optimal n and y for x = 2, p = 0.95 and c = 1.

Table 5.9 presents solutions to the above constrained optimisation problem, with

the cost of process failure fixed at C = 10, 000. It clearly illustrates that an increase

in the cost of testing leads to fewer zero-failure tests to be performed, and more com-

ponents installed where necessary to meet the reliability requirement. For example,

comparing optimums n and y for C = 10, 000, Q = 150 and c = 1, in Table 5.8

with the corresponding optimums in Table 5.9 for c = 2 illustrates that increasing

c, namely from 1 to 2, decreases n with no change required on the optimal y for the

values of m considered. However, for large c it might be more effective to test fewer

tasks, with larger y, such as shown in Table 5.9 for the case where Q = 150 and

c = 24 in comparison with, for example the case where Q = 150 and c = 6.

Table 5.10 presents the optimal n and y for p = 0.99, for a few situations also

presented in Tables 5.8 or 5.9. Comparison of the results in these tables shows that

increasing p can lead to an increase in the optimal n, which of course only occurs

if the reliability constraint is active for p = 0.99, but for the same reason it can

also lead to an increase of the optimal number of components, which simultaneously

allows a smaller number of zero-failure tests. For example, in Tables 5.9 and 5.10

with Q = 300 and c = 6, the optimal n and y for m = 1, where the reliability

constraint is not active, do not change for both p = 0.95 and p = 0.99, but for

m = 10, where the reliability constraint is active for p = 0.99, the optimal n and y
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c = 2 c = 6 c = 24

Q = 150 Q = 300 Q = 150 Q = 300 Q = 150 Q = 300

m n y n y n y n y n y n y

1 37 3 98 2 25 3 25 3 10 4 15 3

2 47 3 47 3 31 3 31 3 12 4 19 3

10 81 3 81 3 29 4 54 3 14 5 19 4

100 73 4 73 4 33 5 53 4 17 6 23 5

150 81 4 81 4 36 5 59 4 19 6 25 5

Table 5.9: Optimal n and y for x = 2, p = 0.95 and C = 10, 000.

change with p.

c = 1 c = 6

Q = 150 Q = 300 Q = 300

m n y n y n y

1 47 3 198 2 25 3

2 59 3 59 3 32 3

10 103 3 103 3 29 4

100 88 4 239 3 58 4

150 98 4 294 3 67 4

Table 5.10: Optimal n and y for x = 2, p = 0.99 and C = 10, 000.

We want to emphasize that one should be careful in determining the optimal

integer-valued solution to this constrained optimisation problem. For example, for

m = 10, c = 6 and Q = 300 in Table 5.10, the minimum total costs for real-valued

n∗ and y occurred at n = 74.0041 and y = 3, but the integer-valued optimal solution

is at y = 4 and n = 29, with total expected costs 1444.29, while choosing y = 3 and

n = 75 leads to expected costs 1447.50, and the values y = 3 and n = 74 would not

satisfy the reliability requirement.

Example 5.7.2

In this example we illustrate the optimal n and y, considering multiple independent

types of tasks required to be dealt with in the process after testing. Table 5.11

presents the optimal n and y for x = 2 components required for system functionality,
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for different cost Q per component installed. Again using Beta prior distributions

with αi = 1 and βi = 0 for all types of tasks, and p = 0.95, we consider the following

cases:

(1) k = 3, m = (1, 3, 6), c = (1, 1, 1), C = 10, 000

(2) k = 3, m = (1, 3, 6), c = (20, 50, 50), C = 10, 000

(3) k = 3, m = (1, 3, 6), c = (20, 50, 50), C = 1, 000, 000

n, y

Case(s) Q = 300 Q = 1, 000 Q = 3, 000

(1) (47, 68, 86), 3 (47, 68, 86), 3 (201, 347, 489), 3

(2) (8, 9, 10), 5 (12, 12, 15), 4 (26, 28, 35), 3

(3) (14, 14, 16), 8 (20, 21, 23), 6 (41, 43, 51), 4

Table 5.11: Optimal ni, for all i, and y for x = 2 and p = 0.95.

Comparing Cases (2) and (3) in Table 5.11 with Cases (1) and (2) in Table

3.4, where a unit-system was considered, illustrates that higher built-in redundancy

(larger y) requires fewer zero-failure tests. Cases (1) and (2) in Table 5.11, illustrate

the fact that increasing testing costs ci per test of type i, reduces the optimal number

of zero-failure tests ni, and maybe increases the optimal y. For example, for the

reliability requirement with p = 0.95 and for Q = 1, 000, this leads to the optimal

solution of installing y = 4 components and n = (12, 12, 15) zero-failure tests. If we

increase the cost per component to Q = 3, 000 in the same setting, the optimum

solution is y = 3 components with n = (26, 28, 35) tests. If we consider a 2-out-of-2

system for this case, the optimal zero-failure test numbers are (296, 322, 454). This

illustrates again that the option of building in redundancy can greatly reduce the

test requirements and corresponding expected costs.

Moreover, Table 5.11 illustrates that for larger cost Q per component installed ,

it might be optimal to use fewer components, with more zero-failure tests to demon-

strate the same level of reliability. Comparing Case (2) and (3) illustrates that

increasing process failure cost C requires an increased number of components y
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and/or an increased number of zero-failure tests n to minimise the total costs and

to demonstrate the required reliability level.

Of course, if the reliability constraint is active, with higher required reliability

level p, one needs to install more components in the system or perform more zero-

failure tests to demonstrate this required level of reliability. For example, in Case

(1) with Q = 300, the optimal solution to demonstrate p = 0.99 is to use the

same number of components, namely y = 3, but more zero-failure tests, namely

n = (48, 70, 89) in order to achieve this level of reliability. For p = 0.95, as presented

in Table 5.11, the constraint is not active at the optimal solution, with reliability

equal to 0.9894, whereas for p = 0.99 it is active.

5.8 Concluding remarks

In this chapter we studied Bayesian reliability demonstration for systems with built-

in redundancy, which we denoted by x-out-of-y systems, including the special cases

of parallel and series systems. we only considered testing at the ’component’ level.

The same settings as introduced in Chapter 2 were considered. The methods pre-

sented in this chapter fit in the general Bayesian reliability demonstration framework

discussed in the previous chapters where unit-systems (x = y = 1) were considered.

We only considered reliability demonstration in terms of failure-free periods after

testing. Components were regarded as either functioning or not (pass or fail), and

assumed to be independent and exchangeable. As in Chapter 3, we assumed that

process failures are catastrophic and may incur a very high cost. We also studied

the optimal combinations of the number of zero-failure tests, and the number of

components to be used, to minimise expected total costs while meeting a specified

reliability requirement. In practice, testing opportunities to demonstrate high re-

liability may be restricted, for example due to budget and time constraints. Such

practical restrictions can often easily be translated into constraints in the optimisa-

tion problems presented in this chapter, as in Chapter 4, without causing too many

difficulties for the numerical computation of optimal test numbers and redundancy

levels. Clearly, if testing is restricted due to time, optimal solutions would probably
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involve installing more components in the system, whereas budget constraints may

lead to more testing if components are relatively expensive. Results in this chapter

are in line with the results achieved in Chapters 3 and 4. As redundant compo-

nents are meant to be used to increase systems reliability, this chapter is a natural

extension of the study in Chapters 2 to 4 where a unit-system was considered.

Throughout this thesis, we focused explicitly on reliability demonstration ex-

pressed in terms of failure-free periods, and the expected number of failures in the

process after testing. We assumed that testing can be performed separately, in the

sense that testing does not consist of actually observing the same process for a pe-

riod of time, hence we can indeed choose the required test numbers. Most methods

presented in the literature so far, see Section 1.3, have focused on characteristics

such as ‘mean time to failure’, which are unobservable, and for related inferences

one often ends up with fewer required tests than in our approach.

Throughout, where highly reliable systems are considered, we explicitly assumed

that testing reveals zero failures. If a failure happens to occur during testing, the

system may need to be redesigned, and testing may have to be reconsidered all over

again. For the process after testing, we considered both the cases that the number

of failures in the process are deterministic and random, including tasks arriving

according to a Poisson processes. It turns out that the deterministic case is the

worst case in the sense that it requires most tasks to be tested, and that the Poisson

case is almost as bad as the deterministic case. We also found that the actual

optimal test numbers, according to the different optimality criteria considered, are

quite insensitive to the actual criterion used for as far as the dependence on the

mi (or λi for the random case) and ci are considered, which does not occur on the

work on reliability demonstration, presented in the literature. This study suggested

an approximate relation between the optimal ni, for generally x-out-of-y systems

including the unit-systems, and mi and ci. It appears to be the case that the

optimal number of zero-failure tests for tasks of type i is approximately proportional

to (
mi

ci

)
1

y−x+2 , which generalizes the approximate relation for unit-systems (3.19),

discussed in Sections 3.4 and 4.4. Unfortunately, we have not been able to prove this,

and the additional interesting results on comparisons for the optimal test numbers
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according to the different optimality criteria mentioned above, analytically, due to

the complexity of the general expressions when focusing on probabilities of failure-

free periods as considered in chapters 3 and 5.

Throughout, we have restricted attention to Beta priors, which simplifies com-

putations and enables interpretation of the hyperparameters. One could use any

prior distribution if one feels it would better reflect prior knowledge, and use pow-

erful computational methods (e.g. MCMC) for the final inferences. It is clear that,

in our formulations with zero-failure testing, the βi only influence the required test

numbers a little, in the sense that the sums of the required ni and βi remain approx-

imately constant, so indeed the choice of βi immediately translates as assuming you

have already seen βi successful tests of tasks of type i. Hence, from the perspective

of reliability demonstration, we feel it is appropriate to advocate the use of the value

βi = 0. The αi play a far more important role. Effectively, one can interpret this

as ‘having seen αi tests failing’, and then demanding sufficiently many (ni) tests

without failure such that, on the basis of the combined information represented by

this prior and test information, the reliability requirement is met. In situations of

high reliability, one would naturally wish to use very small values of αi, and a key

problem is that the total required number of tests depends very strongly on αi. From

the perspective of reliability demonstration, we are in favour of the value αi = 1,

which however may lead to many tests being required, and as such can be considered

as conservative. This choice of hyperparameters coincides with results in [14], but

from a different foundational perspective, and was also advocated by Hartigan [29]

for cautious Bayesian inferences in similar settings. Generally, these inferences are

very sensitive to the choice of prior distribution, so one must be very careful with

interpretation of non-informativeness of priors.

As the more established methods for reliability demonstration, as presented in

the literature do not take any aspects of the process after testing explicitly into

account, we have not compared our results with optimal testing according to those

methods. We believe that our Bayesian predictive approach is easier to interpret, of

course it would be valuable to compare different methods for reliability demonstra-

tion in a detailed study, which we regard as an interesting topic for future research.
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5.9 Further suggestions

Our approach, for which restriction to tests without failures was crucial, can be

extended in many ways, leading to interesting and challenging research topics. For

example, if one could allow failures in testing, sensitivity with regard to hyperpa-

rameters would probably decrease, but one would have to take prior inferences on

probabilities of such failures into account. Even more important would be consider-

ation of retesting and of possible repair during the process considered. For example,

Tal et al. [58] introduce a testing policy depending on test, analyse and fix. In

other words, consideration of activities to improve the system’s functioning when a

failure is observed during testing, which would also lead to far more complex anal-

yses. Guida and Pulcini [27] considered the effectiveness of design modification by

using what they call an improvement factor which measures the ratio of the average

unreliability of the new product, at a given time, to the corresponding average of

the past product.

One could also consider dependence of multiple types of tasks, which could be

modelled via Bayesian graphical models [60], where inclusion of positive correlations,

e.g. due to some shared functionality for all tasks, leads to reduced test numbers

(as an extreme case, this allows consideration of ‘one-test-tests-all’ failure modes).

Again, this inclusion would also require far more complex analyses. Moreover, al-

lowing more general processes after testing, e.g. nonhomogeneous Poisson processes

where the arrival rates depend on the performance of the system, different cost

structures, e.g. testing costs not linear in the number of tests, and indeterminacy

about the process, which could be modelled via imprecise probabilities [13], increase

the practicality of our approach.

The assumption of exchangeable components in Chapter 5, that all deal simul-

taneously with each task, needs to be generalized to enhance applicability of this

method. For example, Bayesian reliability demonstration should be studied for more

complex systems [39, 40] with different components, and subsystems dealing with

particular tasks. In principle, if the system structures are known, this is relatively

straightforward due to the direct predictive formulation of the reliability functions

in our approach, and the zero-failure assumption for determining required test num-
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bers. There is an interesting added complexity if tests can also be performed at

system or subsystem level, as zero failures at that level may not imply that all com-

ponents functioned successfully. Conceptually, the Bayesian statistical framework

has no difficulty in dealing with such data. For example, in our approach for x-

out-of-y systems, the likelihood function can incorporate a successful test at system

level, which translates to ‘at least x components functioned for this particular task’.

This would, however, increase computational complexity, and may therefore require

the use of more sophisticated computational methods [22].

It is also interesting to study the optimal combinations of numbers of tests, and

the minimal required number of components, x, required for the system to function

with meeting the specified reliability requirement.

Another way to increase system reliability is via standby systems [1,9,10] or so-

called ‘active redundancy’ [44], which maximise the lifetime of the resulting systems.

Due to the direct predictive formulation of our reliability targets, we expect it to

be relatively straightforward to include such issues in our approach of zero-failure

testing for Bayesian reliability demonstration.

We consider such topics very interesting and relevant for future research, and

for applicability of such reliability demonstration methods. We consider this thesis

as a first step in the direction of practically useful Bayesian predictive reliability

demonstration methods, providing basic analyses and insights which we believe will

be relevant beyond the simple settings discussed here.



Appendix A

A.1

We proof that r(x, y|(n + 1, 0))− r(x, y|(n, 0)) ≥ 0, hence (5.5) is true. So, we need

to show

y
∑

j=x

(

y

j

) y−j
∏

l=1

(α + l − 1)

j−1
∏

h=1

(z + h)[j(α + z) − zy] =

Γ(y − x + α + 1)Γ(y + 1)Γ(z + x)

Γ(x)Γ(z + 1)Γ(y − x + 1)Γ(α)
. (A.1.1)

Proof: The proof follows by backwards induction

1. For x = y

LHS =

y−1
∏

h=1

(z + h)[y(α + z) − zy]

= αy

y−1
∏

h=1

(z + h) = αy
Γ(z + y)

Γ(z + 1)
, (A.1.2)

where we defined
∏

∅
= 1.

RHS =
Γ(α + 1)Γ(y + 1)Γ(z + y)

Γ(y)Γ(z + 1)Γ(α)

= αy
Γ(z + y)

Γ(z + 1)
, (A.1.3)

which is equal to the LHS.
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2. Suppose that equation (A.1.1) is true for x = d + 1 then, for x = d we find

LHS =

y
∑

j=d

(

y

j

) y−j
∏

l=1

(α + l − 1)

j−1
∏

h=1

(z + h)[j(α + z) − zy]

=

(

y

d

)y−d
∏

l=1

(α + l − 1)
d−1
∏

h=1

(z + h)[d(α + z) − zy] +

y
∑

j=d+1

(

y

j

) y−j
∏

l=1

(α + l − 1)

j−1
∏

h=1

(z + h)[j(α + z) − zy]

=
Γ(y + 1)Γ(y − d + α)Γ(z + d)[d(α + z) − zy]

Γ(d + 1)Γ(y − d + 1)Γ(z + 1)Γ(α)
+

Γ(y − d + α)Γ(y + 1)Γ(z + d + 1)

Γ(d + 1)Γ(z + 1)Γ(y − d)Γ(α)

=
Γ(y + 1)Γ(y − d + α)Γ(z + d)[d(α + z) − zy + (y − d)(z + d)]

Γ(d + 1)Γ(y − d + 1)Γ(z + 1)Γ(α)

=
Γ(y + 1)Γ(y − d + α)Γ(z + d)[d(y − d + α)]

Γ(d + 1)Γ(y − d + 1)Γ(z + 1)Γ(α)

=
Γ(y + 1)Γ(y − d + α + 1)Γ(z + d)

Γ(d)Γ(y − d + 1)Γ(z + 1)Γ(α)
. (A.1.4)

The RHS of (A.1.1) for x = d is

RHS =
Γ(y − d + α + 1)Γ(y + 1)Γ(z + d)

Γ(d)Γ(z + 1)Γ(y − d + 1)Γ(α)
, (A.1.5)

which is equal to the LHS in (A.1.4). Hence, (A.1.1) is true.

A.2

To prove (5.19), we need to prove

y
∑

j=x

(n + j − 1)!

j!
=

(n + y)!

ny!
− (n + x − 1)!

n(x − 1)!
,

which follows by backwards induction.

1. For x = y

LHS =
(n + y − 1)!

y!
.

RHS =
(n + y)!

ny!
− n + y − 1

n(y − 1)!
=

(n + y)! − (n + y − 1)!y

ny!
=

(n + y − 1)!

y!
,

which is equal to the LHS.
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2. Suppose that (5.19) is true for x = b + 1, then, for x = b,

LHS =

y
∑

j=b

(n + j − 1)!

j!
=

(n + b − 1)!

b!
+

y
∑

j=b+1

(n + j − 1)!

j!

=
(n + b − 1)!

b!
+

(n + y)!

ny!
− (n + b)!

nb!

=
(n + y)!

ny!
+

n(n + b − 1)! − (n + b)!

nb!

=
(n + y)!

ny!
+

(n + b − 1)![n − n − b]

nb!

=
(n + y)!

ny!
− (n + b − 1)!

n(b − 1)!
= RHS.
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