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Abstract

Predictions about future climate are typically based on an ensemble of

evaluations of a climate model at different parameterisations. If we wish

to describe our uncertainty about future climate in terms of probabili-

ties, then this constrains the way in which such an ensemble is generated

and used. A key part of the process is a probabilistic description of the

way in which evaluations of the climate model are informative about the

climate system. Or, to put it more starkly, a probabilistic description of

the model’s inadequacy as a representation of climate. This paper de-

scribes the probabilistic approach, and makes a number of suggestions

in order to simplify the challenging task of specifying this description

of model inadequacy, to make the calculations more tractable, and to

improve the quality of the resulting probability estimates.
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1 Introduction

A simple question will help to motivate this paper:

What is the probability that a doubling of atmospheric CO2 will

raise the global mean temperature by at least 2◦C?

This seems to be a well-posed question (subject to technical clarifications that

need not concern us here), and certainly a topical one. It is the kind of question

that a stakeholder might ask a climate scientist, on the basis that they believe

it is the kind of question that climate scientists are funded to answer.

There are two aspects of this question that ought to be highlighted. First,

the question asks explicitly for probabilities; second, it asks about the be-

haviour of the climate itself. So it is important to establish exactly what is

meant by ‘probability’ in this context, and it is also important to understand

that answers which focus on the climate sensitivity of this or that climate

simulator are not sufficient. In order to satisfy the stakeholder, climate scien-

tists must make a quantitative bridge from their particular climate simulator to

the climate system, in order that their statements about climate sensitivity are

relevant to the decisions that stakeholders need to take, and are directly com-

parable to those of other scientists. At the moment we have a form of beauty

contest being played out in the journals, where different research groups pro-

duce different results depending on their climate simulators and their methods.

Ultimately the winner of this contest in the judgement of the stakeholders will

be the group that makes authoritative statements about the climate itself,

using a transparent method with secure probabilistic foundations.

Any probability that might be quoted in answer to the question posed

above is clearly a subjective assessment of uncertainty, as indeed are most

probabilities when examined carefully. In this context it is not possible to
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make a definitive statement of the probability, because a subjective assessment

of probability will typically vary from person to person. But it is possible to

make an authoritative and transparent statement, and this is what we should

aim for. In the same way we cannot claim that the science that we do is

not subjective, but we do strive to make it transparent, and where we make

choices we try to make them wisely. One way to produce an authoritative

statement about future climate is within a framework that is informed by the

natural laws that are thought to govern climate. Typically the applicability of

these laws is widely accepted across the climate community, and so this part

of the inference can be considered to be less subjective. Thus the probability

becomes a logical deduction that arises from a smaller and more primitive set

of uncertainties via the laws of nature and the rules of the probability calculus.

This paper describes the correct way in which probabilities can be deduced

in this way: there is no ambiguity since the rules of probability themselves

do not admit of any uncertainty. This is addressed in section 2, which indi-

cates the role played by ensembles of evaluations. The reason the paper does

not stop there is because the task of specifying a probability distribution over

the primitive quantities in all their generality is overwhelming. Section 3 dis-

cusses one way to diminish this problem, which is to introduce large amounts

of climate data for the purposes of calibration. Section 4 discusses the key

assertions that a climate scientist might make in order to simplify the process

of specifying the joint distribution. Section 5 focuses on the most difficult

quantity to specify: the probabilistic description of a climate simulator’s inad-

equacy. Section 6 introduces further assertions that lead to relatively tractable

inferential calculations. Section 7 discusses strategies for choosing the evalu-

ation points in the ensemble. Section 8 concludes, and there are two short

Appendices with slightly more technical material.
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2 The climate system, and the climate simulator

2.1 The role of the climate model

The collection of quantities that comprise the climate system are denoted as

the vector y ∈ Y ⊂ Rk. This collection includes historic climate and ‘future’

climate: in our case ‘future’ climate is climate in a future where atmospheric

CO2 doubles according to some prescribed schedule. Denote by Q the subset

of Y for which ‘future’ global mean temperature increases by at least 2◦C

following the CO2 doubling. If we could specify a distribution for y, then we

could answer the initial question by adding up the probability assigned to the

region Q.

However, it is hard to write down a convincing probability distribution

for y. The components of y have complicated dependencies that follow from

natural principles such as conservation laws and equations of state. These

laws imply that y occupies a complicated manifold Y rather than the whole of

Rk. We can think of this manifold as being constrained by various numerical

values which could be operationally defined: primitive physical constants such

as gravitational acceleration or molecular viscosity, physical functions (of space

and time) such as solar forcing or sources and sinks of atmospheric CO2,

boundary conditions such as the earth’s topography, and the initial value of

the climate state vector (a function of space). If we knew all of these values

and denoted them by x∗ then we could write

y = g(x∗), (1)

i.e. the climate y is a point in Y that corresponds to the true values x∗; tradi-

tionally we might refer to the mapping as ‘f ’ rather than ‘g’, but statisticians

often use F for distribution functions and as this practice is followed below,

4



so ‘g’ is used here to avoid any confusion. Now even though x∗ could be

operationally-defined, its value would not necessarily be known to us with cer-

tainty, because the operation may not have been performed. For example, a

volcano is a source of atmospheric ash, water vapour and CO2, but for a given

volcano we may have only an intermittent record of its emissions (or perhaps

none at all).

Once we have g(·), we can use it map our uncertainty about x∗ into uncer-

tainty about y; i.e., we use g(·) to induce a probability distribution for y based

on the probability distribution we choose for x∗. This is sometimes referred to

as uncertainty analysis (O’Hagan et al., 1999). In order to answer the initial

question when x∗ is uncertain, we add up the probability assigned to those

values of x∗ for which g(x∗) ∈ Q, giving

P ,
∫

x

1Q

(
g(x)

)
dFx∗(x) (2)

where ‘,’ denotes ‘is defined as’, Fx∗ is our (cumulative) distribution func-

tion for x∗, and 1Q(y) is the indicator function, which takes the value 1 when

y ∈ Q and 0 otherwise. The notation
∫
· · · dFx∗(x) indicates a Lebesgue-

Stieltjes integral (see, e.g., Ross, 1988, ch. 7, sec. 9), which generalises the

notion of expectation in order that x∗ may describe both discrete and continu-

ous quantities. Although this generalisation is necessary for technical reasons,

the expression ‘dFx∗(x)’ can be thought of simply as a compact way of writ-

ing ‘fx∗(x) dx’ where we treat x∗ as absolutely continuous and fx∗(x) is its

probability density function evaluated at x.

Note that many other types of prediction can be computed within a similar

framework, for example the mean and variance of global mean temperature in

the year 2100 (or, more generally, the distribution of global mean temperature
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in 2100), simply by replacing 1Q(·) in (2) with a different function of g(x).

2.2 An imperfect climate simulator

The key question is what happens when we replace the true natural principles

with one particular approximation of them, based on an incomplete under-

standing or representation of the physics, and approximations in the solver.

This approximation will be referred to as the climate simulator, where ‘sim-

ulator’ is used to denote the entity that combines the mathematical model,

the simplifications made for tractability, the particular treatment of the model

that makes it applicable to a given time and place, and the solver (Goldstein

and Rougier, 2005b). The simulator is the computer code, and the vector

denoted as x becomes those numbers that must be specified before the com-

puter code will execute. Note the difference between x and x∗: x is a vector

of numbers treated as input to a climate simulator, but x∗ is a special value

among all the possibilities for x that is, in a sense to be explored below, the

‘best’ value for x to make that particular simulator informative about actual

climate.

There are three effects when nature is replaced with a particular simulator.

First, the various components of x∗ no longer have quite the same meaning as

they did before. For example, the quantity labelled as ‘viscosity’ in one ocean

simulator does not necessarily take the same value as ‘viscosity’ in another,

and nor does it necessarily take the operational value of viscosity. Second,

inadequacies in the simulator imply that there may be no point in the space

of possible values for x∗ for which (1) holds exactly. Third, the simulator may

constrain the information that can be derived about y, for example through
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the discretisations in the solver. The general relationship is now

y = g(x∗) + ε∗ (3)

on the understanding that g(·) becomes the climate simulator, y is constrained

to be those components of the climate that match the simulator’s outputs, the

meaning of the vector x∗ is no longer completely clear, and ε∗ ∈ E ⊂ Rk,

referred to as the simulator discrepancy, is not necessarily 0. But although

the concepts are now murkier, the only modification to (2) is to allow for ε∗ :

P =

∫∫
x×ε

1Q

(
g(x) + ε

)
dFx∗,ε∗(x, ε), (4)

where F is respecified as a joint distribution function for (x∗, ε∗) and the

integration has an extra k dimensions.

In similar terms to the interpretation of (2), the calculation in (4) adds up

the probabilities assigned to those values of (x∗, ε∗) for which g(x∗) + ε∗ ∈ Q.

Note that the effect of including ε∗ in the calculation of P is ambiguous: there

are some values for (x∗, ε∗) for which g(x∗) 6∈ Q but g(x∗)+ε∗ ∈ Q, but likewise

there are some values for which g(x∗) ∈ Q but g(x∗) + ε∗ 6∈ Q. Therefore we

cannot think of the simpler calculation given in (2) as any kind of bound on the

more complicated calculation (4). The relation between the two calculations

depends on exactly what beliefs are held about the relationship between the

climate simulator and the climate system, as expressed in the distribution

function Fx∗,ε∗ .

2.3 Using climate data for calibration

Suppose now that there are observations on some of the components of y, pos-

sibly made with error. These observations are used to calibrate the simulator,
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that is, to learn about (x∗, ε∗) and, in so doing, to improve our predictions for

the climate behaviour. These observations can be written, in fairly general

terms, as

z = Hy + e (5)

where H is a known incidence matrix and e is an unknown measurement error.

Sometimes a row of H will pick out an individual component of y, but usually,

because y is constrained according to the available outputs from the simulator,

the row of H corresponding to any given component of z will interpolate or

average across a collection of components of y, in which case e must also

account for approximation errors.

In probabilistic terms, the incorporation of information from observations

of the climate system into our prediction corresponds to conditioning on the

event that the uncertain quantity z takes its observed value z̃, known generally

as calibrated prediction (Goldstein and Rougier, 2005a). Bayes’s theorem is

used to condition (x∗, ε∗) on the event z = z̃, which gives

P = c

∫∫
x×ε

1Q

(
g(x) + ε

)
Likz̃(x, ε) dFx∗,ε∗(x, ε) (6a)

where c , Pr (z = z̃)−1, and

Likz̃(x, ε) , Pr (z = z̃ | x∗ = x, ε∗ = ε)

= Pr
(
e = z̃ −H

(
g(x) + ε

)
| x∗ = x, ε∗ = ε

)
(6b)

where ‘|’ denotes ‘conditional upon’. Here Likz̃(·, ·) is known as the likelihood

function, and denotes the probability (density) of observing the data z̃ given

particular candidate values for x∗ and ε∗. Using (5), the likelihood can be

expressed as the probability of observing the measurement error vector z̃ −

H(g(x)+ ε). Comparing (4) and (6), the effect of introducing the climate data
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is to introduce a weighting function into the integration which is proportional

to the likelihood function. This means that candidate values (x, ε) which fit

the data z̃ better, i.e. for which the measurement error vector is ‘smaller’, are

accorded more weight in the result. A cruder technique is sometimes used, of

sampling the space of candidate values for x∗ (ε∗ is usually ignored) and only

keeping those for which Hg(x) is sufficiently close to the data z̃. This would

not be inconsistent with a probabilistic approach, but a likelihood function

that only took the values 0 and 1 would be very unusual, and not easy to

defend.

The purpose of ensembles of evaluations of our climate simulator is to

approximate integrals such as (4) or (6). There are many ways to go about

this, as discussed in books on high-dimensional numerical integration (see, e.g.,

Evans and Swartz, 2000). Section 7 considers particular strategies that might

be useful for climate problems.

This section has shown how the probability calculus provides a transparent

route from an initial assessment of our uncertainties and from relevant data, to

probabilistic statements about the climate. In order to do this calculation in

full generality we need to specify a joint distribution function for the collection

(x∗, ε∗, e), since this is equivalent to specifying distributions for (x∗, ε∗) and for

e | (x∗, ε∗), where the former distribution appears in the integrand of (6a) and

the latter appears in the likelihood function given in (6b). The next sections

consider these three uncertain quantities in more detail, and suggest strategies

for making the specification of their joint distribution a little easier.

3 The quest for more data

The first question when faced with the challenge of specifying the prior dis-

tribution function for (x∗, ε∗, e), especially where there is confusion about the
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precise meaning of x∗ and ε∗, is to ask about whether there are circumstances

in which it does not have to be carefully-specified. There is an important

asymptotic result in Bayesian statistics that states that as the quantity of data

grows, the likelihood becomes more concentrated, and so the prior becomes

less influential in the resulting conditional distribution (see, e.g., Bernardo and

Smith, 1994, sec. 5.3). This is especially the case where we are initially quite

uncertain, because in this case it is reasonable to suppose that wherever the

likelihood becomes concentrated, the prior at that point is fairly flat, and so

may be taken as locally uniform.

Unfortunately this line of reasoning does not extend to our problem in its

full generality, because the likelihood function itself requires us to specify the

conditional distribution Pr (e | x∗, ε∗), which involves (x∗, ε∗). But we can see

right away that if the climate scientist was prepared to assert, as a statement

of belief, that knowledge of (x∗, ε∗) was of no value in predicting e, then the

likelihood function could be expressed in terms of the distribution of e alone.

The effect in this case would be a large-data result like

P ≈ c

∫∫
x×ε

1Q

(
g(x) + ε

)
Likz̃(x, ε) dx dε

where now Likz̃(x, ε) , Pr (e = z̃ −H(g(x) + ε)). A stronger result states that

the logarithm of the likelihood function tends to a quadratic form, in which

case c× Likz̃(x, ε) becomes gaussian, with a mean vector and variance matrix

that can be inferred from a numerical optimisation over (x, ε). Now instead of

specifying a probability distribution over the collection (x∗, ε∗, e) in order to

compute P , the climate scientist would simply have to specify a probability

distribution for the measurement error e.

This seems very promising, but the catch is that these asymptotic results
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only hold if z is augmented with new independent data. Simply adding on

more and more observations of recent sea-surface temperature will not have

a concentrating effect, because there is almost no information about (x∗, ε∗)

in the 101st sea-surface temperature that was not present in the first 100

observations. As a general principle, a few sources of well-differentiated data

are worth more than many similar data: the worth in this case being measured

in terms of reducing the influence of the prior for (x∗, ε∗) in the resulting

prediction for y, by concentrating the likelihood. What tends to happen is that

sea-surface temperatures constrain (x∗, ε∗) one way, and pressures constrain it

another way. In the log-likelihood function these two constraints look like

ridges, and these two ridges combine additively, so that at the point where

they cross, the likelihood function becomes more concentrated.

Ideally we want many ridges in the log-likelihood, all crossing in roughly

the same place. One of the ways in which this process breaks down even with

a lot of different types of data is if the ridges all meet each other at different

points. This tends to happen if the discrepancy ε∗ is left out, or if the amount

of measurement error is understated. In this case each set of data creates a very

narrow ridge, because the data are wrongly treated as more informative about

x∗ than they actually are. The result is a very choppy likelihood surface which

can be extremely difficult to characterise, and also very difficult to integrate

over. Therefore setting ε∗ = 0 may seem to be very convenient but it is far

from harmless: it can jeopardise our inference where the simulator is not a

good representation of underlying climate at the scale of the available data.

We can extend this approach further, in our quest for new and indepen-

dent sources of data. Proxy data, namely measurements on processes that

are affected by climate but not themselves part of the climate state vector,

could constrain (x∗, ε∗) in quite different ways to z, not least because some
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are available over very long time-periods, from palæo-climate studies. Proxy

data can be included into the inference by extending the simulator outputs

with a further model mapping (x∗, ε∗) into measurements for, say, fossilised

tree-ring thickness; recall that (x∗, ε∗) allows us to determine (x∗, y) using (3).

It is definitely better to do this than to try and extract a set of measure-

ments on the state vector from the proxy and then incorporate these into z.

This is because the mapping from (x∗, ε∗) into fossilised tree-ring thickness is

relatively straightforward if we have a biological model of tree-growth and a

physical model of the fossilisation process. But going the other way, tree-ring

data cannot be projected onto y alone, because these data also depend on

components of x∗ such as the cloud model (which affects precipitation) and

atmospheric CO2 concentrations. If we did try such a projection we would

have to specify the measurement error distribution conditionally on (x∗, ε∗).

This would be a very hard distribution to specify, except indirectly using prob-

abilistic inversion to condition (x∗, ε∗) on the observed tree-ring data. But this

is exactly what we are doing if we extend the simulator to include tree-rings

among the outputs. Essentially, we are going to use Bayes’s theorem to solve

the inverse problem anyhow, so we can simply incorporate the tree ring data

as part of the ‘forward’ problem. Therefore the case for including proxy data

in the output of an extended climate simulator is fairly compelling in a prob-

abilistic framework.

4 Simplifying the joint distribution

Generally-speaking, climate scientists are unlikely to have enough data in z to

strongly concentrate the likelihood, and render their prior beliefs about (x∗, ε∗)

immaterial in their inference about climate sensitivity. This is partly due to

the poor quality of current climate simulators as representations of weather
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(which is where the voluminous data are), but may also reflect chaotic features

in the underlying mathematical model (see, e.g., Berliner, 1992; Smith, 2002).

Where the simulator is acknowledged to be a poor representation for data on

this scale, the ridges in the likelihood function that are induced by the data

are wide, and even where they overlap they will not be highly concentrated.

This means that a careful assessment of prior beliefs regarding (x∗, ε∗, e) will

be unavoidable, even though as much data as possible ought to be used for

calibration, as a form of insurance.

In thinking about the joint distribution of a collection of quantities the

natural starting point is to ask whether they can be treated as mutually inde-

pendent. If we assert that, say, x∗ and e are independent, written as x∗ ⊥⊥ e,

then we are saying that our predictions for x∗ are not affected by the value

of e, and vice versa (see, e.g., Smith, 1990). Section 3 considered making the

assertion

e ⊥⊥ (x∗, ε∗) (7)

which in a probabilistic treatment implies that Pr (e | x∗, ε∗) = Pr (e), allowing

likelihood function to be simplified. Even this assertion is not uncontroversial.

It implies that e ⊥⊥ y, since y is a deterministic function of (x∗, ε∗). This

would immediately rule out multiplicative measurement errors, i.e. errors for

which the uncertainty is expressed in proportional terms. In fact, these types

of errors can often be incorporated by treating some of the simulator outputs

in logarithms (transformations of the simulator outputs are discussed in more

detail in section 6), or by generalising the measurement equation (5). However,

this does not completely resolve the problem. When we compile a list of

the ways in which a measurement error can be made we see immediately

that many of them are weather-related (e.g. a seasick technician, atmospheric

turbulence), and, therefore, climate related. But although (7) may not be a
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strict description of beliefs, the climate scientist might well be comfortable

with the idea that the impact of y on e is of secondary importance, and that

the assertion should be accepted for the time being, in order to move on to

more pressing issues.

Adopting this viewpoint, the prior distribution function factorises as Fx∗,ε∗ × Fe.

The question is, would the climate scientist feel as comfortable with the next

step, which would be to assert that

x∗ ⊥⊥ ε∗. (8)

This assertion has been widely adopted in the statistical literature on computer

experiments (see, e.g. Craig et al., 2001; Kennedy and O’Hagan, 2001; Higdon

et al., 2005). The meaning of (8) is quite straightforward. It asserts that there

exists a simulator input x∗ such that, were it to be known, then the climate

scientist would be satisfied with the outcome of the single evaluation g(x∗) for

the purposes of predicting y, and this would be true no matter what the value

of that evaluation turned out to be. This is clearly true in the case where g(·)

is perfect and x∗ comprises operationally-defined system values, in which case

ε∗ = 0 so that (8) is automatically true. But it is an assertion of belief when

g(·) is an imperfect simulator, and it actually serves to define what is meant

by x∗ in this context, although it does not operationalise it.

There are definitely situations which would cause a climate scientist to

reject (8) as a correct statement of his or her beliefs. For example, suppose

that x∗ was revealed to be an extreme value. Two things might go wrong:

the tractability simplifications might break down or the solver might break

down, both leading to a simulator output g(x∗) which was trusted less as a

representation of the climate system than the output from a central value
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for x∗. In this case the climate scientist might believe that the discrepancy

could be larger for extreme values of x∗. Note that the problem here is with

the simulator, not the underlying model, but the climate scientist should not

ignore the fact that the simulator and the model are not the same thing.

Another situation which violates (8) is where the climate scientist believes

that a certain value for x is good for predicting one subset of y and a dif-

ferent value, x′ say, is good for predicting another subset: these two subsets

are often differentiated by type, for example atmospheric pressure and ocean

salinity. In this case Var (ε∗) should be specified conditional on x∗, so that, say,

Var (ε∗1 | x∗ = x) < Var (ε∗2 | x∗ = x) and Var (ε∗1 | x∗ = x′) > Var (ε∗2 | x∗ = x′),

where the 1 and 2 subscripts indicate different subsets of y.

Both of these situations involve specifying the variance of the discrepancy

conditionally on x∗. In fact this restricted type of dependency can be handled

with a simple generalisation of (3), along the lines of

y = g(x∗) + σ(x∗) ε∗ (9)

where σ(x∗) is some specified function. Similarly, the mean of the discrepancy

can depend on x∗, for example if the climate scientist believed that the sim-

ulator tended to under-predict certain climate properties for certain values of

x∗. Providing that beliefs about the discrepancy are restricted to statements

about the conditional mean and variance, it could be asserted that

x∗ ⊥⊥ ε∗ (10)

i.e. the joint probability distribution can be can factorised as Fx∗,ε∗ = Fx∗×Fε∗ .

Then the climate scientist’s task of specifying a joint distribution function for

(x∗, ε∗, e) simplifies to specifying three marginal distribution functions plus,
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possibly, additional functions such as σ(·) in (9). Another approach to simpli-

fying the specification of the joint distribution function for (x∗, ε∗, e) is given

at the end of section 5.

Interestingly, assertions such as (8) and (10) have recently been criticised

from a foundational point of view, for being inconsistent with the notion that

there can be many simulators of the same underlying system (Goldstein and

Rougier, 2005a,b). In the second of these papers it is shown that the gen-

eralisations required to restore consistency involve analogues of both x∗ and

ε∗. These generalisations turn out to be beneficial from the point of view

of the climate scientist, both because they clarify the nature of x∗, which is

largely restored to its original operational definition, and because they dimin-

ish the role of ε∗, which is undoubtedly the most difficult quantity to describe

probabilistically. These generalisations will not be discussed further here.

5 The discrepancy

The discrepancy seems to present difficulties to climate scientists who, al-

though aware that their simulators are imperfect, have not, generally, been

required to quantify the degree of imperfection. This has lead to a number of

predictions for climate sensitivity which are “. . . conditional on the simulator

being correct”. Since we know that the simulator is incorrect, and we are given

no indication regarding the degree of incorrectness by the experts themselves,

this leaves the stakeholders in a difficult position, and certainly not one con-

ducive to taking expensive and irreversible decisions. Climate scientists should

be making predictions about the climate’s sensitivity, not about their simula-

tor’s sensitivity, and it is surely the job of journal editors and stakeholders to

see that this happens.

The most important feature of the discrepancy is that if we left it out

16



of a prediction based on a simulator that was known to be imperfect, then

that prediction would be worse than if we included it. If we want to make

the best prediction we can, then we ought to include a discrepancy, which

means, in the simplest situation, formulating beliefs about ε∗ in terms of the

distribution function Fε∗ , or in terms of the parameters of that distribution

such as the expectation vector and the variance matrix.

In terms of its impact on the inference, the discrepancy plays several roles.

First of all, it smooths out the likelihood function, because an appropriate

‘gap’ between the system data and the simulator output makes the data less

informative about the simulator inputs. As mentioned in section 3 this is

actually a very important role, because without it we can end up in a situation

where there appears to be no value for x∗ which is consistent with all of the

data. This would appear to suggest that our simulator was not very useful.

For example, we would be in a situation where if we used less data we might

get a well-fitting choice for x∗, but the value of this choice would move around

depending on the data that we left out, and consequently our predictions for

climate sensitivity would move around as well. We believe our simulators are

useful, but we have to be realistic about how accurate they are, otherwise

they will appear to be less useful than they actually are. Therefore effective

calibration requires a discrepancy.

Second, the discrepancy variance provides a slot which can quantify the

belief that one simulator is better than another with reference to their purpose,

which is to learn about actual climate. Without this slot a better simulator

can actually give a more uncertain prediction for climate. For example, one

way to improve a simulator is to increase the number of inputs that are treated

as uncertain. But without a discrepancy, i.e. setting ε∗ = 0 in (3), the extra

uncertainty in x∗ can feed through to extra uncertainty in g(x∗), and in y.
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The discrepancy can be used to compensate for this by decreasing uncertainty

about ε∗ on the basis that the less constrained are the values for x∗, the better

the simulator can represent actual climate. While the actual quantification of

relative quality across simulators may be difficult, there is likely to be a broad

consensus on the ranking. So somewhere in the inferential calculation about

actual climate there has to be a collection of numbers that should be bigger for

simulator A than for simulator B, where it is generally agreed that simulator

A is not as good as B. The discrepancy variance is a natural place to find

these numbers.

Both of these reasons suggest that the variance matrix of the discrepancy

should have a non-zero diagonal, i.e. it is not advisable to assert that ε∗ takes

the value 0 with probability 1. There is a third reason, though, particularly

important in future climate prediction, that concerns the off-diagonal elements

in Var (ε∗). Climate scientists tend to believe that where the simulator is in

error, it is often systematically so. If, for example, the simulator has under-

represented sea surface temperature off the Azores for the last twenty years,

then the climate scientist might believe that there is a more-than-evens chance

that this under-representation will continue into the future. Spatially, if the

simulator tends to over-represent rainfall in northern France, the climate scien-

tist might believe that there is a more-than-evens chance that it over-represents

rainfall in southern France as well. There may also be other more complicated

types of effect: perhaps if the simulator over-represents temperature it contem-

poraneously (or with a lag) under-represents rainfall. These kinds of effects

show up in the off-diagonal elements of Var (ε∗). They provide a way for the

data z̃ to correct systematic errors that are believed to exist in the simulator.

Craig et al. (2001, p. 722) give an example of how these types of beliefs

about systematic errors in the simulator may be represented in practice. The

18



authors are concerned with the discrepancy between a hydrocarbon reservoir

simulator and the measured reservoir well pressures, taken at different wells

and at different times. After a discussion with the reservoir engineers, and

supported by data analysis on the output of a fast version of the simulator,

they selected a discrepancy variance of the general form

Cov (ε∗it, ε
∗
i′t′) = σ2

1 exp
{
−θ1 (t− t′)2

}
+ σ2

2 δii′ exp
{
−θ2 (t− t′)2

}
(11)

where i represents a well location and t represents time, δii′ is the Kronecker

delta function, and {σ1, σ2, θ1, θ2}, termed the the hyperparameters, have ex-

plicit values assigned. In this specification there is a time effect, which says

that discrepancies tend to extend through time, and a location effect, which

says that discrepancies at the same well tend to be more closely related than

discrepancies at different wells. A specification such as (11) can be fed back

to the reservoir engineers as (random) realisations of the discrepancy vector,

plotted by well and by time, so that they can get a feeling for typical be-

haviour, and then adjust the hyperparameters if necessary; Craig et al. (1998)

describe computer-based tools for this purpose.

Goldstein and Rougier (2005b, section 7) provide another route to specify-

ing the off-diagonal structure of the variance of the discrepancy, by considering

the extent to which simple relationships among the outputs of the simulator

might reflect similar simple relationships in the climate itself. Again, this

approach is parameterised by given values for a small collection of hyperpa-

rameters. Within a probabilistic framework it is always possible to learn about

the values of the hyperparameters using the data z̃, but in practice this tends

to be challenging unless the data are carefully chosen to be informative for

variance learning (see, e.g., the discussion following Kennedy and O’Hagan,
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2001).

Finally in this section we consider another way of thinking about the dis-

crepancy, which provides us with a way to reparameterising (x∗, ε∗, e) that can

sidestep the assertion that x∗ ⊥⊥ ε∗. Climate simulators typically solve the

underlying model by stepping through time. We write x∗ ≡ (y0, θ), where y0

is the initial value of the state vector and θ comprises uncertain model param-

eters and historic forcing functions, and y ≡ (y1, y2, . . . ). Then the simulator

applied to a single timestep would be

yt = gt(yt−1; θ) + ωt (12)

where ωt is the single-step discrepancy that accounts for the fact that the

simulator gt(· ; θ) is not a perfect representation of the climate over the interval

(t−1, t]. But for a simulator that makes a sequence of steps, the starting point

of step t is not yt−1, the actual climate at the end of interval t − 1, but gt−1,

where gt is defined recursively as

gt ,


gt(gt−1; θ) t = . . . , 2, 1

y0 t = 0.

(13)

The additive discrepancy ε ≡ (ε1, ε2, . . . ) is then

εt = yt − gt(gt−1; θ). (14)

Using linearisation and back-substitution this gives a stochastic approximation

to ε in terms of θ and ω ≡ (ω1, ω2, . . . ),

εt ≈ ∇gt(gt−1; θ) εt−1 + ωt (15)
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where ∇gt(· ; θ) is the Jacobian matrix, and ε0 , 0. In this formulation θ and

ε∗ are not probabilistically independent. The climate scientist could infer the

joint distribution of (y0, θ, ε
∗) from more primitive beliefs about the simulator,

stated in terms of the Jacobian matrices (which could be described probabilis-

tically) and the evolution of the stochastic process ω. Alternatively, and more

straightforwardly, the inference could be reparameterised to replace ε∗ with

ω, although in this case ω would have to be thought of as an input into the

‘all-timesteps’ simulator y = g(y0, θ, ω), which has the discrepancy built in.

This would involve a fundamental modification of the underlying computer

code, but it serves to illustrate a general point. If inference about climate is

our goal, then the structure of tools such as climate simulators ought to reflect

the inferential calculation, not constrain it. In other words, perhaps climate

scientists should consult statisticians when designing climate simulators.

6 Gaussian assertions for tractability

Any calculation designed to approximate an integral such as (6) is going to

have to span a (p + k)-dimensional space, where p is the number of uncertain

quantities in x∗ and k is the number of uncertain quantities in ε∗. Here k has

to be at least as big as the number of components in the observations z. If

z is large—in order to reduce the impact of prior beliefs about (x∗, ε∗)—then

k will be large. So anything that reduces the size of the integral in (6) from

(p + k) dimensions to p dimensions is going to make a big difference to the

computability of P . One choice that allows us to do exactly that is to treat

(ε∗, e) | x∗ as gaussian. Effectively, in this case ε∗ may be integrated out of (6)

analytically.

For simplicity suppose that x∗, ε∗ and e can be treated as mutually in-

dependent, and (ε∗, e) as gaussian; the approach generalises straightforwardly
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to the case where the three quantities are not independent. In this case the

distribution of (y, z) | x∗ is gaussian, and

P = c

∫
x

E
(
1Q(y) | z = z̃, x∗ = x

)
Likz̃(x) dFx∗(x) (16)

where Likz̃(x) , Pr (z = z̃ | x∗ = x). Here both y | (z, x∗) and z | x∗ are

gaussian; the forms of the terms are given in Appendix A.1. Generally, the in-

tegrand in (16) takes almost no time to compute beyond that taken to evaluate

the simulator to find g(x).

Some climate simulators can be time-consuming to evaluate, and in this

case the inference can be generalised to include an emulator of the simulator,

which is a probabilistic framework for predicting the simulator output at any

given value x based on the outcomes of a carefully-chosen set of evaluations.

Emulator construction is quite subtle but the principles are well-established:

Santner et al. (2003, ch. 3-4) provides a review; Currin et al. (1991) and

Kennedy and O’Hagan (2001) describe a relatively simple Bayesian approach

using a gaussian process as a prior; Craig et al. (1997, 2001) describe a more

general approach using a greater amount of expert knowledge and evaluations

of cut-down versions of the full simulator. There is at least one example of a

simple emulator in the climate literature (Murphy et al., 2004; Rougier, 2004).

The assertion that both ε∗ and e are gaussian may seem unrealistic in the

case where the components of y are constrained by their interpretation to

respect certain limits, e.g. to be strictly positive. In these cases the outputs

of the simulator can sometimes be transformed so that they are unbounded.

As a general point, numerical approximations to integrals such as (6) or (16)

work better where the integrands are low-order in x, and it is often beneficial

to use, say, logarithmic transformations of strictly positive components of g(·)

22



that might otherwise be squashed up against the origin for large parts of the

input space.

7 Design issues

Finally we turn to the practical issues of computing an approximate value for

P . We consider the tractable special case of the previous section, i.e. x∗, ε∗ and

e are mutually independent, and (ε∗, e) is gaussian. However, the approach

outlined below is perfectly general.

Our objective is to evaluate (16). At this point we have to confront the size

of x, denoted p. For anything other than a trivial climate simulator, p is almost

certainly larger than can be managed with a simple product integration rule

such as gaussian quadrature. This is because x includes not only the relatively

small collection of uncertain coefficients in the underlying mathematical model,

but also the much larger collection of other uncertain numerical values in the

code, most notably forcing values with spatial and temporal indices, and the

initial value of the state vector.

Denote by x1 the uncertain model coefficients and by x2 all of the remaining

uncertain values, so that x ≡ (x1, x2). Typically, the value of x1 is much more

important than x2 in determining the general behaviour of g(x1, x2). For exam-

ple, one component of x2 might be the quantity of particulate matter ejected

into the atmosphere in the region containing Mt. Pinatubo in 1991, when the

volcano erupted. No-one knows exactly how much matter was ejected. Even

if someone did, it is not clear that this would be the best value to use in the

simulator, taking account of deficiencies in the modelling of the impact of at-

mospheric particulate matter in terms of scattering solar radiation and seeding

clouds. Therefore the best value for this quantity in the simulator should be

treated as uncertain. The impact of this quantity propagates forwards in time
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in the simulator, but it cannot propagate backwards so there are simulator

outputs which are completely unaffected. The coefficients in x1 together af-

fect every single output of the simulator, but this does not mean we should

concentrate on x1 and ignore the contribution of uncertainty in x2. Climate

simulators are well-known to exhibit strong non-linearities arising from pos-

itive feedback and hysteresis. It would be very misleading to treat some or

all of the components of x2 as fixed, if quite minor changes in the value of x2

might lead to large changes in g(x1, x2). However, this is what is happening

at present.

A general rule for numerical integration is that the more knowledge that can

be incorporated about the integrand, the more accurate will be the result for a

fixed number of evaluations. In our case the climate scientist should attempt to

incorporate the knowledge that x1 has a bigger effect on the simulator output

than x2. Although there are several methods that could be used, for climate

simulators a hybrid of deterministic and stochastic methods could be useful,

which might be termed quadrature with stochastic forcing. The basic idea is

to evaluate the simulator over a carefully-chosen collection of candidate values

for x∗1, where each evaluation is made with one or more randomly-sampled

candidates for x∗2.

For simplicity, suppose that the climate scientist is comfortable with the

idea that x∗1 and x∗2 are probabilistically independent, so that Fx∗ = Fx∗
1
×Fx∗

2
.

Then we can write, starting from (16),

P ≡ c

∫
x1

J(x1) dFx∗
1
(x1)

≈ ĉ

m∑
i=1

w(i)Ĵ
(
x

(i)
1

)
dFx∗

1

(
x

(i)
1

)
(17a)
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where

J(x1) ,
∫

x2

E
(
1Q(y) | z = z̃, x∗ = (x1, x2)

)
Likz̃(x1, x2) dFx∗

2
(x2) (17b)

and x
(1)
1 , . . . , x

(m)
1 and w(1), . . . , w(m) are chosen according to some integration

rule over x1; the hats over c and J(·) denote numerical approximations. To

compute ĉ and Ĵ(·) we have to evaluate the simulator, for which we require an

x1 and an x2 value. The simplest way to proceed (not the best) is to generate

a value for x2 randomly from Fx∗
2

for each x
(i)
1 . In other words, each simulator

input comprises a carefully-chosen value for the uncertain model parameters

and a randomly-chosen value for the uncertain other (less important) simulator

inputs. Appendix A.2 gives a more general algorithm.

One thing to note is that there is no reason for the integration rule values

x
(1)
1 , . . . , x

(m)
1 to be an equally-spaced grid across the individual components

of x1. In fact, gaussian quadrature is superior to Simpson’s rule for the same

m precisely because the abscissae are not equally spaced. This contrasts with

current practice (see, e.g., Stainforth et al., 2005). Neither is there any reason

for the number of different levels to be the same for each component of x1

(another feature of Stainforth et al.). If the response of the simulator to the

first component was thought to be much more important than the response

to the second component, then it would make sense, in terms of deriving a

better approximation for P , not to have the same number of levels in both

components, but to have one more level in the first and one less in the second

(reducing m by 1 in the process). This is another simple example of the way in

which the climate scientist’s knowledge can be used to improve the calculation

of P .

An interesting question arises about whether it is useful to build stochastic
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climate simulators, i.e. climate simulators that are a function of x1 alone, with

x2 being chosen at random from some specified distribution (which we would

take to be Fx∗
2
). In the context of probabilistic inference centred on P the

answer is clearly negative. This is because the quality of our approximation

for P for a given budget of simulator evaluations can be improved, sometimes

dramatically, by variance reduction techniques (references are given in Ap-

pendix A.2). To give one example, we might be able to afford two realisations

of x2 for each x
(i)
1 . We could choose to generate two independent random

realisations, but it would be better to generate a pair of realisations which

were antithetic (crudely, negatively correlated). The use of antithetic random

variables will improve the quality of our approximation Ĵ
(
x

(i)
1

)
. A stochastic

simulator in which the random value for x2 is buried inside the computer code

would prevent us from doing this.

One further comment derived from a common misconception in the litera-

ture. Choosing a uniform distribution for x∗1, i.e. setting dFx∗
1
(x1) ∝ 1X1(x1)

for some finite region X1, is seldom appropriate for parameters in a physical

model. For example, do Murphy et al. (2004, see Supplementary Table 2)

really believe that, say, all values of the entrainment rate coefficient between

0.6 and 9 are equally-probable even though the standard setting is 3? Or that

values of 0.59 or 9.01 are simply impossible? If a value of 9.01 is impossible,

then common sense suggests that a value of 9 ought to be highly improbable,

and certainly less probable than a value of 3. So at the very least a triangular

distribution would have been more defensible. There is absolutely no sense

in which choosing a uniform distribution is ‘objective’, since it requires us to

specify limits (except in the case of an improper uniform prior on the whole of

the real line, sometimes used in a Bayesian reference analysis). Furthermore,

there is no sense in which a uniform distribution is especially parsimonious,
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since there are other two-parameter distributions, both symmetric (triangu-

lar) and asymmetric (gamma), that might have been chosen instead. And

there is no compelling reason to select the distribution for Fx∗
1

on the basis of

parsimony anyway.

Any inferential approach which weights members of an ensemble equally,

or only with reference to the likelihood, is making the same implicit assertion,

and ignoring the widely-held view that central values of the model parameters

are probably better candidates than extreme ones. Since the value for P can

only be interpreted as a subjective assessment based on our knowledge, climate

scientists should make the best possible use of that knowledge, and definitely

not make simplistic assertions that they do not believe and that cannot be

defended. Exactly the same situation prevails with regard to the probabilities

attached to various future climate scenarios (see, e.g., Moss and Schneider,

2000; Schneider, 2001).

8 Conclusion

The fundamental message of this paper is that making inferences about future

climate using an imperfect climate simulator is a very challenging business.

If those inferences are required to be probabilistic, then the challenge is to

specify a joint distribution function for the collection of uncertain quantities

(x∗, ε∗, e), where x∗ is the ‘best’ setting for the simulator inputs, ε∗ is the

discrepancy between the ‘best’ simulator output and the climate system, and

e is measurement error on climate data used for calibration (see section 2).

The easiest way for the climate scientist to proceed with the inference is to

treat the three uncertain quantities as mutually independent, so that the joint

distribution function factorises into the product Fx∗×Fε∗×Fe. This has to be

an assertion of belief on the part of the climate scientist, and it must involve
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a certain amount of pragmatism because, as has been discussed, none of these

independencies is completely defensible. That having been said, the climate

literature has yet to produce any analysis that provides a transparent and

defensible quantification of simulator inadequacy which is then incorporated

into a climate prediction. So although climate scientists may baulk at the

assertion that, for example, x∗ and ε∗ are independent, this is surely a lesser

concern than the ‘default’ assertion that ε∗ = 0. To give an analogy, we may

not understand the precise mechanism by which the ocean and the atmosphere

ought to be coupled in a climate simulator, but this does not mean that we

set the coupling to zero. It is the same with the discrepancy distribution: we

may not know it but we ought to assess it as best we can.

This paper has made a number of other observations about the use of an

ensemble of evaluations of a climate simulator. In particular, the purpose of

the ensemble is to approximate a high-dimensional integral and, consequently,

much guidance regarding the design of the ensemble can be derived from the

very large body of literature concerning numerical integration. One sugges-

tion for handling the high dimension using a combination of deterministic and

stochastic integration approaches was given in section 7. This section also

suggested that a uniform distribution for x∗, although a popular choice, was

seldom defensible in the case where components of x∗ represented uncertain

physical parameters without very strict bounds. Section 3 recommended ex-

tending climate simulators to include proxy data among their outputs, in an

attempt to lessen the contribution of the climate scientist’s probabilistic as-

sessment of (x∗, ε∗) in the inference.

In the immediate future, however, during a time when we really need to

address questions such as the one posed at the start of the paper, we have

to acknowledge that any answer will depend critically on the probabilistic
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assessment that the climate scientist makes, and that there can be no ‘gold-

standard’ by which those assessments can be judged. But the sooner that the

community of climate scientists confronts this issue, the sooner a consensus

might emerge about crucial parameters such as Var (ε∗).

Statisticians can help in this process in facilitating the direct elicitation of

a distribution function for (x∗, ε∗), by deriving efficient frameworks for struc-

turing the distributional parameters and estimating the hyperparameters, and

also by thinking about more general ways in which inference about a physical

system can proceed from an ensemble of simulator evaluations, as discussed

and illustrated in Goldstein and Rougier (2005b). They also have access to a

large literature and a great deal of practical experience in diagnosing conflicts

between the prior distribution and the climate data, performing a sensitiv-

ity analysis with respect to key parameters in the prior distribution, software

testing to validate the performance of the climate simulator, and efficiently

implementing large-scale inferential calculations to get the best possible esti-

mator for P for a given budget of simulator evaluations. In all of these tasks

a much greater benefit is derived where statisticians are able to work closely

with climate scientists, because a large part of Statistics is about turning ex-

pert knowledge to one’s advantage.

A Appendix

A.1 Tractable gaussian calculations

The uncertain quantities x∗, ε∗ and e are taken to be mutually independent;

(ε∗, e) are gaussian with zero means and marginal variances Σε and Σe. The

value for P is given in (16). Based on (3) and (5), the likelihood function in

(16) has the form

Likz̃(x) = φ
(
z̃; Hg(x), Σz

)
(A1a)
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where φ(·; ·, ·) is the gaussian density function with given mean vector and

variance matrix, and

Σz , HΣεHT + Σe. (A1b)

The expectation in (16) has the form

E
(
1Q(y) | z = z̃, x∗ = x

)
=

∫
y∈Q

φ
(
y; µy|z(x), Σy|z

)
dy (A2a)

where

µy|z(x) , g(x) + ΣεHT
(
Σz

)−1(
z̃ −Hg(x)

)
(A2b)

Σy|z , Σε − ΣεHT
(
Σz

)−1
HΣε (A2c)

(see, e.g., Mardia et al., 1979, ch. 3). If the simulator has an output component

which corresponds directly to post-CO2-doubling global mean temperature

then the integral over the gaussian density function in (A2a) simplifies to an

evaluation of a tail probability for a scalar gaussian quantity with a given mean

and variance.

A.2 Quadrature with stochastic forcing

The idea is to use a carefully-chosen integration rule over the important inputs

x1 and a stochastic rule over the less important ones, x2, where x ≡ (x1, x2).

Algorithm A.1 provides a basic implementation, resulting in an approximation

of P , denoted P̂m,n, where the total number of simulator evaluations is m×n.

This approximation is a consistent estimate of P in the sense that

lim
min{m,n}→∞

P̂m,n = P .

The j loop in Algorithm A.1 is a simple monte carlo approximation to the
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Algorithm A.1 Quadrature with stochastic forcing algorithm for approxi-

mating P in m× n simulator evaluations

Require: x
(1)
1 , . . . , x

(m)
1 and w(1), . . . , w(m)

for i ∈ {1, . . . ,m} do

for j ∈ {1, . . . , n} do

Randomly sample x
(j)
2 ∼ Fx∗

2

Evaluate g
(
x

(i)
1 , x

(j)
2

)
Compute Lj , Likz̃

(
x

(i)
1 , x

(j)
2

)
using eq. (A1)

Compute Ej , E
(
1Q(y) | z = z̃, x∗ =

(
x

(i)
1 , x

(j)
2

))
using eq. (A2)

end for

Compute În

(
x

(i)
1

)
, 1

n

∑n
j=1 Lj

Compute Ĵn

(
x

(i)
1

)
, 1

n

∑n
j=1 Ej Lj

end for

Compute ĉm,n ,
[ ∑m

i=1 w(i) În

(
x

(i)
1

)
dFx∗

1

(
x

(i)
1

)]−1

Compute P̂m,n , ĉm,n

∑m
i=1 w(i) Ĵn

(
x

(i)
1

)
dFx∗

1

(
x

(i)
1

)
integral J

(
x

(i)
1

)
, defined in (17b). It could be improved in a number of ways, for

example using importance sampling or using variance reduction methods such

as antithetic variables (see, e.g., Ripley, 1987; Robert and Casella, 1999; Evans

and Swartz, 2000). The i loop integrates out x1 according to some specified

integration rule, summarised in the abscissae x
(1)
1 , . . . , x

(m)
1 and the weights

w(1), . . . , w(m). One natural choice would be an integration rule formed from

the product of deterministic one-dimensional rules, such as gaussian quadra-

ture. Another would be a space-filling design such as a latin hypercube (McKay

et al., 1979), or a quasi-random rule (Niederreiter, 1992); these types of design

are more appropriate in the case where the climate scientist has little knowl-

edge about which components of x1 are particularly influential in g(x1, x2).
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The approximation ĉm,n for c , Pr (z = z̃)−1 follows from

Pr (z = z̃) =

∫∫
x1×x2

Likz̃(x1, x2) dFx∗
1
(x1) dFx∗

2
(x2)

≡
∫

x1

I(x1) dFx∗
1
(x1)

≈
m∑

i=1

w(i) În

(
x

(i)
1

)
dFx∗

1

(
x

(i)
1

)
(A3a)

where

I(x1) ,
∫

x2

Likz̃(x1, x2) dFx∗
2
(x2) (A3b)

and În(x1) is a simple monte carlo approximation to I(x1).
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