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Abstract

We describe an approach, termed reified analysis, for linking the behaviour of math-
ematical models with inferences about the physical systems which the models pur-
port to represent. We describe the logical basis for the approach, based on coherent
assessment of the implications of deficiencies in the mathematical model. We show
how the statistical analysis may be carried out by specifying stochastic relation-
ships between the model that we have, improved versions of the model that we
might construct, and the system itself. We illustrate our approach with an example
concerning the potential shut-down of the Thermohaline Circulation in the Atlantic
Ocean.
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1 Introduction: Using models to study physical systems

Many physical problems are studied through the construction and analysis of
mathematical models. For example, our views about long term global climate
change are largely governed by the analysis of large scale computer simulations
for climate behaviour (see, e.g., Houghton et al., 2001, ch. 8). While such
analysis may be very revealing, it is also inherently limited, as even a good
model will only offer an imperfect representation of the underlying physical
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system. This discrepancy raises fundamental questions as to how we should
learn about actual physical systems through the analysis of models of the
system. These questions go to the heart of the philosophy and practice of
science (see, e.g., Cartwright, 1983; van Fraassen, 1989).

In this paper we treat our representation of the system as a function f(x). It
is helpful at this point to make a distinction between a model, its treatment
and its simulator, where it is the simulator that is the function f . Broadly, we
may think of this simulator as arising from

Simulator = Model + Treatment + Solver.

The model tends to be the underlying mathematical equations, often written
as a collection of differential equations, equations of state, and, when involving
several subdomains, coupling equations. The treatment typically concerns the
initial and boundary conditions and forcing functions that make the model ap-
plicable to a particular time and place. The treatment can also concern which
properties of the model are taken as outputs: e.g., steady state, ‘ergodic’ av-
eraging, or dynamic evolution subject to specified forcing. Finally, the solver
requires decisions about discretisation, in particular the order of the approxi-
mation and spatial and temporal resolution. This tripartite distinction would
not be necessary if there was a one-to-one correspondence between models
and systems. But when formulating a coherent framework linking models and
systems it is essential to acknowledge that there are many simulators for a
given system, and that these simulators share common features due to having
similar models, treatments and solvers. As we emphasise in this paper, we
cannot think about how our given simulator f is informative about a system
without also being prepared to think about how our simulator links to other
simulators of the same system.

In our simulator f we may consider the input vector x as representing those as-
pects of the model and treatment that must be quantified before the simulator—
typically represented as a computer code—will evaluate, and the output vector
f(x) to represent various features of the consequent behaviour of the physi-
cal system. For example, if f was a representation of an oil reservoir, then x
might include a detailed enumeration of the geology of the reservoir, involving
quantities such as local permeability and porosity of the rock structure, loca-
tion and magnitudes of fault lines in the reservoir, and so forth, while f(x)
might represent time series of oil and gas production and pressure profiles at
each of the wells in the reservoir (see, e.g., Thomas, 1982; Craig et al., 1997).
We do not know the geology of the reservoir, but we do have relevant prior
knowledge. Some of this knowledge may be derived from observations from
the system itself: we denote the system as y, and our observations of it (which
may be incomplete or imprecise) as z. For example, we might have partial
historical records of pressure readings and oil and gas production for some of
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the wells. The function f is often complicated and high-dimensional, and can
take several hours to evaluate for a single choice of input x, so that we must
view the value of f(x) to be unknown at each x apart from that relatively
small subset of x values, say X , {x(1), . . . , x(n)}, at which we choose to eval-
uate the simulator outputs to give F , {f(x(1)), . . . , f(x(n))}. Taken together,
S , (F ; X) is referred to as the ensemble of evaluations.

There are various statistical questions associated with such an approach. In
particular, what do the observation vector z and the ensemble S tell us about
x∗, the ‘correct’ value of x for the physical system? This is often termed
calibration. Further, what do the values {z, S} tell us about the value of the
system vector y? This is often termed system prediction. For example, for the
reservoir problem we may want to learn about the geology of the reservoir,
and we will usually want to forecast the future oil and gas production of the
reservoir under various management schemes.

To answer such questions, we must develop a joint probabilistic description
which links x∗, y and {z, S}; only in the case where the model, treatment and
solver are all perfect and the data plentiful and measured without error might
we be able to dispense with such a description, and treat the problem as a
deterministic inverse problem. There are two issues to consider. Firstly, we
need to construct a probabilistic specification of our beliefs for the function f .
This is often termed an emulator for the function. We may use this emulator
to update our beliefs about f when we observe the model evaluations S. While
this may be technically challenging if the form of f is complicated and high di-
mensional, the general principles of emulation are reasonably well-understood,
and there are many good references for the construction of effective emulators
(sometimes referred to as surrogates): see, e.g., Currin et al. (1991), Craig
et al. (1997, 1998), Kennedy and O’Hagan (2001) and the references therein,
and the review in Santner et al. (2003, notably chapters 2–4).

The second issue is the relationship between the simulator f and the actual
system behaviour y. This is far less well-understood and indeed is very often
ignored in the analysis of the simulator evaluations. Thus, the failure of the
simulator to reproduce historical data z is simply attributed to measurement
error in the data and to a general but unquantified recognition of the inher-
ent limitations of the approach. For example, while the analysis from global
climate simulators is used to urge major changes in policy, we do not know
of any treatment which has made a serious attempt to quantify uncertainty
for the discrepancy between the simulators and actual climate behaviour, al-
though probabilities are now being calculated which should depend on a care-
ful treatment of such discrepancies (see, e.g., Murphy et al., 2004). An analysis
of future climate that includes the phrase “. . . conditional on the model (or
the simulator) being correct” is not acceptable given the enormity of the con-
sequences of an incorrect analysis, and the costs involved in adapting to or
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mitigating the problems of rapid climate change. Rougier (2005) discusses
statistical issues in model-based predictions for future climate.

This paper is concerned with the logical framework within which a proper
uncertainty analysis may be conducted. In section 2 we begin by describing
the current ‘state-of-the-art’ for representing the relation between the simu-
lator and the underlying system, and show that this is often incoherent and
incomplete in situations where there is the potential for improved versions of
the simulator. Section 3 describes the general form of our approach, which
we term reified analysis, and section 4 describes an implementation using
linked emulators. The following sections carry out a reified analysis for an
example concerning prediction of the potential shutdown of the Thermoha-
line Circulation in the Atlantic Ocean. The example is presented in section 5,
the statistical modelling in section 6 and the results in section 7. The paper
finishes with a brief summary in section 8.

2 Coherence issues in the Bayesian treatment

Much of the work on incorporating the uncertainties arising from simula-
tor inadequacy (also referred to as structural error) has been carried out in
the context of the current Bayesian treatment of computer code analysis; see
Kennedy and O’Hagan (2001), Craig et al. (2001) and Higdon et al. (2005).
In this treatment, we express simulator inadequacy through a relation of the
form

y = f(x∗) + ε (1)

where ε is a random vector, termed the discrepancy, which is taken to be
probabilistically independent of both x∗ and the function f , which we denote
by ε ⊥⊥ {x∗, f}. In Goldstein and Rougier (2005b), a simulator for which
our judgements obey (1) is termed a ‘direct simulator’. Sometimes, minor
modifications are made to (1), for example introducing a scalar regression
multiplier on f(x∗), but such modifications do not affect our discussion below.
The magnitude of the variances of the components of ε corresponds to beliefs
about how well the simulator represents the corresponding components of
the physical system, and the covariance structure of ε expresses our beliefs
about the relationships between the discrepancy terms. For example, in the
hydrocarbon reservoir example, if the simulator substantially under-predicts
pressure at a particular well for a sequence of time periods, is it likely that
the simulator will similarly under-predict pressure for the next time period?
In simulators where the output components are spatially and/or temporally
indexed, we would expect the off-diagonal elements of Var (ε) to reflect this
structure: Craig et al. (2001, sec. 6.1) give an example.

This approach recognises and quantifies simulator inadequacy. It has no ob-
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vious obvious competitors within a well-specified probabilistic framework, al-
though the pressing need for calibrated simulators has spawned ‘probability-
like’ approaches in particular application areas, e.g. Generalised Likelihood
Uncertainty Estimation (GLUE) and its extensions in Hydology (Beven and
Binley, 1992; Beven, 2005). However, it does run into difficulties. Observe that
(1) implies that all of the information about y that is contained in knowledge of
the value of x∗ and the function f may be summarised by the single function
evaluation f(x∗). This is a questionable assumption on two counts. Firstly,
why should we judge—for our imperfect simulator—that there is any single
best value in the simulator parameter space X for which we consider f(x∗) to
be sufficient for x∗ and f in predicting y? Secondly, if there were such a single
value x∗, why should that value be the value that we would measure in the
system independently of the simulator? The simulator is usually constructed
by simplifying the physics of the system (both in the model and the treatment)
and approximating the solutions of the resulting equations. Therefore, there
may only be an indirect relationship between the parameters of the simula-
tor and the corresponding aspects of the physical system which the simulator
purports to represent. Values of x other than the ‘correct’ one may lead to
closer correspondence between the simulator and the physical system, and so
to better predictions.

In practice, modellers often seem to take two somewhat contradictory posi-
tions about the status of the simulator’s best input, on the one hand arguing
that it is a hypothetical construct and on the other hand using knowledge and
intuition derived from the physical system to set plausible intervals within
which such a value should lie. Ocean simulators provide a well-documented
example of this, where it is necessary to distinguish between molecular viscos-
ity, the correct input value according to the underlying physical model, and
eddy viscosity, the ‘best’ input value which can be several orders of magnitude
larger (see, e.g., National Research Council (NRC), 1994, p. 171). However, it
is hard to see why we should have any confidence in the ability of the simulator
to forecast future system behaviour unless there is some relation between the
values of the inputs to the simulator and the actual physical values for the
system.

Therefore, a relation such as (1) oversimplifies our beliefs, as we would gener-
ally expect that knowledge of the function f(x) for a range of values for x would
provide additional information beyond that expressed by f(x∗). However, it is
far from obvious how such information should be represented. Further, hav-
ing oversimplified our statistical framework, we find it very hard, in practice,
to develop a sensible collection of elicitation questions in order to formulate
meaningful beliefs about the variance of the discrepancy.

Such difficulties lead us to consider whether using (1) to link our particular
simulator and the system may often be inconsistent with our wider beliefs.
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In particular, we will often be able to envisage the thought experiment of
constructing an improved simulator, f ′ say, which respects the behaviour of
the physical system more closely than does f , for example by using the same
model and treatment, but taking more care in the numerical solution of the
underlying equations on a finer discretisation in space and time. If we accept
(1) for f , then we should presumably accept a similar relation for the bet-
ter simulator f ′, possibly with a different choice of best input value, x∗′ say.
Therefore, in this case we would simultaneously have

y = f(x∗) + ε ε ⊥⊥ {x∗, f} , (2a)

and y = f ′(x∗′) + ε′ ε′ ⊥⊥ {x∗′, f ′} . (2b)

Now we can express precisely the notion that f ′ is better than f in the form
of the sufficiency condition

f ′ � f ⇐⇒ y ⊥⊥ {x∗, f} | {x∗′, f ′} (3)

where ‘�’ denotes ‘is at least as good as’. In other words, if we knew {x∗′, f ′}
then {x∗, f} would provide no additional information about y. Modellers usu-
ally agree that the only advantage of older models (e.g., those with lower
resolution) is their shorter evaluation times on current equipment. Eq. (2)
and condition (3) imply that ε′ ⊥⊥ {x∗, f}. From (2), we may write ε′ ≡
f(x∗) − f ′(x∗′) + ε, and it follows that (2) and (3) imply that

f ′(x∗′) − f(x∗) ⊥⊥ {x∗, f} . (4)

But this implication is often counter-intuitive in practice. In many applica-
tions, we would expect that knowledge of x∗ would be informative for the
value of x∗′ and that knowledge of f would be informative for the form of f ′,
so that knowledge of x∗ and f would be informative for f ′(x∗′), and so for
f ′(x∗′) − f(x∗).

To clarify the judgements involved, let us consider a simple case. We have
a function with a scalar input and output, and the true value x∗ has a well-
defined physical meaning. Suppose that, for the true function, f ′, we do accept
relation (1), i.e. y = f ′(x∗) + ε′, with ε′ independent of {f ′, x∗}. However,
suppose that it is expensive to evaluate f ′ for any x, so we produce a fast
approximate solver, giving an approximate function f . Suppose that, from
analysing many similar simulators, we consider that our beliefs about f may
be represented as

f(x) = b x + u(x) (5)

where b is an unknown constant, and u(x), independent of b, may be viewed
as the realisation of a stationary stochastic process in x with specified mean
and covariance functions. The question at issue is whether, and when, we may
also write y = f(x∗) + ε, with ε ⊥⊥ {f, x∗}? This property follows when our
judgement is that, at an arbitrarily chosen x, the quantity ∆(x) , f ′(x)−f(x)
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is independent of {x, u(x), b}, in which case our model for the true function
would be

f ′(x) = b x + u′(x) (6)

where u′(x) = u(x) + ∆(x), with u(x) and ∆(x) viewed as realisations of
independent stationary processes in x. Comparing (5) with (6), we see that
the condition that we require is that, in our judgement, the difference between
f and f ′ is unstructured, effectively downweighting the role of the regression
term bx in determining f ′. We might make such a judgement if we consider that
the regression structure that we expect to observe in f is partially an artefact
of the simplifications induced in the fast solver for the equations. However, if
we consider that the regression structure uncovered in (5) is informative for
the regression structure in f ′, then it may be more natural to replace (6) with

f ′(x) = b′x + u′(x) (7)

where b and b′ are correlated and u′(x) is a stationary process independent of b′.
With this specification, knowledge of b and x∗ is informative for f ′(x∗)−f(x∗),
so that property (1) for f ′ is no longer consistent with the corresponding prop-
erty for f(x∗). In summary, it is natural firstly to impose requirement (1) on
the more accurate function, and then to make a scientific judgement about
the relation between the two functions to determine whether the requirement
is also appropriate for the approximate function. In the above example, if our
judgement supports relation (6), then what we gain from considering f ′ is
a natural way to decompose the variance of ε into two independent compo-
nents, one component representing inaccuracies arising from simplifications in
the solver, and the other representing simplifications in the representation of
the system by f ′. However, if our judgement supports relation (7), then, in
addition, introducing f ′ allows us to give a much more precise description of
the relation between evaluations of f , the value of x∗ and the system value
than we could otherwise meaningfully construct.

Such considerations show that, far from being independent of f and x∗, the
discrepancy vector ε in eq. (1) for our actual simulator very often has a compli-
cated joint distribution with these quantities, so that in such cases we cannot
consider that ε ⊥⊥ {x∗, f}. Therefore we are required to specify a joint distri-
bution for {ε, x∗, f}, or else to admit a restictive and often counter-intuitive
form for our beliefs about our simulator with respect to an improved version.
It is not easy to see how to specify this joint distribution as it stands, let alone
in a form which is tractable for subsequent analysis for large systems.

In the above illustration, f ′ is any possible better simulator. In important
practical problems we will often have access to several actual simulators for
the system. For example, there are a wide range of climate simulators which we
may consult in forming views on long term climate behaviour, with different
levels of accuracy and overlapping but not identical parameter spaces which
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arise from sharing some aspects of the underlying models and treatments.
If we wish to use a representation of form (1) to integrate the information
from each simulator analysis, then we must specify a version of (1) for each
simulator, and then attempt to construct a joint belief specification over the
discrepancy terms for each simulator. However, if we have misrepresented our
beliefs for each individual simulator, then we have no obvious way to synthesise
the collection of different simulator evaluations.

Therefore it is necessary that we formulate a coherent framework for our beliefs
which accurately express the relationships which it is reasonable for us to
hold when seeking to reconcile evaluations from a collection of simulators
with beliefs about the physical system. In Goldstein and Rougier (2005b) we
introduced an alternative view of the relation between simulators and physical
systems based on extending the formulation described above. This clarifies our
notion of the best input to the simulator, avoids the potential incoherence of
representation (1), and offers a systematic approach for synthesising collections
of simulator analyses. We shall term this alternative approach reified analysis.
To ‘reify’ is to consider an abstract concept to be real. In our context, therefore,
a reified analysis is the statistical framework which allows us to move our
inferences from the abstract notion of the mathematical model to the real
notion of the physical system, via one or more simulators. In what follows,
we develop a general approach for reified analysis, and then illustrate this
approach with an example in ocean modelling.

3 General form of the reified analysis

We now describe our approach for linking one or more simulators with the
underlying physical system. The sections that follow provide an illustration of
our approach.

3.1 The reified simulator

Suppose that we have a single simulator f . We might make the judgement
that f could be treated as a direct simulator, for which relation (1) would be
appropriate. However, in the preceding section, we observed that (1) might be
undermined if we could envisage an improved simulator f ′ which would better
represent the physical system. If we replace relation (1) with (2b), then we have
just moved the problem to the analysis of f ′ as we may now consider a further
improved version of f ′, f ′′ say, and repeat this thought experiment. Therefore,
to link the simulator and the physical system, we need to consider a version
of the simulator with enlarged set of inputs, f ∗(x, w) say, which is sufficiently
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careful in respecting the physics of the system and which solves the resulting
system of equations to a sufficiently high order of accuracy that we would not
consider it necessary to make judgements about any further improvement to
that simulator, in the following sense. If we consider a further improvement,
f ∗∗(x, w, v) say, then we have no physical or mathematical insights as to how
f ∗∗(x, w, v) may differ from f ∗(x, w), so that f ∗∗(x, w, v) − f ∗(x, w) consists
entirely of variation independent of {f ∗, x∗, w∗, v∗}.

Due to the high accuracy of f ∗, it is credible to attribute to f ∗ the correspond-
ing property to (1), namely

y = f ∗(x∗, w∗) + ε∗ ε∗ ⊥⊥ {f, f ∗, x∗, w∗} (8)

where w∗ is the system value for the additional variables in the enlarged in-
put space for f ∗, and ε∗ is the residual discrepancy between our improved
simulator and the system. We judge ε∗ to be independent of f ∗ and {x∗, w∗},
as we have removed the cause of our beliefs about any such dependency. We
similarly view ε∗ as independent of f . We term f ∗ the reified simulator for f .
In most cases, we do not expect to be able to construct f ∗ and evaluate it.
Rather the reified simulator is a construct that permits us to offer a coher-
ent and tractable account as to how evaluations of our actual simulator, and
partial knowledge of the physical quantities corresponding to the simulator
inputs, may be combined to give a meaningful probabilistic description of the
behaviour of the physical system. The ensemble S (i.e., the evaluations of our
actual simulator) is informative for the general form of f and so for the form
of f ∗. Partial knowledge about {x∗, w∗} translates through (8) into partial
knowledge about the value y for the physical system. We summarise this as
follows.

Reifying Principle: The reified simulator separates our actual simulator
from the underlying system, as expressed in (8). Our actual simulator is
informative for the underlying system because it is informative for the reified
simulator.

As in our regression example above, when we express our scientific judgements
concerning the relationship between f and f ∗, we might decide that f also
satisfies (1). This case may simplify the subsequent analysis but otherwise it
has no special status.

3.2 Discussion of the Reifying Principle

We formulated the reifying principle because of our experiences in trying to
link computer simulator analysis with the performance of physical systems.
The leading tractable Bayesian approach for relating the simulator and the
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system was to assume some version of the direct simulator property expressed
by (1). However, in many cases, we saw no compelling scientific reason to
adopt this property. Further, in our discussions with statistically numerate
system experts, we found a similar reluctance to consider their uncertainties
to be well represented by the direct simulator formulation. In particular, there
was strong disagreement with an implication of (1), namely that there exists
an input x∗ such that, were it to be known, only a single evaluation of the
simulator would be necessary.

In section 2, we showed that our attitude to potential deficiencies in our sim-
ulator can have an important role in determining whether we may coherently
use the direct simulator formulation in any particular application. Therefore,
it seems natural to consider how different our analysis would be if we were to
improve our simulator in various ways. Of course, it is a matter of judgement
as to the level of detail to which this further elaboration should be taken. Fur-
ther, we are reluctant to abandon completely the direct simulator property,
as, particularly for large computer simulators with many inputs and outputs,
some version of this assumption is important for the tractability of the Bayes
analysis. Therefore, our suggestion is that the modeller should assess those fea-
tures which are judged most important in improving simulator performance,
both by more realistic modelling and by more careful solution methods. This
leads us to consider a simulator, which we term the reified simulator, for which
there are no substantial improvements that we can currently envisage of a kind
such that we would currently wish to impose additional structure on the dif-
ference between the outputs of the two simulators. Therefore, we will be able
to accept the direct property for the reified version of the simulator, without
introducing obvious conflicts between the model and our underlying beliefs.

Sometimes, it will be straightforward to define operationally the form of the
reified simulator; for example, we might be able to reify our simulator simply
by improving its solver for the same underlying mathematical model. In other
cases, because of the complexity of the system, we may not wish to carry out
the difficult conceptual exercise of fully detailing the reified form. In such cases,
we may instead identify some of the most important features of the improved
simulator, and then add some extra variation to account for the remaining
differences between the simulators; we follow this path in the example that we
analyse below. In all cases, the attempt to make a genuine representation of
our uncertainties about the system will be of value, although, of course, the
more carefully we consider the effects of simulator deficiencies, then the more
benefit we will gain in specifying meaningful beliefs relating the simulator to
the system.

We consider the reifying principle to be a sensible pragmatic compromise,
which retains the essential tractability in linking our computer evaluations
with the true system values to generate beliefs about system behaviour, re-
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moves certain obvious difficulties in other approaches by recognising and in-
corporating uncertainties arising from perceived deficiencies in the simulator,
and provides a clear rationale for the joint modelling of the results of the anal-
ysis of several related simulators for the system. However, we are not dogmatic
in advocating this principle. If modellers wish to use their simulator to make
substantive statements about the underlying system, then it is incumbent on
them to provide a clear rationale for the probabilistic judgements that they
are using to link these, in principle, quite different things. We would be very
interested to see any alternative methods for building a meaningful framework
within which these linking judgements are naturally coherent, and which lead
to tractable Bayesian analyses even for large systems.

Whichever approach we adopt, we should be prepared to invest a serious effort
into the analysis of simulator discrepancy. For example, climate simulators
can take years to model and program, the data used to calibrate the models
is costly and time consuming to obtain, and each evaluation of the simulator
may cost many thousands of pounds, and take months. The climate community
must therefore consider whether all this activity and expense is an end in itself,
or whether the ultimate intention of all this effort is to make statements about
the future behaviour of actual climate systems. Certainly, climate experts
convey the impression that their models are informative for actual climate
outcomes. However, if the intention is to make a realistic assessment as to
how uncertain we should be about future climate behaviour, then this requires
an effort of similar magnitude to each other aspect of the analysis, both to
recognise and model all of the sources of uncertainty dividing our simulators
from the system and also to quantify the magnitude of each such uncertainty.
The reifying principle offers a more complete general description of the relevant
uncertainties than any other formulation of which we are aware. However, in
any particular application, the principle may oversimplify certain aspects of
the discrepancy modelling, and we look forward to approaches that go beyond
our formulation without sacrificing essential tractability.

Adoption of our suggested approach raises interesting methodological ques-
tions for the resulting analysis. In particular, it is possible—at least partially—
to validate our uncertainty assessment for any given computer simulator, al-
though for high dimensional simulators for which each evaluation is very costly,
much of the quality of our uncertainty assessment will depend on the quality
of the underlying scientific judgements. However, there is no prospect of even
a partial validation of the uncertainty assessment for the additional simulators
that we introduce to link our actual simulator with the system. In this sense,
the additional simulators should be viewed as useful mental constructs which
help us to relate our actual simulator evaluations to the physical system. The
role of these constructs is to build meaningful joint beliefs between the system
properties, the system performance and the simulator evaluations. Therefore,
the relevant validation is to assess whether this joint specification is supported
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by our observation of the historical behaviour of the system. Different formu-
lations for the implementation of the reified analysis result in different joint
probabilistic specifications over the observables, and these may be compared
by a variety of standard Bayesian approaches to see which, if any, versions of
our formulation are supported by the historical data; see Goldstein (1991) for
a particular method for comparing alternative belief specifications which is ap-
propriate when we focus mainly on competing mean, variance and covariance
specifications.

Using our reified approach has implications for certain standard types of com-
puter analysis. For example, there is a lot of interest in calibrating computer
simulators. If the motivation for calibration is to learn about actual system val-
ues, or to predict future system performance, then, as our approach provides a
joint description of beliefs about all of the relevant quantities, a Bayesian anal-
ysis provides a natural replacement for traditional calibration analyses, based,
for example, on finding a single “best fit” value for the simulator inputs, which
will be superior if our assessment provides a more realistic representation of
the uncertainties in the problem. If we accept the reified form, then it is not
immediately clear what it would mean to calibrate our original simulator. Sup-
pose that our intention is simply to find a setting for the inputs for which the
simulator outputs match reasonably closely to historical data and for which
we have a reasonable degree of confidence in the predictions made at this
input choice for future system behaviour. As we have a full description of un-
certainty, we may therefore solve the optimisation problem of identifying the
input value which minimises the difference between the simulator output and
the system behaviour in some appropriate probabilistic metric. This provides
a form of model calibration with an assessment of fit quality. Searching the
full input space for the best match would be enormously computer intensive.
However, we would expect the best match to be close to the true system val-
ues, so that we would be able to provide an informative measure on likely
values for the best match to direct the search.

4 Reified analysis using emulators

4.1 The simplest case

Consider the case of a single actual simulator f and corresponding reified
form f ∗. We describe our beliefs about f in terms of an emulator, represented,
for a second-order analysis, as a mean function for every x and a variance
function for every (x, x′) pair. These two functions may be specified directly,
or they may be inferred from a more primitive specification. A common form
for constructing the emulator using the latter approach is to combine both
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global and local effects: the ith component of f(x), a scalar value denoted
fi(x), is expressed as

fi(x) =
∑

j

βij gj(x) + ui(x) (9)

(see, e.g., Santner et al., 2003, section 2.3). In this relation, the gj(·) are known
functions of x, where for simplicity we have chosen the same regressor functions
for all i. The regression coefficients C , {βij} are unknown coefficients, so
that the summation term represents those aspects of our beliefs about fi(x)
which can be expressed through a simple global regression on appropriately-
chosen functions of the inputs. The quantity ui(x), which we term the emulator
residual, is usually taken to be a priori independent of the βij values, and
expresses beliefs about local variation away from the global regression at point
x; ui(·) is usually taken to be either a weakly stationary process or a stationary
Gaussian process, depending whether we intend to carry out a second-order
analysis or a full probabilistic analysis; note that we do not take u(·) to be
stationary in our illustration below, for reasons outlined in section 6.1. We
must assign a covariance function for the vector process u(·).

If the dimension of the input vector x is very high, then this approach to
emulator construction is most successful when, for each output component i,
there are a relatively small number of regressors which account for much of the
variability of fi(x) over the range of x values. These functions can be identified
by a combination of expert elicitation, based on understanding of the physics
of the system, and a careful choice of evaluations of the simulator, which allows
us to assess the most important of these effects. Design and elicitation issues
are discussed in, e.g., McKay et al. (1979), Sacks et al. (1989), Koehler and
Owen (1996), Craig et al. (1998), and Oakley (2002); the general principles
of Bayesian experimental design are also relevent (see, e.g., Chaloner and
Verdinelli, 1995).

Having constructed an emulator for f , one possible approach to reification is
to consider how this emulator might be modified to emulate f ∗. Suppose that
we judge that there are qualitative similarities between f and f ∗; if we did
not consider f and f ∗ to have any such similarities, then it is hard to see what
information about the physical system could be obtained by evaluating f . A
natural way to express this similarity would be to express our emulator for f ∗

as
f ∗

i (x, w) =
∑

j

β∗

ij gj(x) +
∑

j

θ∗ij hj(x, w) + u∗

i (x, w); (10)

where we write the collection of regression coefficients in the reified emulator as
C∗ , {{β∗

ij} ∪ {θ∗ij}}. The summation term in the θ∗ij is introduced to account
for additional systematic variation in the enlarged input space. Unless we
have specific views to the contrary, we may construct this term to represent a
source of variation uncorrelated with the variation accounted for in f so that
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each hj(·) is orthogonal with each gj(·) according to our prior specification
for {x∗, w∗}, and the θ∗ij quantities are likewise uncorrelated with the other
coefficients. Therefore, the relationship between f and f ∗ is contained in the
relationship between the βij and the β∗

ij coefficients for each emulator, and
between u(x) and u∗(x, w). Examples of how we might treat these relationships
are given in our illustration in sections 6.2 and 6.3.

The overall effect of this type of approach is to impose an appropriate struc-
ture on our beliefs about the discrepancy between the actual simulator f and
the behaviour of the system, y. This discrepancy is divided into (i) a highly
structured part reflecting our beliefs about the effects of more detailed con-
siderations designed to improve the accuracy of f , and (ii) a possibly less
structured part reflecting our views as to the absolute limitations of the type
of simulator represented by f .

4.2 Inference using the reified analysis

Given the above specification, our inferential calculations are, in principle,
straightforward. The ensemble S is informative for the coefficients C and the
residual function u(·) in the emulator for f , (9). This information modifies our
beliefs about C∗ and u∗(·), and thus modifies beliefs about f ∗ through (10).
These modified beliefs are combined with our assessment of {x∗, w∗} and ε∗ to
derive beliefs about the system value y, using (8). Deriving beliefs about y in
this way (i.e. by propagating uncertainty through a simulator, possibly via an
emulator) is known as uncertainty analysis (see, e.g., Haylock and O’Hagan,
1996; O’Hagan et al., 1999).

We may also want to incorporate information from observations made on
the system, denoted z. In general we can write these observations as z =
H(y) + e for some known function H(·), where e denotes a vector dominated
by observation errors, taken to have mean zero (for simplicity) and to be
independent of all other uncertain quantities. For a general H(·) we would
create new simulator outputs which we would then emulate directly. In the
special case where H(·) is a linear transformation we can proceed with an
emulator for g(·). This is appropriate for our illustration below, and so we
express the transformation in terms of the incidence matrix H, writing

z = Hy + e H specified, e ⊥⊥ all other quantities. (11)

Often we can arrange for z and components of y to correspond one-to-one,
but this form also includes the case where the data and the system, the latter
structured according to the simulator output, do not match-up precisely, and
interpolation or averaging is required. With (11), we have a joint belief speci-
fication for {y, z}, and we can update our beliefs about y using the observed
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value for z, namely z̃.

We can represent the relationship between our data {z, S} and our prediction
y in terms of a Bayesian belief network (BBN) (see, e.g., Cowell et al., 1999):

S

C //_______

��

f

OO�
�

�

uoo_ _ _ _ _

��
C∗ //______ f ∗

���
�

�
u∗oo_ _ _ _ _

{x∗, w∗} //___ f ∗(x∗, w∗) //___ y //___ z

ε∗

OO�
�

�

e

OO�
�

�

(12)

‘Child’ vertices that are strictly determined by their ‘parents’ are indicated
with dashed lines. Therefore the probabilistic modelling in this BBN involves
specifying the independent marginal quantities C, u(·), {x∗, w∗}, ε∗ and e, and
the conditional quantities C∗ | C and u∗(·) | u(·).

For our inferences below, we adopt the approach of Craig et al. (2001). This
approach is based on a second-order specification for the emulators and the
link between the emulators, the system and the system observations. Craig
et al. propose a two-stage approach. For the first stage, the mean and vari-
ance of f ∗(x∗, w∗) are computed by integrating {x∗, w∗} out of the emulator
for f ∗. According to our reified approach, this emulator is constructed by
building a joint emulator for {f, f ∗}, then updating this joint emulator using
the ensemble S, and then marginalising the result to infer the emulator for
f ∗. For the second stage, the mean and variance for f ∗(x∗, w∗) are used to
construct the joint mean and variance for the collection {y, z}; then beliefs
about y are adjusted using the observed value z = z̃. A more detailed analysis
of this approach is given in Goldstein and Rougier (2005a).

The Bayes linear approach describes the appropriate adjustment for a second-
order prior specification; see, e.g., Goldstein (1999). Denote the mean and
variance of f ∗(x∗, w∗) as µ and Σ respectively. Then, using (8) and (11), the
Bayes linear adusted mean and variance for y given z = z̃ are

Ez̃ (y) = µ + Vy HT (HVy HT + Ve)
−1(z̃ − Hµ) (13a)

Varz̃ (y) = Vy − Vy HT (HVy HT + Ve)
−1HVy (13b)

where Vy , Var (y) ≡ Σ + Var (ε∗), and Ve , Var (e). In general we can make
this calculation scale more-or-less costlessly in the number of simulator in-

15



puts and outputs, by choosing regressor functions in the emulators that are
orthonormal with respect to a weighting function proportional to the prior
distribution of {x∗, w∗}; in this way the integration over {x∗, w∗} reduces the
regressor functions to 0s and 1s. A similar approach using orthonormal re-
gressors is described in Oakley and O’Hagan (2004).While this scalability is
crucial for large applications, for our illustration below we will use simple
non-orthonormal regressor functions for clarity, and perform the integration
numerically.

4.3 Structural reification

Our formulation is intended to offer the maximum flexibility to the analyst
to consider the structure of beliefs relating our actual simulator to its reified
counterpart, and to the system. Much of this structure will derive from specific
improvements which we might consider building into our simulator. Our beliefs
about the impact of specific modifications, which we term structural reification,
form an important part of our specification relating the emulators for f and
f ∗, as they directly reflect on our beliefs about the relative strengths and
weaknesses of f as a representation of the physical system.

One natural thought experiment for the modeller is to consider f to be em-
bedded in a larger simulator f ′, in the sense that inputs to f ′ are (x, v), where
there is some set of values in v, V0 say, for which f ′ replicates f , so that, for
each x,

f(x) = f ′(x, v0) v0 ∈ V0. (14)

We call f ′ with this property a generalisation of f ; it represents the simplest
form of structural reification. If our emulator for f is built as (9), then a simple
way to build the emulator for f ′ while respecting constraint (14) is to create
an emulator for f ′ ‘on top’ of that for f :

f ′

i(x, v) = fi(x) +
∑

j

β+
ij g+

j (x, v) + u+
i (x, v) (15)

which has additional regressors g+(·), and an additional residual u+(·); neces-
sarily g+

j (x, v0) = 0 and u+
i (x, v0) = 0 for v0 ∈ V0. We write C ′ , C ∪ {β+

ij} for
the combined set of coefficients in the generalised emulator. The additional
terms in (15) cause the emulator for f ′ to deviate from that for f when v 6∈ V0.
We may choose to treat these additional terms independently of C and u(·),
but it seems more natural to link them together. We will illustrate this in
section 6.2.

Now we consider how we might join f , f ′ and f ∗ in the case where f ′ is a
generalisation of f . In this case we must ensure that the joint structure of
the three emulators satisfies the markov property that f ′ separates f and
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f ∗, because f ′ encapsulates f in its entirety. A simple way to enforce the
markov structure across our emulators is to have C ⊥⊥ C∗ | C ′, and u⊥⊥ u∗ | u′.
We can illustrate the joint structure of the three emulators in a BBN which
extends (12):

S
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���
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�

�
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�

�
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��>
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>
>

>
>

>
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}

//_____ C ′ //________

��
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��
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���
�

�
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{x∗, v∗, w∗} //___ f ∗(x∗, v∗, w∗) //___ y //____ z

ε∗

OO�
�

�

e

OO�
�

�

(16)

In the limit as v → V0, C ′ tends to C and u′(x, v) to u(x); at which point we
are back at (12).

The BBN in (16) is a template for the way in which information from the en-
semble S gets passed to the system value y via the simulators, and in particular
via the regression coefficients and the residual processes in the emulators. We
control the passage of information according to our judgement of how similar
the three simulators are. Specifically, our choices for the conditional distribu-
tions {β+

ij}|C and u+(·)|u(·) quantify our judgement regarding the relationship
between f and f ′, and our choices for C∗ | C ′ and u∗(·) |u′(·) do the same for f ′

and f ∗. A natural metric for the size of the distances between the simulators
is the mean variances of the differences

∆′ , E

(

Var (f ′(x∗, v∗) − f(x∗) | x∗, v∗)
)

and ∆∗ , E

(

Var (f ∗(x∗, v∗, w∗) − f ′(x∗, v∗) | x∗, v∗, w∗)
)

;
(17)

these can be compared with the discrepancy variance, which gives us the
distance between f ∗(x∗, v∗, w∗) and y:

Var (ε∗) = E

(

Var (y − f ∗(x∗, v∗, w∗) | f ∗, x∗, v∗, w∗)
)

,

as ε∗ ⊥⊥ {f ∗, x∗, v∗, w∗} and E (ε∗) = 0.
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4.4 Many simulators

The reified approach is flexible enough to be extended to the situation in which
we have more than one actual simulator; e.g., where we have two ensembles
S and S ′, where S ′ may be from the simulator f ′ described in the previous
subsection, or S ′ may be from another simulator entirely, sharing only limited
aspects of the underlying model and treatment. For example, in climate pre-
diction we can predict system features such as climate sensitivity to a doubling
of atmospheric CO2 using recent observations on the climate state vector, or
using palæo-climate data collected from sources such as sedimentary pollen,
fossiled trees and ice-cores. We must combine these two sources of information
coherently in a manner that takes account of the features that the palæo and
contemporary simulators share.

At a formal level, the extension to two or more ensembles from different sim-
ulators requires us to join extra vertices like S ′ to the appropriate quantities
in the belief net describing the joint relationship between the simulators. We
envisage the reified simulator to be accurate enough that we judge it to be suf-
ficient for the collection of actual simulators, so that ε∗ in (8) can be treated as
independent of that collection. The practical details involved in this joint spec-
ification and analysis may be challenging, particularly if f ′ does not separate f
and f ∗, but we know of no other general, tractable approach for meaningfully
unifying the analyses derived from a collection of simulators with overlapping
parameter spaces.

4.5 Model design

Our structured reification involves consideration of a particular generalised
simulator f ′. As we have constructed the joint belief specification over the
collection (f, f ′, f ∗) we may evaluate the benefit that we should expect from
actually constructing and evaluating f ′. We call this assessment model design.
Model design has a similar role to that of experimental design. In experimen-
tal design, we evaluate the potential for various experiments to reduce our
uncertainties for unknown quantities of interest. Such analyses are invaluable
in helping us to make efficient use of our limited resources, and in particular
in warning us against undertaking experiments which are highly unlikely to
achieve our objectives.

Model design has a similar purpose. Constructing and evaluating a large-scale
simulator is an extremely time-consuming activity. Therefore, it is very impor-
tant to develop analytical tools which will guide our judgements concerning the
ability of such simulators to reduce our uncertainty about important features
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of the underlying system. However, while there is an enormous literature about
experimental design, we know of no systematic methodology which serves a
comparable function for the construction of simulators of physical systems.
Structural reification does offer such a methodology, which we illustrate in the
context of our example in section 7.3.

5 Example: Thermohaline Circulation in the Atlantic

In this section we describe a physical system, the inference that we wish to
make about it, a simulator that is informative for that inference, and the
structural reification that we use to link our actual simulator and the system.

5.1 The Thermohaline Circulation

The system is the Thermohaline Circulation (THC) in the Atlantic Ocean. The
THC is the mechanism by which heat is drawn up from the tropics towards the
western seaboard of Europe. At the moment there is concern about the effect
of global warming on the THC, because changing temperature and precipi-
tation patterns will alter the temperature and salinity characteristics of the
Atlantic. The extreme case is THC shutdown, which could significantly lower
the temperature of the western seaboard of Europe. One important quantity
in the Atlantic is the amount of freshwater re-distribution that would cause
this shutdown to occur. This is the quantity that we wish to predict, and to
assist us we have data on other aspects of the Atlantic, namely its temperature
and salinity, and the current size of the THC.

5.2 The basic model

We base our analysis on the recent paper by Zickfeld et al. (2004), hereafter
‘zsr’. The zsr model of the Atlantic is a four-compartment Ordinary Differ-
ential Equation (ODE) system, shown schematically in Figure 1. Each com-
partment is described by its volume and its depth. The state vector comprises
a temperature, Ti(t), and salinity, Si(t), for each of the four compartments.
Freshwater re-distribution is modelled by the two parameters F1 and F2, and
atmospheric temperature forcing by the three parameters T ∗

1 , T ∗

2 and T ∗

3 .

The key quantity in the model is the rate of meridional overturning, m(t),
which is the flow-rate of water through the compartments and proxies the
THC. Overturning is assumed to be driven linearly by temperature and salinity
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Fig. 1. A compartmental model of the Atlantic, as described in Zickfeld et al. (2004).
Arrows indicate the direction of positive flow.

differences between compartments 1 and 2,

m(t) = K
{

β[S2(t) − S1(t)] − α[T2(t) − T1(t)]
}

(18)

where α and β are thermal and haline expansion factors, and K is an empirical
flow constant. Hence m(t) tends to be bigger at times when the ‘northern
Atlantic’ is colder and more salty than the ‘southern Atlantic’. Large values
of F1 make the ‘south Atlantic’ more salty, and tend to reduce m(t).

The rest of the model comprises an ODE system to ensure the conservation
of temperature and salinity in the evolution of the state vector through time.

5.3 Our treatment of the model

We can treat the zsr model in a number of different ways. Here we consider
an aspect of its equilibrium properties, where by ‘equilibrium’ we mean the
steady state with all model parameters specified and time-invariant. For a
given value of the parameters we can compute the equilibrium value of the
state vector, and the equilibrium value for m; these equilibrium values are
indicated with an ‘eq’ superscript. We can also find the value of F1 at which
equilibrium overturning collapses to zero, denoted F crit

1 ; this is clarified after
eq. (21). The value of F crit

1 is of particular interest because the current value
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of F1 is thought to be close to F crit
1 . If it is under F crit

1 then the impact of
an increasing F1 on the THC is reversible. But if it goes beyond F crit

1 then
the THC, once collapsed, cannot easily be restarted by reducing F1 (as shown
in zsr, Figure 2). This hysteresis in the THC was noted by Stommel (1961),
and is one of the mechanisms by which gradual changes in climatic forcing,
due to global warming, might bring about abrupt and, on centenial scales,
irreversible changes in regional climate.

This treatment maps the parameters into 8 quantities (we will not need the
temperature and salinity values for compartment 4). We follow zsr in fixing
all but five of the parameters, treating only T ∗

1 , T ∗

2 , T ∗

3 , Γ and K as uncer-
tain (the Γ parameter appears in the ODE system). Furthermore, because we
believe that the three temperatures satisfy the ordering T ∗

2 ≤ T ∗

1 ≤ T ∗

3 , we
reparameterise these as

τ1 , T ∗

2 , τ2 , T ∗

1 − T ∗

2 , τ3 , T ∗

3 − T ∗

1 (19)

as this ordering will be part of our beliefs about the relationship between our
model and the system, described in section 6.4. This gives us a vector of model
parameters, referred to generally as the simulator inputs x, where

x , (τ1, τ2, τ3, Γ, K); (20)

to help with interpretation, we map each of the inputs into the range [0, 1],
using the ranges for the components of x∗ given in Table 1. We then define
our simulator f as

fi(x) ,







































T eq
i (x) i = 1, 2, 3

∆Seq
21 , Seq

2 (x) − Seq
1 (x) i = 4

∆Seq
32 , Seq

3 (x) − Seq
2 (x) i = 5

meq(x) i = 6

F crit
1 (x) i = 7

(21)

and the superscript ‘eq’ denotes denotes the equilibrium value when F1 =
0.014, thought to be its current value. Note that F crit

1 is a different type of
output from the others. If we think of overturning as the function m(x, F1),
i.e. with F1 as an extra input, then meq(x) , m(x, 0.014), and F crit

1 (x) satisfies

m
(

x, F crit
1 (x)

)

≡ 0. Note also that (18) gives us an explicit form for f6(x) in
terms of x and three of the other outputs; this was one of our motivations for
modelling salinity differences rather than salinity levels. We could exploit this
knowledge to construct a better joint emulator for f(x), and this would be an
important part of a detailed treatment of the problem; for this illustration,
however, we choose to treat all of the outputs in the same manner, to simplify
the analysis.
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Table 1
Simulator inputs, definitions, units and ranges.

Definition Units Interval for (x∗, v∗)

Lower Upper

Inputs in the original simulator

x1 τ1 , T ∗

2
◦C 0 10

x2 τ2 , T ∗

1 − T ∗

2
◦C 0 5

x3 τ3 , T ∗

3 − T ∗

1
◦C 0 10

x4 Γ Wm−2 ◦C−1 10 70

x5 K Sv 5,000 100,000

New inputs in the generalised simulator

v1 q (none) 0 0.3

v2 T ∗

5
◦C 0 10

5.4 Structural enhancements to the simulator

There are two obvious ways in which we might improve our simulator. First,
we might allow additional model parameters to be uncertain, giving a simula-
tor with a larger input space. Second, we might generalise the zsr model itself.
Often we will pursue both of these routes, but to avoid over-complicating our
example we will illustrate only the second in this paper. This tends to corre-
spond to the way that models often get generalised in practice. For example,
large climate models have sub-models for processes such as cloud and sea-ice
formation, glaciation and ocean/atmosphere coupling, and contain switches
to introduce or exclude certain features. The Supplementary Information ac-
companying Murphy et al. (2004) provides an example of such switches in a
large model from the Hadley Centre.

For our generalisation of the model, we choose to add on an additional com-
partment at the southern end, representing the other oceans. We model the
THC as though some of it bleeds off into these other oceans, rather than cir-
culating only within the Atlantic. The generalised model is shown in Figure 2,
with the extra compartment numbered 5, and compartment 1 split vertically
into 1A and 1B. A fixed proportion q of m is bled off from compartment 1B
into compartment 5. The same volume of water returns from compartment
5 into compartment 1A, but it carries with it the temperature and salinity
characteristics of the other oceans. We treat these as fixed, with uncertain
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Fig. 2. A generalisation of the compartmental model of Zickfeld et al. (2004).

temperature T ∗

5 and given salinity S0, the reference salinity. Once we define

T1 ,
V1A

V1A + V1B

T1A +
V1B

V1A + V1B

T1B (22)

and likewise for S1, eq. (18) still applies, and the interpretation of the output of
the generalised simulator is the same as that of the original. Our generalised
simulator is f(x, v) where v ≡ (v1, v2) , (q, T ∗

5 ). We recover the original
simulator with q = 0, regardless of the value of T ∗

5 , i.e.

f ′(x, 0, v2) = f(x) for all x and v2. (23)

In terms of the outline in section 4.3, V0 = {v : v1 = 0}.

6 Example (cont): Emulators and reification

This section describes the statistical framework in which we specify a joint
mean and variance for the collection of emulators {f, f ′, f ∗}, incorporating
information from the ensemble S. Our general strategy in this illustration is
to start with (f | S), then to specify f ′ conditionally on (f | S), and then
to specify f ∗ conditionally on f ′. This sequential approach to constructing
our reified emulator has much in common with that of Reese et al. (2004),
who propose a sequential method for integrating expert judgement, simulator
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evaluations and experimental data in a Bayesian hierarchical model. In its
implementation, however, Reese et al.’s approach makes exactly the assertion
that we are seeking to avoid, by assimilating expert judgement, the actual
simulator evaluations and the system data, all into the same object. For the
reasons described in section 2, we are concerned both that this assertion may
be incoherent in many applications, and that in applying it we may materially
oversimplify the correlation structure.

We choose to start with (f | S) in this illustration because this allows us to
avoid formulating our prior for f ; this is useful in situations where we have
limited information about f beyond that contained in the ensemble S. The
alternative—which is more appealing both foundationally and when the en-
semble S is small relative to the dimension of the input space—is to specify a
proper prior for the collection {f, f ′, f ∗}, and then update this whole collec-
tion with S. Our decision to start our treatment with (f | S) is a pragmatic
compromise in situations where it is hard to specify an appropriate prior for f ,
either because f is poorly understood, or where there is sufficient information
in the ensemble S that the effort involved in a careful specification of the prior
is unlikely to be worthwhile. Therefore this section discusses constructing the
emulator (f | S), section 6.1, constructing the emulator f ′ using the emula-
tor (f | S), section 6.2, constructing the emulator f ∗ using the emulator f ′,
section 6.3, and specifying y in terms of f ∗(x∗, v∗), section 6.4. At the second
and third stages our choices are guided by our judgements regarding the dif-
ferences between the simulators, and, at the fourth stage, between the system
and the reified simulator at its best parameterisation.

6.1 Emulating our actual simulator

A general form for the emulator of our actual simulator was given in (9). For
the regressors g(·) we use a constant and linear terms only. We consider the
residual to comprise additional terms of the general form u(x) = Ah(x) where
A is a matrix of unknown coefficients and the components of h(·) are spec-
ified functions that are orthogonal to g(·) with respect to a uniform weight
function, in this case linear combinations of low-order monomial terms such
as (x1)

2, x1x2, and so on, as described in An and Owen (2001). We impose
a matrix normal prior on A to simplify the structure of the residual, with
the row variance being specified in terms of hyper-parameters, and the col-
umn variance estimated along with the regression coefficients conditional on
the hyper-parameters. The hyper-parameters themselves are fitted by cross-
validation.

Our approach to emulator construction differs from the more standard ap-
proach (e.g., Currin et al., 1991; Kennedy and O’Hagan, 2001), which sim-
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plifies the residual by asserting prior stationarity, and for which the hyper-
parameters control the correlation function of the residual directly, rather
than implicitly. For our reified analysis we want to link across simulators by
linking coefficients on similar regression terms in the emulators. Because of the
important role of these regression terms in our approach, it is prudent to en-
sure that the emulator residuals are orthogonal to the regressors (Stein, 1989),
but stationary residuals do not have this property. Our approach also makes
possible a more detailed treatment of the residual functions across emulators,
for example by linking up coefficients in the residual coefficient matrices, A,
A′ and so on; in our illustration, however, we simply treat the residuals in
terms of their mean and variance functions.

Our emulator may be summarised as a Bayesian treatment of generalised mul-
tivariate least squares with an improper non-informative prior (see, e.g., Box
and Tiao, 1973, ch. 8). Both the regression coefficients and the residuals are up-
dated by the ensemble S, but for simplicity we ignore the correlation induced
between the coefficients and the residual, which is a reasonable simplification
if the R2 values are generally large. This means that the mean function of
the emulator for f interpolates the points in the ensemble, but the variance
function does not go to zero at these points.

We build our emulator for f using an ensemble of just 30 evaluations in a Latin
Hypercube design in the inputs selected to have a large minimum interpoint
distance. This small number of evaluations reflects the practical limitations of
many large simulators. The resulting coefficient means are given in Table 2
(these are the GLS fitted values), along with the R2 values and the square
root of the averaged (over x) residual variance, remembering that neither the
prior nor the updated residual function is stationary. The three temperature
outputs are strongly but not exactly determined by linear terms in the three
temperature inputs; the two salinity differences are less well determined by the
linear regressors (but better-determined than the individual salinities); the fi-
nal two outputs, meq and F crit

1 , are reasonably well determined. As a simple
diagnostic, the leave-one-out prediction errors (after first fitting the emulator
hyperparameters) are shown in Figure 3; the 8-vector of prediction errors at
each x has been standardised using the predictive mean vector and variance
matrix to be uncorrelated with mean zero and variance one; experience sug-
gests that they are a sensitive measure of an emulator’s ability to summarise
and extraplolate the ensemble. This diagnostic is border-line acceptable; we
regard our emulator as reasonable for the purposes of illustration, but in a
more detailed treatment we would want to investigate the possibility of sys-
tematically mis-forecasting in our emulator, which might suggest additional
non-linear regression terms; this would impose no extra costs on our inference.
We would also want to investigate the effect of including the induced corre-
lation between the f emulator regression coefficients and the residual; this
would make the calculation more complicated to describe and program and
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Table 2
Emulator regression coefficients (means). The constant represents the unconditional
expectation and the five inputs are scaled to have the same range. The R2 value in-
dicates the squared correlation between the actual values and the fitted values from
the regression terms. The average residual standard deviation (ARSD) indicates the
square root of the residual variance after uniformly averaging over the input space.

Const. τ1 τ2 τ3 Γ K R2 (%) ARSD

T eq
1 7.451 2.898 1.325 0.024 −0.010 −0.028 ∼100 0.075

T eq
2 5.693 2.898 0.518 0.117 −0.154 0.297 99 0.221

T eq
3 12.391 2.878 1.405 2.851 0.036 −0.043 ∼100 0.040

∆Seq
21 −0.154 −0.008 0.095 −0.050 0.037 0.124 60 0.173

∆Seq
32 0.234 −0.025 −0.048 0.053 −0.021 −0.102 60 0.139

meq 10.218 −0.357 10.396 −0.920 3.453 6.337 90 3.627

F crit
1 0.087 0.001 0.068 −0.005 0.014 0.021 90 0.021

more expensive to perform.

6.2 Emulating the generalised simulator

In section 5.4 we considered constructing a simulator with an extra compart-
ment, representing the other oceans, denoted f ′. Our emulator for f ′ must
satisfy (23), so that it reduces to f in the special case where the other oceans
play no role. In our case v1 = 0 (i.e. q = 0) is the value which collapses the
generalised simulator back to the original. To simplify our choices below, we
rescale v1 to the range [0, 1] using the upper value given in Table 1.

Our judgement is that, overall, f and f ′ will be quite similar. More specifi-
cally, in terms of the original quantities, we judge that introducing the extra
compartment with a sizable q will tend to dampen the response of the model
outputs to the relaxation temperatures T ∗

1 , T ∗

2 and T ∗

3 . We also judge that
a sizeable q will decrease meq and F crit

1 , partly directly and partly through
decreasing the temperature and increasing the salinity in compartment 1.

We now describe how we quantify these judgements. We stress that the choices
we make are not arrived at in isolation, but also taking account of the resulting
properties of the emulators themselves. As described in section 5.4, one way
for us to assess our choices is in terms of balancing the distance between f and
f ′, f ′ and f ∗, and f ∗ and y. For our choices, described below, these distances
are summarised in Table 3.
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Reserved evaluation
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Fig. 3. Leave-one-out emulator diagnostic, showing standardised prediction errors
for the eight outputs for each of the 30 evaluations in the ensemble.

6.2.1 Structure of our generalised emulator

We base our emulator for f ′ on (15), introducing the additional regression
terms

g+
j (x, v) =















v1 × gj(x) j ∈ {0, . . . , 5}
v1 j = 6

v1 × v2 j = 7,

(24a)

and the additional residual term

u+
i (x, v) = v1 ×

{

ci ui(x) + δ+
i (x, v)

}

(24b)

for some specified value ci and an additional mean-zero random function δ+
i (·),

for each output. These additional terms satisfy the property that g+
j (x, v0) =

u+
i (x, v0) = 0 for v0 ∈ V. Then we can write

f ′

i(x, v) ≡
7

∑

j=0

β ′

ij g′

j(x, v) + u′

i(x, v) (25a)
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where we set βij = 0 for j ∈ {6, 7}, and

β ′

ij , βij + v1 β+
ij , (25b)

g′

j(x, v) ,







gj(x) j ∈ {0, . . . , 5}
g+

j (x, v)/v1 j ∈ {6, 7} ,
(25c)

u′

i(x, v) , (1 + v1 ci) ui(x) + v1 δ+
i (x, v). (25d)

In terms of our BBN representation of the relationship between emulators,
given in (16), we have C , {βij} and C ′ , {β ′

ij}.

6.2.2 Matched coefficients in the two emulators

For the matched coefficients, i.e. those for which j ∈ {0, . . . , 5}, our judgement
regarding how βij and β ′

ij differ according to the value of v1 translate into
a specification for the mean and variance of {β+

ij} | {βij}. To specify this
conditional relation we use the general framework

β+
ij = (cij + ωij) (βij − mij) + (ri/rj) νij (26)

where mij and cij are given scalars, and ωij and νij are independent mean-
zero random quantities with specified variances. The scalars ri and rj denote
typical scales for the relevant output and regressor, respectively; their role is
to allow us to specify Sd (νij) in scale-free terms (ωij is already scale-free). We
will use ranges for ri and rj, where ri is inferred from the ensemble, and rj

from the g′

j(·).

Subsituting (26) into the expression for β ′

ij and re-arranging gives

β ′

ij − mij =
(

1 + v1 (cij + ωij)
) (

βij − mij

)

+ v1 (ri/rj) νij . (27)

The mij represent offsets to ensure that the β ′

ij are appropriately centred. We
set all of the mij to zero for j ∈ {1, . . . , 5}, but we use non-zero values for some
of the constants, namely mi0 = 8 for i ∈ {1, 2, 3}, to centre the temperatures
away from zero. The cij can be used to shrink or expand β ′

ij − mij relative to
βij − mij. We represent our specific judgements given above as

cij =



























−0.10 i ∈ {1, . . . , 7} and j ∈ {1, 2, 3}
−0.05 i ∈ {6, 7} and j = 0

−0.05 i = 1 and j = 0

−0.05 i = 4 and j = 0

and 0 otherwise. Treating both cij and νij as small, the ωij describe the proba-
bility of a change of sign between βij−mij and β ′

ij−mij . We set Sd (ωij) = 1/3
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for all matched coefficients, so that a reversal of sign when v = 1 is ap-
proximately a three-standard-deviation event, i.e. has less than 5% proba-
bility according to the three-sigma rule for unimodal marginal distributions
(Pukelsheim, 1994). The νij describe the variation in β ′

ij in the event that
βij = mij with probability one. We set Sd (νij) = 1/18 for all matched coeffi-
cients, so that when βij = mij the additional term for regressor j will—with
high probability—account for less than a sixth of the range of its response
when v1 = 1. Choosing small values for Sd (ωij) and Sd (νij) is one way in
which we express our judgement that the two simulators f and f ′ are similar.

6.2.3 New coefficients in the generalised emulator

For the new coefficients in {β+
ij} for j ∈ {6, 7} we use a similar but simpler

framework, namely

β ′

ij ≡ v1 β+
ij = v1 (ri/rj) νij (28)

where the νij have the same properties as in (26). We set Sd (νij) = 1/9,
reflecting our view that each of the new terms in the emulator for f ′ will—
with high probability—account for less than one third of the range of its
response when v1 = 1.

6.2.4 The residual in the generalised emulator

We believe that our generalisation will make the behaviour of the simulator
a more complicated function of the inputs. Therefore we want the variance
attributable to the residual at any given (x, v) to be larger for f ′ than for
f , except in the limit as v1 → 0. We choose ci = −0.1, and treat δ+(·)
as an independent second-order stationary random process with a variance
matrix equal to the expected variance of u(·). Effectively we are shrinking the
structured component of the residual and then adding an unstructured process,
so that we are partly ‘decorrelating’ u(·) and u′(·) by our specification for u+(·).
With these choices, the standard deviation of u′

i(·) is about 35% larger than
that of ui(·) when v1 = 1.

Note that it is not necessary for us to specify a covariance function for δ+(·),
nor for δ∗(·) which occurs in section 6.3. Our inference requires that we can
compute the mean and variance of the emulators pointwise (section 4.2); we
do not require, for example, the covariance between f ′ at two different input
values. This would not have been the case had we started with a proper prior
specification for {f, f ′, f ∗} and then conditioned on S. Our inference is in-
sensitive to the covariance structure of δ+(·) and δ∗(·) because we summarise
the information in our ensemble in the emulator (f | S), and because of the
sequential way in which we treat f ′ as a generalisation of (f | S), and f ′ as
sufficient for f ∗, as shown in (16).
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Table 3
Unconditional mean and standard deviation for the actual simulator; square root
of the distances between this simulator, the generalised simulator and the reified
simulator, as defined in (17); unconditional mean and standard deviation for the
reified simulator; and standard deviation of the discrepancy.

f(x∗)
√

∆′

√
∆∗ f∗(x∗, v∗) Sd (ε∗)

Mean Std dev. Mean Std dev.

T eq
1 7.451 3.188 1.181 2.009 7.464 3.813 0.840

T eq
2 5.693 2.982 1.103 2.138 5.691 3.706 0.840

T eq
3 12.391 4.289 1.644 3.372 12.389 5.516 0.840

∆Seq
21 −0.154 0.282 0.134 0.236 −0.151 0.351 0.075

∆Seq
32 0.234 0.219 0.112 0.213 0.235 0.296 0.075

meq 10.218 13.540 5.150 9.916 9.940 16.907 3.300

F crit
1 0.087 0.079 0.033 0.066 0.085 0.103 0.044

6.3 Emulating the reified simulator

We now emulate the reified simulator. On the basis of our previous choices we
implement (10) as the reification of (15), so that

f ∗

i (x, v) =
7

∑

j=0

β∗

ij g′

j(x) + u∗

i (x, v) (29)

where to simplify our account we have not introduced any further simulator
inputs or regressor functions. In this formulation each β∗

ij relates directly to
β ′

ij, where the {β ′

ij} were described in section 6.2; in our BBN, given in (16),

C∗ , {β∗

ij}.

Our judgement is that the distance between f ′ and f ∗ is larger than that
between f and f ′, i.e. typically ∆∗

ii > ∆′

ii using the definitions in (17). This
reflects our view that f and f ′ are quite similar, but that further extensions
to the simulator, for example the additional of further new compartments or
subdivisions of existing compartments, could have a larger impact. With extra
compartments, spatially coarse inputs such as the three relaxation tempera-
tures could be disaggregated. We have not done this, and therefore some of our
uncertainty about how f ∗ responds to the inputs follows from the fact that
by retaining these inputs at their coarse resolution, we may be introducing
non-linear aggregation effects.
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We summarise this judgement in our choices for {β∗

ij} | {β ′

ij} and u∗ | u′. For
the regression coefficients our implementation is

β∗

ij − mij = (1 + ω∗

ij) (β ′

ij − mij) + (ri/rj) ν∗

ij j ∈ {0, . . . , 7} (30)

where the mij play the same role as in (26) and ω∗ and ν∗ have similar prop-

erties to before. We set Sd

(

ω∗

ij

)

= 1/2 for all i and j, so that a sign-change

between β ′

ij − mij and β∗

ij − mij is a two-standard-deviation event, i.e. less
unlikely than a sign change between β ′

ij − mij and βij − mij, and we set

Sd

(

ν∗

ij

)

= 1/18 for all i and j. For the residual, our implementation is

u∗

i (x, v) = c∗i u′

i(x, v) + δ∗i (x, v) (31)

where we choose c∗i = 3/4 for all i, and δ∗(·) is an independent second-order
stationary process with variance equal to the average variance of u(·).

As in section 6.2, these choices for the components of the emulator for f ∗ are
not made in isolation, but with careful attention paid to their consequences for
the behaviour of the emulator. Table 3 shows the resulting distance measure
∆∗, and the unconditional mean and variance of f ∗(x∗, v∗). By comparing the
two columns

√
∆′ and

√
∆∗ we can see that, through the modelling choices

we have made, the distance between f ∗ and f ′ is roughly twice the distance
between f ′ and f . We consider this reasonable as f ∗ does not represent the
‘perfect’ simulator, but simply a simulator accurate enough that we are pre-
pared to assert relation (8) for f ∗ and y.

6.4 System values

The system in our case is the Atlantic. However, the very high level of aggre-
gation in our simulator makes it more appropriate to use as data the output
of a larger climate simulator, which has been carefully tuned to the Atlantic
in a separate set of experiments. We can think of the larger simulator as a
component of a highly sophisticated measuring device that is used to quantify
aspects of the Atlantic. The further role of an advanced model as a component
of a measuring device raises some interesting issues, which we shall not explore
here, as our intention in this illustration is to stay in broad agreement with
the analysis in zsr, who calibrate their model to data from the climber-2

intermediate complexity coupled ocean/atmosphere simulator. This simulator
provides values for the three equilibrium temperatures T eq

1 = 6, T eq
2 = 4.7 and

T eq
3 = 11.4, the salinity differences Seq

2 − Seq
1 = −0.15 and Seq

3 − Seq
2 = 0.25,

and the equilibrium overturning meq = 22.6 (zsr, Table 3).

From the reified approach, our statistical framework linking the reified simu-
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lator, the system and the system observations is

y = f ∗(x∗, v∗) + ε∗ and z = Hy ≡
(

y1, . . . , y6

)

(32)

where y denotes the system values corresponding to our simulators’ outputs,
and z denotes the observations that we collect from climber-2, which com-
prise the first six components of y, as described immediately above. To be in
agreement with zsr, we adopt a mean and variance for (x∗, v∗) that is consis-
tent with independent uniform distributions for each of the five components,
based on the ranges given in Table 1.

The discrepancy ε∗ is independent of {f, f ′, f ∗, x∗, v∗}. We set its expectation
to zero, and for the variance we choose a mostly-diagonal matrix with indi-
vidual component standard deviations given in the final column of Table 3.
These values reflect our judgement concerning the relationship of the three
simulators and the system. Our starting point was that the distance between
y and f ∗, as summarised by Var (ε∗), would be smaller but the same order
of magnitude as the distance between f ∗ and f ′, as summarised by ∆∗. For
the six equilibrium values we specified a standard deviation for ε∗i that was
one-third of

√
∆∗

ii, based on the mean value over outputs of the same type. For
the seventh output, F crit

1 , which is more complicated, we used two-thirds. All
standard deviations were expressed to two significant digits. We also included
a correlation of −0.5 between the two salinity differences in ε∗ (components
four and five) to account for the shared term, salinity in compartment 2.

Model validation. It is not possible to validate the emulators f ′ and f ∗

directly. However, the role of these emulators is to lead us to a more ap-
propriate joint distribution between all of the actual observables, namely the
ensemble of simulator evaluations, the system observations, and the system
itself. Therefore, a natural diagnostic is to compute the predictive mean and
variance of z, and compare these to the observed value z̃. Figure 4 shows the
standardised marginal prediction errors for each of the components of z, as
well as the collection of all six values after transforming to uncorrelated quan-
tities with mean zero and variance one. The standardised distances are small,
but overall we feel they offer a reasonable validation of our statistical choices,
and we prefer to leave these as they stand rather than risk ‘over-tuning’. In a
more critical analysis we would look again at the various sources of uncertainty
about z, and see if we could identify an obvious candidate for reduction.
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Fig. 4. Prediction errors for the data, z = z̃. The first six columns show the stan-
dardised errors for each component, and the final column shows the collection of
errors transformed to be uncorrelated with mean zero and variance one.
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7 Example (cont): Reified inference for F
crit

1

7.1 Main results

For our predictions we are primarily interested in y7 ≡ F crit
1 , summarised by

the adjusted mean and variance Ez̃ (y7) and Varz̃ (y7), as given in (13). The
amount by which we can reduce our uncertainty about F crit

1 will depend on the
correlations between the components of z and y7. For example, on the basis
of our ensemble S and our statistical modelling choices, meq and F crit

1 have a
correlation of 0.46, and so we expect that adjusting by z = z̃, which includes
an observation on meq, will improve our prediction for F crit

1 .

The current value for F1 is thought to be about 0.014 Sv, as measured using
climber-2 (zsr, Table 1). It is of fundamental interest to determine how
close this value is to F crit

1 , the value at which the THC will shut down. For
this illustration we report a mean and standard deviation for F crit

1 , and the
standardised distance between the current value of F1 and the mean of F crit

1 .
Our prediction is summarised in Table 4. On our prior assessment, F1 is about
0.6 standard deviations below the mean critical value. After adjusting by z = z̃,
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Table 4
Predictions of F crit

1 . The current value of F1 is thought to be about 0.014 Sv; the
final column gives the standardised distance between this value of F1 and µ, the
mean of F crit

1 .

Mean, µ Std dev., σ (F1 − µ)/σ

Initial, based on 30 evaluations 0.085 0.112 −0.631

After adjusting by z = z̃ 0.119 0.099 −1.061

the mean of F crit
1 rises and its standard deviation falls; our adjusted assessment

shows that F1 is about 1.1 standard deviations below the mean critical value.
In other words, after calibrating our reified simulator with system data, it
seems likely that, currently, F1 < F crit

1 .

7.2 Sensitivity analysis

The choices we made in section 6 were based on our subjective beliefs about the
relation between f , f ′, f ∗ and y. However, while these beliefs seem plausible
order-of-magnitude representations, they are not the result of a careful expert
scientific analysis. We investigate our choices in a simple experiment over
the parameters cij, Sd (ωij), Sd (νij), ci and the parameters Sd (δi(·)), which

describe the relationship between f and f ′, and Sd

(

ω∗

ij

)

, Sd

(

ν∗

ij

)

, c∗i and

Sd

(

δ∗i (·)
)

, which describe the relationship between f ′ and f ∗. For each of
these quantities we try halving and doubling our choice, and we present the
results in terms of the adjusted mean and standard deviation of F crit

1 , and the
standardised distance between the current value of F1 and F crit

1 . The results are
shown in Table 5. This confirms that the distance between f and f ∗ directly
affects our uncertainty about F crit

1 , and about the relationship between F1

and F crit
1 : larger standard deviations on quantities such as ωij and ω∗

ij increase
the distance between f and f ∗, and introduce more uncertainty about f ∗

when starting from our ensemble of evaluations of f . Overall, however, our
assessment of the event F1 < F crit

1 seems to be quite robust to our choices for
these parameters, with the standardised distance typically lying between −0.9
and −1.2 standard deviations. The two extremes values (−0.62 and −1.39)

come from varying Sd

(

ω∗

ij

)

, which is the most influential parameter according
to Table 5.
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7.3 Model design

We now illustrate the issue of model design, as discussed in section 4.5. We
compare two options: doing more evaluations on f , or constructing f ′ and
doing evaluations on that instead. We can investigate the benefit of the first
option by supposing that we could do sufficient evaluations on f to reduce
our uncertainty about the regression coefficients and residual to zero. We can
approximate this state by constraining β and u(·) in the emulator for (f |S) to
their expected values, i.e., by zeroing their variances (which are in general not
zero). With this treatment the adjusted standard deviation for F crit

1 is 0.097,
only a 2% reduction in uncertainty. For our choices in the emulator, the 30
evaluations that we already have are highly informative about f .

The best possible case in the second option would be to construct f ′ and do
sufficient evaluations to reduce our uncertainty about B ′ and u′(·) to zero.
Following the same procedure, the adjusted standard deviation for F crit

1 is
0.089, about a 10% reduction in the uncertainty. This is much larger than in
the first option, and suggests that constructing and the evaluating the simula-
tor f ′ will provide substantial information that is not available in evaluations
of f . In line with our findings for f , we would expect that most of the benefit
from building f ′ would come from the early evaluations, in a carefully-chosen
design.

8 Conclusion

In this paper, we have described an approach, which we term reified analysis,
for linking the behaviour of simulators based on mathematical models with in-
ferences about the physical systems which the simulators purport to represent.
We have two motivations for such an approach. Firstly, it is of fundamental
importance to clarify the logical basis for making assertions about physical
systems given the analysis of simulators which are known to be far from per-
fect. Reified analysis offers a far more meaningful treatment of the uncertainty
relating the model analysis and the behaviour of the physical system than does
any other approach that we are aware of, and addresses fundamental concerns
about the coherency of the current approach.

Secondly, reified analysis offers a structural approach for assessing all of the
uncertainties which arise in relating collections of simulators to the system
that those simulators represent. In our illustration we have shown some simple
ways to structure the reified analysis, so that choices about the relationships
between the various simulators, both actual and conceptual, can be specified
in an intuitive and relatively scale-free way. We believe that it is not only
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more flexible but also simpler to think of the relationship between our actual
simulator f and the system y in a series of steps rather than one big step.
By representing these steps in terms of a small collection of parameters, we
obtain a reasonable trade-off between flexibility and simplicity.

The relationship between the simulator and the system is, typically, a sub-
tle and complicated matter, and the resulting statistical constructions and
belief specification may be challenging. However, this merely emphasises the
importance of carrying out such analysis carefully within a clear and coherent
framework. Reified analysis offers such a framework and allows us to express
our understanding of the strengths and weaknesses of our simulators to what-
ever degree of detail we find helpful.
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Table 5
Sensitivity analysis on the adjusted prediction for F crit

1 from halving and doubling
the various parameters (compare with the second row of Table 4).

Halving the value Doubling the value

Mean, µ Sd dev., σ (F1 − µ)/σ Mean, µ Sd dev., σ (F1 − µ)/σ

Parameters affecting f → f ′

cij 0.120 0.099 −1.063 0.116 0.097 −1.058

Sd (ωij) 0.120 0.096 −1.108 0.114 0.109 −0.919

Sd (νij) 0.120 0.096 −1.105 0.113 0.109 −0.916

ci 0.118 0.099 −1.057 0.119 0.099 −1.062

Sd (δi(·)) 0.118 0.098 −1.061 0.119 0.100 −1.050

Parameters affecting f ′ → f∗

Sd

(

ω∗

ij

)

0.128 0.082 −1.388 0.103 0.143 −0.624

Sd

(

ν∗

ij

)

0.120 0.096 −1.110 0.114 0.109 −0.915

c∗i 0.117 0.097 −1.067 0.121 0.104 −1.028

Sd (δ∗i (·)) 0.118 0.097 −1.068 0.120 0.104 −1.024

Parameter affecting f ∗ → y

Sd (ε∗i ) 0.120 0.091 −1.172 0.115 0.126 −0.804
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