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Let’s consider a simple problem of uncertainty analysis:

■ We have a complex deterministic function

θ → g(θ) ∈ G

with uncertainty about the ‘true’ parameter θ∗ described by
a distribution function

Fθ∗(θ) , Pr(θ∗ ≤ θ)

■ Our objective is to determine Pr
(

g(θ∗) ∈ Q
)

where Q ⊂ G.
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Let’s consider a simple problem of uncertainty analysis:

■ We have a complex deterministic function

θ → g(θ) ∈ G

with uncertainty about the ‘true’ parameter θ∗ described by
a distribution function

Fθ∗(θ) , Pr(θ∗ ≤ θ)

■ Our objective is to determine Pr
(

g(θ∗) ∈ Q
)

where Q ⊂ G.

■ Topical example: g(·) is a climate model with parameters θ;
g(θ∗) is actual climate; Fθ∗ is rectangular; Q is the region in
which global mean temperature in 2100 is at least 2◦C
higher.
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■ The simplest way to estimate q , Pr
(

g(θ∗) ∈ Q
)

is by
Monte Carlo integration:

q =

∫

I
(

g(θ) ∈ Q
)

dFθ∗(θ)

≈ n−1
n

∑

i=1

I
(

g(θi) ∈ Q
)

where θi
iid
∼ Fθ∗ ,

where I(·) is the indicator function. Call this approximation
q̂(n).
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■ The simplest way to estimate q , Pr
(

g(θ∗) ∈ Q
)

is by
Monte Carlo integration:

q =

∫

I
(

g(θ) ∈ Q
)

dFθ∗(θ)

≈ n−1
n

∑

i=1

I
(

g(θi) ∈ Q
)

where θi
iid
∼ Fθ∗ ,

where I(·) is the indicator function. Call this approximation
q̂(n).

■ By the CLT and Binomial distribution, we have

q̂(n) asy
∼ Gaussian

(

q, q(1 − q)/n
)

■ If we wanted an accuracy of ±5 percentage points (±2 sd),
then we’d need n ≈ 400, conservatively.
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Generally-speaking, it seems exceedingly reckless to select the

evaluations randomly if g(·) is anything other than a very cheap

function.

More particularly,

1. We may not be able to afford 400 evaluations, or may
require more accuracy, or may want to proceed sequentially,
to get greater accuracy;
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2. We may want to include some evaluations from another

experiment where the parameters were not
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want to try several choices for Fθ∗ ;



Some issues . . .

Overview

A simple problem

A simple solution

Some issues . . .

The emulator

Summary

4 / 11

Generally-speaking, it seems exceedingly reckless to select the

evaluations randomly if g(·) is anything other than a very cheap

function.

More particularly,

1. We may not be able to afford 400 evaluations, or may
require more accuracy, or may want to proceed sequentially,
to get greater accuracy;

2. We may want to include some evaluations from another

experiment where the parameters were not
iid
∼ Fθ∗ , or may

want to try several choices for Fθ∗ ;

3. We may want to learn about g(·) at the same time, e.g., to
check our implementation.

In these cases an emulator provides an alternative approach.
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■ An emulator is a distribution function for g(θ), informed by
evaluations of g(·) at—hopefully!—carefully-chosen values
θ1, . . . , θn.

■ Within the Bayesian approach we would compute

Fg(θ)(v) , Pr
(

g(θ) ≤ v | θ, G; T
)

where T ,
(

θ1, . . . , θn

)

and G ,
(

g(θ1), . . . , g(θn)
)

; here
(G; T ) comprises the ensemble of evaluations.

■ For θi = Ti ∈ T we have

Fg(Ti)(v) = I
(

Gi ≤ v
)

∈ {0, 1},

but generally g(θ) is an uncertain vector quantity with a
non-zero variance matrix.
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■ These proceed slightly differently:

q =

∫

Pr(g(θ) ∈ Q | θ, G; T ) dFθ∗(θ)

=

∫
{

∫

Q

fg(θ)(v) dv

}

dFθ∗(θ)

≈ m−1
m

∑

j=1

{
∫

Q

fg(θj)(v) dv

}

where θj
iid
∼ Fθ∗ ;

call this approximation q̂(m).
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■ These proceed slightly differently:

q =

∫

Pr(g(θ) ∈ Q | θ, G; T ) dFθ∗(θ)

=

∫
{

∫

Q

fg(θ)(v) dv

}

dFθ∗(θ)

≈ m−1
m

∑

j=1

{
∫

Q

fg(θj)(v) dv

}

where θj
iid
∼ Fθ∗ ;

call this approximation q̂(m).

■ Note that we may be able to take m ≫ n, if
∫

Q
fg(θ)(v) dv is

much quicker to evaluate than g(θ). In this case we can take
q̂(m) and q to be the same, but of course the usefulness of q
depends on the reliability of the emulator as a representation

of our uncertainty about g(·).
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1. We can often compute q exactly, as already mentioned.

2. We are not restricted to sampling the parameter values in
our ensemble of evaluations independently from a specified
distribution, so we can

(a) Use evaluations from other experiments (and our
evaluations contribute to the common pool),

(b) Select the evaluations non-randomly in order to
improve accuracy,

(c) Explore the behaviour of g(·), e.g., to check our
implementation and develop our understanding,

(d) Try lots of different choices for Fθ∗ .

3. We can control the human resources used in the analysis,
through the detail with which we construct and analyse the
emulator.
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Emulators are complicated objects, and will usually need to be

constructed by two specialists: a scientist and a statistician,

working together. The Monte Carlo approach, on the other
hand, can be implemented directly by the scientist alone.
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Emulators are complicated objects, and will usually need to be

constructed by two specialists: a scientist and a statistician,

working together. The Monte Carlo approach, on the other
hand, can be implemented directly by the scientist alone.

Difficulties:

1. ‘Gold-standard’ emulators based on gaussian process priors
cost O(n3) to build;

2. If dim θ is large then most of the parameter space of g(·) will
be an extrapolation from the convex hull of T , which means

(a) Low robustness to statistical modelling choices, but at

the same time . . .

(b) Hard to diagnose mis-specification.

3. Multivariate emulators are highly-constrained by tractable
parametric forms.
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Experimental Design is choosing sets of parameters at which to
evaluate the model. In the simplest case it is selecting Tn+1 on
the basis of the ensemble (G; T ). We can use our emulator to
‘tune’ our selection to be highly informative, using pseudo data.

■ For a succession of cadidate values θ′, θ′′, . . .

1. Sample G′ ∼ Fg(θ′); these are the ‘pseudo-data’
2. Add (G′, θ′) to the current n-point ensemble and build a

new emulator
3. Score in terms of the resulting prediction, e.g. reduction

in predictive variance
4. Do this with lots of sampled G′s, to estimate the

expected score for θ′

The best θ so-chosen is necessary informative both in terms of
the behaviour of g(·) and the inference about Q.
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1. When the decisions that follow are really important, so that
sufficient resources are available to hire a statistician, and
more resources could be made available if warranted;
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1. When the decisions that follow are really important, so that
sufficient resources are available to hire a statistician, and
more resources could be made available if warranted;

2. When the function g(·) is expensive to evaluate, e.g.,
relative to the accuracy required for decisions;

3. When scientists are well-informed about the behaviour of
g(·) and/or poorly-informed about the ‘true’ value θ∗;

4. When insights into the behaviour of g(·) will help scientists
to improve g(θ∗) as a representation of the underlying
system;
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1. When the decisions that follow are really important, so that
sufficient resources are available to hire a statistician, and
more resources could be made available if warranted;

2. When the function g(·) is expensive to evaluate, e.g.,
relative to the accuracy required for decisions;

3. When scientists are well-informed about the behaviour of
g(·) and/or poorly-informed about the ‘true’ value θ∗;

4. When insights into the behaviour of g(·) will help scientists
to improve g(θ∗) as a representation of the underlying
system;

5. (not covered) Reified analysis: when we want to combine
information from more than one representation of the
underlying system.
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For a more general approach to linking models and systems,

• J.C. Rougier (2006), Probabilistic Inference for Future Climate Using an Ensemble of Climate Model
Evaluations, Climatic Change, in press.

• M. Goldstein and J.C. Rougier (2004), Probabilistic Formulations for Transferring Inferences from
Mathematical Models to Physical Systems, SIAM Journal on Scientific Computing, 26(2), 467-487.

• M. Goldstein and J.C. Rougier (2006), Reified Bayesian Modelling and Inference for Physical Systems,
Journal of Statistical Planning and Inference, forthcoming as a discussion paper.

For the current ‘gold-standard’ in gaussian process emulators,

• M.C. Kennedy and A O’Hagan (2001), Bayesian Calibration of Computer Models, Journal of the Royal

Statistical Society, Series B, 63, 425-464. With discussion.

For our alternative Bayes linear treatment,

• P.S. Craig, M. Goldstein, A.H. Seheult and J.A. Smith, (1997), Pressure Matching for Hydrocarbon
Reservoirs: A Case Study in the Use of Bayes Linear Strategies for Large Computer Experiments,
C. Gatsonis et al (eds), Case Studies in Bayesian Statistics III, New York: Springer-Verlag. With discussion.

• P.S. Craig, M. Goldstein, J.C. Rougier and A.H. Seheult (2001), Bayesian Forecasting for Complex
Systems Using Computer Simulators, Journal of the American Statistical Association, 96, 717-729.

• M. Goldstein and J.C. Rougier (2006), Bayes Linear Calibrated Prediction for Complex Systems, Journal of

the American Statistical Association, forthcoming.

My work-in-progress,

• “Lightweight emulators for complex multivariate functions.” A step away from the gold-standard towards
something a bit more ‘quick and dirty’ that builds in O(n) not O(n3).

• “Emulating the sensitivity of the HadAM3 climate model using ensembles from different but related
experiments”. Building an emulator for a very complicated scalar function. Joint work with David Sexton,
James Murphy, and Dave Stainforth.
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