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Abstract

Age replacement is a well-known topic in the literature of Operational Research

and Reliability. Traditionally, the probability distribution of a unit’s failure time

is assumed to be known, and the cost criterion is derived via the renewal re-

ward theorem, which implicitly assumes that the same preventive replacement

strategy will be used over a very long period of time. As an alternative, one can

use a one-cycle criterion, aiming at minimisation of costs per unit of time only

over the period that one unit is in place. We discuss these two criteria, and we

also consider possible alternatives. Recently, we have presented a nonparametric

predictive approach to age replacement, which is based on rather minimal as-

sumptions for the failure time distributions, and provides full flexibility to the

information from the process. We summarize the main conclusions from this

research, where we also considered both the renewal criterion and the one-cycle

criterion. We discuss further aspects related to age replacement, highlighting

several interesting topics for future research.
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1. Introduction

Age replacement strategies for technical units describe that a unit is replaced preven-

tively upon reaching age T , or correctively upon failure before T , where preventive

replacements are typically less expensive than corrective replacements. We call this

‘strategy T ’. The classical mathematical approach for determining the optimal re-

placement age is based on the renewal criterion, which implicitly assumes that the

same replacement strategy is used over a very long period of time, consisting of many

cycles, where one cycle is the period of random length between two consecutive re-

placements. While this is a reasonable approach from classical Operational Research

(OR) perspective, where one typically assumes detailed knowledge of the units’ failure

time distributions, it is less attractive in cases where one uses the observations from

such a process to update information on such distributions, and accordingly may want

to adapt the replacement age per cycle. Recently, we have introduced and studied

nonparametric predictive inference (NPI) for such failure time distributions, allowing



replacement strategies to adapt fully to available failure and replacement data.

In this paper, we present an overview of recent results. We discuss the sometimes

counter-intuitive ways in which optimal replacement strategies can adapt to data from

the process, when the renewal criterion is used. In addition, we discuss the use of

a one-cycle criterion to determine the optimal replacement strategy, both related to

the classical OR framework with assumed failure time distribution and to our NPI

approach.

In Section 2 we summarize classical age replacement theory, using the renewal criterion.

In Section 3 we consider the one-cycle criterion, still from the more established OR

perspective with a known failure time distribution. We compare these two criteria for

Weibull failure time distributions in Section 4. In Section 5 we consider the use of a

multiple cycles criterion. In Section 6 we report on main outcomes of our recent research

project on adaptive age replacement within the statistical framework of nonparametric

predictive inference (NPI), of which early results were presented in [1]. This includes

comparison of the renewal criterion and the one-cycle criterion from NPI perspective,

and we summarize insights gained from simulations studies, including some possibly

surprising ways in which optimal strategies can adapt to information from the process.

Finally, in Section 7 we briefly discuss several further issues, mainly concerning practical

issues and related challenges for research.

2. Renewal criterion

In the classical model for age replacement [2, 3], the failure time of the unit is assumed

to be an absolutely continuously distributed random quantity X ≥ 0 with known

probability distribution, with cumulative distribution function F (x) = P (X ≤ x),

probability density function (pdf) f(x), hazard rate h(x) = f(x)/(1 − F (x)), and ex-

pected value E(X). We assume that h(x) is monotonously strictly increasing, which is

often considered to be a natural assumption for situations where age replacement may

be cost effective [2, 3]. We use h(∞) to denote the limiting value (which may be ∞)

of h(x) for x → ∞. To avoid mathematical complications, we assume that F (0) = 0,

F (x) > 0 for all x > 0, and E(X) < ∞. The costs included in the age replacement

model are assumed to be known constants, with c1 the costs of preventive replacement,

and c2 the costs of corrective replacement, where c2 > c1 > 0.



The renewal criterion minimises the expected costs per unit of time, where the same

replacement strategy is assumed to be used over an infinite period of time, applied to a

sequence of units whose failure time random quantities are independent and identically

distributed. The renewal reward theorem [3] implies that the cost function, for strategy

T > 0, equals the expected costs per cycle divided by the expected length of a cycle,

Cr(T ) =
c1(1 − F (T )) + c2F (T )
∫ T

0
(1 − F (x))dx

. (1)

If there is a finite optimal strategy Tr corresponding to the renewal criterion, then it

is the unique value which satisfies

h(T )

∫ T

0

(1 − F (x))dx − F (T ) =
c1

c2 − c1
. (2)

Such a finite Tr exists if h(∞) >
c2

(c2 − c1)E(X)
, else it is better not to replace the

unit preventively. In this latter case, the cost function obtains its minimal value in the

limit,

Cr(∞) =
c2

E(X)
. (3)

3. One-cycle criterion

The one-cycle criterion [4, 5, 6, 7] minimises the expected costs per unit of time for

a single cycle. This criterion is more natural than the renewal criterion in situations

where one may wish to change the strategy per cycle, for example to take new in-

formation into account. Mazzuchi and Soyer [6] proposed this one-cycle criterion for

Bayesian adaptive age replacement strategies. The cost function, as function of the

random failure time X, for replacement strategy T , is the costs per unit of time during

one cycle,

C1(X, T ) =

{

c2/X if X < T,

c1/T if X ≥ T.
(4)

To avoid mathematical complexity, we assume that E(1/X) exists, which is a condition

on the failure time distribution for X for values close to 0 (which particularly excludes

the use of the Exponential distribution close to 0 in what follows). The one-cycle cri-

terion is minimisation of the expected value of C1(X, T ) with regard to the probability

distribution for X,

C1(T ) = E(C1(X, T )) = c2

∫ T

0

1

x
f(x)dx +

c1

T
(1 − F (T )). (5)



The optimal strategy T1, corresponding to this criterion, might be infinite. If we

assume a monotonously strictly increasing hazard rate, then a finite optimum strategy

T1 exists, and it is the unique solution to

Th(T ) =
c1

c2 − c1

. (6)

The limiting value of this cost function, for T → ∞, is

C1(∞) = c2E(1/X). (7)

For such age replacement situations, where the unit’s failure time has a monotonously

strictly increasing hazard rate and where E(X) and E(1/X) are finite, it is easy to

show [4, 8] that

T1 < Tr. (8)

Of course, Tr can be infinite as discussed in Section 2. Hence, in the classical stochastic

setting with known probability distribution for a unit’s failure time, if the unit is subject

to wearout in the sense of a strictly increasing hazard rate for its failure time, then the

optimal age replacement strategy according to the one-cycle criterion leads to earlier

preventive replacement than the optimal strategy according to the renewal criterion.

We illustrate this for the Weibull distribution in Section 4.

4. Comparison for Weibull distributions

In this section we illustrate the different optimality criteria, discussed in Sections 2 and

3, for Weibull distributions. In addition, we briefly consider estimating parameters of

the Weibull distribution using failure times, and the effect on optimal replacement

times.

The Weibull distribution, W (α, β), with shape parameter α > 0 and scale parameter

β > 0, has pdf

f(x) =
α

β
(
x

β
)α−1 exp{−(

x

β
)α}, (9)

for x ≥ 0. Its hazard rate is

h(x) =
α

β
(
x

β
)α−1, (10)

and its expected value and variance are

E(X) = βΓ(1 +
1

α
), (11)

V ar(X) = β2

[

Γ(1 +
2

α
) − {Γ(1 +

1

α
)}2

]

. (12)



The expected value and variance are both increasing in β.

We restrict our discussion here to increasing hazard rates, so shape parameter α > 1.

For age replacement with the one-cycle criterion, the optimal strategy is

T1 = β

(

c1

α(c2 − c1)

)1/α

. (13)

Clearly, T1 is increasing in β. If we would use a Weibull distribution with the value

of α assumed to be known, but estimating the value of β from failure data, then most

commonly used estimators of β, e.g. the moment estimator or the maximum likelihood

estimator, will be increasing in the sample mean, hence the T1 corresponding to such

estimates would increase in the sample mean. It is interesting to remark that, for

this situation with α assumed to be known, this T1 is a fixed quantile of this Weibull

distribution, as

F (T1) = 1 − exp

{

−
c1

α(c2 − c1)

}

(14)

does not depend on β.

For the renewal reward criterion, the optimal strategy Tr is not available analytically

for the Weibull distribution, but must be computed numerically via equation (2). Next,

we illustrate the differences between these two criteria for the Weibull distribution with

scale parameter β = 1, and we set c1 = 1 and c2 = 10. Table 1 gives the values of T1

and Tr for several W (α, 1) distributions. Figure 1 shows the cost functions, for both

the renewal and one-cycle criteria, for W (1.5, 1) and W (3, 1).

α T1 Tr

1.2 0.1377 0.6861

1.5 0.1764 0.3781

2 0.2357 0.3365

3 0.3333 0.3825

5 0.4670 0.4886

10 0.6376 0.6445

Table 1: Optimal replacement times for W (α, 1)

It is easy to show that T1 is increasing in α, which is illustrated in Table 1. The hazard

rate is monotonously strictly increasing if the shape parameter α is greater than one.
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Figure 1: One-cycle and Renewal cost functions for W (1.5, 1) and W (3, 1)

We see that T1 is always less than Tr, confirming (8). The optimal replacement time

according to the renewal criterion is first decreasing and thereafter increasing in α,

which is in agreement with the fact that the expected value of a W (α, 1) distributed

random variable is decreasing in α, for α ∈ (0, 2.1645) and increasing in α for α >

2.1645 (see e.g. [9], p.259). The difference between T1 and Tr decreases in α, for α ≥ 1,

which can be shown analytically by the fact that, for such values of α, the derivative

with respect to α of the left hand side of (6) minus the left hand side of (2) is negative

for T in the range containing these values of T1 and Tr. We also see that the difference

between the one-cycle cost function and the renewal cost function decreases in α for

T → ∞. Indeed, by relatively easy analysis, one can prove that the limits, for T → ∞,

of these two cost functions, converge to each other for increasing α.

5. Optimality over multiple cycles

The one-cycle criterion and the renewal criterion, which effectively considered an infi-

nite number of cycles, can be regarded as extreme cases of an optimality criterion over

k ≥ 1 cycles, aiming at minimal costs per unit of time. Let Li be the length of cycle i,

for i = 1, . . . , k, and let Nc be the random number of cycles, out of these k, that end

with corrective replacement. Then the cost function according to the k-cycle criterion



is, for T > 0,

Ck(T ) =
k
∑

l=0

E

(

1
∑k

i=1 Li

| Nc = l

)

[lc2 + (k − l)c1]

(

k

l

)

{F (T )}l{1 − F (T )}k−l. (15)

To calculate this cost function for most failure time distributions, this expected value

requires nested integrals to be computed numerically. For example, for k = 2 we get

C2(T ) = 2c2

∫ T

0

∫ T

0

1

u + v
f(u)f(v)dudv +

2(c1 + c2){1 − F (T )}

∫ T

0

1

T + u
f(u)du +

c1

T
{1 − F (T )}2. (16)

If no preventive replacements will be carried out, so using strategy T = ∞, then all

cycles end with corrective replacement, and the random length Li of cycle i is identical

to the random failure time of the i-th unit, Xi say. Then the limiting costs are equal

to the term in (15) with l = k, so

Ck(∞) = kc2E

(

1
∑k

i=1 Xi

)

. (17)

In the Appendix we prove that, if the failure times Xi are non-trivial, independent

and identically distributed, then Ck(∞) is decreasing in k. We strongly believe that

Ck(T ) also decreases in k, at any T , but we have not yet been able to prove this.

We have checked several examples numerically, see e.g. Figure 2 where we plot Ck(T )

for k = 1, 2, 3 and k = ∞, which is equal to Cr(T ), for the W (2, 1) distribution. We

have not found any example where these cost functions are not decreasing in k for all T .

In addition to the result that T1 < Tr [8], as discussed in Section 3, which holds in

case of increasing hazard rates and assuming that E(X) and E(1/X) are finite, we

also conjecture that, in such cases, the optimal strategy Tk corresponding to the k-

cycles criterion, increases in k. If this were true, than T1 and Tr would give the two

extreme optimal age replacement strategies over all k-cycles criteria, which would in

particular be useful in situations where T1 and Tr are close to each other, as that would

indicate that the precise choice of the number of cycles in the optimality criterion had

little relevance in such cases. Table 2 gives the optimal strategy Tk corresponding

to the k-cycles criterion in case the failure times follow a W (2, 1) distribution. The

largest difference is between T1 and T2, for larger k the value of Tk converges quickly

to T∞ = Tr. The integrals in the calculation of Tk were calculated with the package

’ADAPT’ in the statistical software R1. It uses Genz’s Fortran ADAPT subroutine
1http://www.cran.r-project.org/
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Figure 2: Cost functions for W(2,1) based on k-cycles (k=1,2,3) and renewal criterion

to do all the calculations. The Fortran functions have been modified to use double

precision. We used these to illustrate that Tk’s are increasing in k and converge to T∞,

where T∞ can be calculated numerically via equation (2).

k Tk

1 0.2357

2 0.2998

3 0.3139

4 0.3200

5 0.3235

6 0.3258

7 0.3274

8 0.3285

∞ 0.3365

Table 2: Optimal replacement times Tk for W (2, 1)

6. NPI-based age replacement

In a recent research project, we have developed and presented methods, based on non-



parametric predictive inference (NPI) [10, 11], for age replacement, using the renewal

criterion as well as the one-cycle criterion. In NPI the starting point is not a known

failure time distribution, but the wish to make rather minimal assumptions about such

a distribution, and hence to work in a nonparametric statistical framework. The in-

formation on which to base inferences then comes from assumed observations. Hence,

in this work [1, 8, 12], we assumed that n observed failure times were available. NPI

is based on Hill’s assumption A(n) [13], which in this context states that the random

failure time of unit n + 1 has equal probability to fall in each of the n + 1 intervals

on the positive real line as created by the first n observed failure times (assuming,

for simplicity, no tied failure times were observed). No further assumptions are made

on the probabilities for the failure time of unit n + 1 within each of these intervals,

which implies that for many inferences we work with bounds for probabilities that are

consistent with A(n) [10]. In our replacement settings, we use lower and upper survival

functions [11, 14] for the failure time of unit n+1, and these result in lower and upper

cost functions, the difference between these reflects the amount of information available

(hence decreases with n). The main aim of this research project was to study whether

or not such an approach was achievable, where the crucial difference with earlier work

is that no assumptions on the hazard rate of the underlying failure time distribution

are made, hence providing a very flexible framework.

Our first results were reported in [1], where we presented analytical forms for the lower

and upper cost functions for NPI-based age replacement of unit n+1, with the renewal

criterion, and we proved that the optimal preventive replacement times corresponding

to these two cost functions are in (or ‘just before’) an observed failure time, if the data

suggest that preventive replacement is cost effective. We also showed how to determine

whether the data suggest that it is better not to replace preventively. This result is of

great benefit for computation of the optimal replacement times. We showed consistency

of our NPI-based lower and upper cost functions via comparison with the related the-

oretical cost function based on an assumed underlying failure time distribution, in the

following sense. If the n observations from such an underlying failure time distribution

were the equally spaced percentiles for that distribution, whereby the data would give

a ‘perfect reflection’ of the failure time distribution, then the theoretical cost function

is everywhere between our lower and upper cost functions. To study the performance

of our method, we simulated failure times from different Weibull distributions with

shape parameter greater than 1 (so modelling wear-out), and applied our NPI-based

methods. This allowed comparison of our resulting preventive replacement strategies



and the theoretical strategies, corresponding to the known failure time distribution.

Mostly, our method adapted very well to the data, in the sense that our NPI-based

optimal replacement times were close to the theoretical optimal replacement times,

already for only n = 10 observed failure times. Of course, for larger n the results were

increasingly good. Situations where our method suggested quite different replacement

times than the theoretical method occurred when the simulated data did not reflect

wear-out, which happened occassionally for n = 10 but very rarely for larger n. The

results reported in [1] show that NPI-based methods for age replacement are useful

alternatives to the established approaches, which already work quite well for relatively

few observed failure times.

We continued this research by focussing on the ability of our NPI-based methods for

age replacement to adapt to further failure time information from the process. So,

with n failure times available, we assumed that our optimal strategy is used for unit

n + 1, and the information about this unit is then taken into account to determine the

optimal replacement strategy for unit n+2. The information about unit n+1 consists

of either an observed failure, occurring before the optimal preventive replacement time

for this unit, or a right-censored observation in case of preventive replacement. The

results of this research are presented in [12]. First, we showed how the right-censored

observation, in case of preventive replacement of unit n + 1, could be taken into ac-

count in the lower and upper NPI-based cost functions for unit n+2, using NPI theory

for dealing with right-censored data [15]. We derived analytical expressions for these

cost functions, and proved that, again, optimal replacement times would coincide with

previous observations. We proved theorems on the way in which the optimal replace-

ment times may (not) vary in case of a series of preventively replaced units, which give

more insight in the effect of such additional process data. Again, we performed exten-

sive simulation studies into the adaptive behaviour of our NPI-based age replacement

strategies, focussing this time on the differences between the optimal replacement times

for different units in such a process. Although most conclusions from these simulations

confirmed our intuitions, e.g. the difference between the optimal replacement times for

units n + 1 and n + 2 tends to decrease with n, there were several results which, at

first, may have been surprising. Detailed study of these results has provided insights

into the use of the renewal criterion for age replacement, which had not been discussed

before. For example, in some simulated situations, a failure of unit n+1 before its op-

timal preventive replacement time, led to an increase of the optimal replacement time

for unit n + 2. We discuss such situations in detail in [12]. Hence, not only have we



shown that our NPI-based approach is feasible for age replacement, but it also provides

detailed insights into the optimality criterion used, and its effect if further information

from the process is taken into account.

We also studied NPI-based adaptive methods for age replacement using the one-cycle

criterion discussed in Section 3, which is attractive for fully adaptive replacement strate-

gies. The results of this research are presented in [8]. For mathematical convenience, in

this work we did add a further assumption on the probability distribution of the failure

time of unit n + 1 within the intervals created by the n observed failure times [8]. We

derived explicit expressions for the optimal preventive replacement times, which enable

relatively straightforward computation of optimal strategies. We studied the perfor-

mance of this method, again via simulation studies, both with regard to the way in

which it adapts to failure time information, and in how the optimal strategy compares

to the optimal replacement time for the renewal criterion. This latter comparison is

not trivial, as the theoretical comparison in Section 3 was only proven for failure time

distributions with increasing hazard rates [8], while in NPI such an assumption is not

used. The main conclusions reported in [8] are that, again, our method adapts well to

failure data (in a similar manner as for the renewal criterion). In all our simulations,

we always found that the NPI-based optimal preventive replacement time according to

the one-cycle criterion, did not exceed the corresponding optimal time according to the

renewal criterion. This suggests that the result T1 < Tr holds quite generally, so not

only for failure time distributions with monotonously strictly increasing hazard rates

as considered in Section 3. Of course, we do not suggest that no data sets can be found

for which this is not the case, but we have not managed to find such counter examples.

We have not considered other optimality criteria for age replacement in our NPI-based

approach, which is interesting for future research, but such work will mostly require

numerical methods as analytical results will become very complex.

7. Concluding remarks

The choice of optimality criterion for age replacement will, in practice, depend on sev-

eral issues in addition to the planning horizon. For example, if a clear budget is set

for replacement activities, over a fixed period, then this may directly lead to earlier or

later replacement. An advantage of our NPI-based method is its explicitly predictive

nature, through the use of the next unit’s random failure time. In particular in com-

bination with the one-cycle criterion, it is therefore easy to check the expected risks



involved with delaying, or bringing forward, preventive replacement of the next unit.

More generally, one may wish to use utility functions in a decision theoretic framework

[16], to measure the benefits and risks, related to different replacement strategies, to

the wider context of the company or society involved. Again, the NPI-based method

provides the attractive feature of such utilities being directly in terms of possible events

involving the next unit. There are several exciting research opportunities in the prac-

ticalities of budgets and utilities for such maintenance and replacement engineers [17].

For example, management may need to set the budget at an early stage, and their util-

ity function is likely to be quite different to that of the maintenance engineer, whose

input they may ask in order to set the budget. This could lead to a game-theoretic sce-

nario, where the engineer aims to maximize the budget made available to him, whereas

management may wish to minimize this, or to keep it about constant over consecutive

planning periods. In the light of this, there may be strategic interests that could affect

the way in which subjective beliefs are reported. This raises interesting questions with

regard to communication of utilities and uncertainties. Some possible methods towards

resolving such issues have been studied in so-called ‘principal agent theory’ [17, 18].

Such ‘distributed decision making’ is further complicated in preventive replacement

settings by the almost paradoxical nature of preventive replacement: if one does this

perfectly, which would imply that preventive replacement always takes place just before

the unit would fail, then it may well give the impression of over-maintenance, because

the units would never fail. Ideally, one would be able to find ways to resolve such con-

flicting situations, e.g. if one can predict how long a preventively replaced unit would

still have been in functional order, supported by measurements on such a unit. Extend-

ing our NPI-based method to take such possible measurements into account would be

an interesting topic for research, and would greatly enhance its practical value. Such

research should, ideally, be directly linked to practical applications.

In situations where time between replacements is typically large (say ‘months’ or even

‘years’), one may wish to apply a discount factor [19] to take inflation into account. We

have not included discount factors in our analysis. It would be interesting to study how

discount factors affect the optimal NPI-based preventive replacement times, in partic-

ular of course for the renewal argument. However, if typical time periods considered

are so long that such discounting becomes relevant, one should also focus on several

other parts of the age replacement models which may vary over time, for example the

costs for corrective and preventive replacements, which may not remain constant over a

long period. Also, replacement units may have undergone design changes over a longer



period of time, which could affect the failure time distributions.

In practice, good decision making with regard to preventive replacements may well

have to take a variety of criteria into account, which one may not be able to combine

into one single criterion. This may, for example, involve economic, environmental and

safety considerations. In the literature on multi-criteria decision making [20], methods

that are suitable for such situations have been presented and analyzed, but as far as

we are aware this has not yet been applied to replacement problems in a practically

interesting and relevant way. Such methods would also be of interest in combination

with NPI-based methods, as criteria could again be directly formulated in relation to

the next unit to be used in the process. There are several interesting research topics

related to this issue, such topics would benefit from theoretical research which is di-

rectly linked to practical applications.

If one aims at optimal preventive replacement strategies over many cycles, and one

acknowledges uncertainty about the failure time distributions of the units, then it may

be worthwhile to take into account the information one gets from the observation on

the current unit or the next unit, about the failure time distributions of future units.

Intuitively, it may perhaps be beneficial to delay a unit’s preventive replacement. If it

were to function without any problems for a longer period of time, this might indicate

that, perhaps, one was too pessimistic about the failure time distribution, whereas if

it fails soon after the initially determined optimal replacement time, this will lead to

higher costs now, but the information may allow better planning in the future. Hence,

it is also a matter of intertemporal decision making [16], so one should balance (e.g.

via utilities) the possible risks and benefits at different times. This is also a challenging

research area that has not yet received any serious attention with regard to replacement

problems, as far as we are aware. Again, it seems that the adaptive predictive nature

of our NPI-based methods are ideally suited for combination with such practically rel-

evant issues.

Recently, we have studied a variation to the age replacement work which we briefly

discussed in Section 6. We considered opportunity-based age replacement [21], where

preventive replacement of units can only take place at randomly occurring opportuni-

ties. This is, for example, of practical importance in situations where a unit is part of

a larger system, and replacement requires the system’s functioning to be interrupted,

whereas it may be relatively cheap to replace the unit during periods when the system



is not functioning. Theoretically, this work was also important, as we successfully com-

bined NPI-based methods (on the failure time distributions) with classical stochastic

processes (on the randomly occurring replacement opportunities), which indicated that

such combined methods are possible, both in theory and computationally, and hence

this may significantly widen the applicability of NPI-based methods. We will report

on this research elsewhere [22], it also leads to interesting topics for further research.

There are several other interesting research topics related to our NPI-based methods

for age replacement. For example, one could include small problems with the units

in the process, which occur randomly and can be resolved by minimal repairs. This

was studied by Sheu, et al. [7], in an adaptive Bayesian framework. We have not yet

seen this in combination with opportunity-based age replacement, which is perhaps

the more natural setting for such minimal repair activities. Development of NPI-based

methods for other replacement problems, e.g. block replacement [3], is also of great

interest, and would enhance the applicability of our methods.

Appendix

We prove that, if the failure times Xi > 0 are independent and identically distributed,

then Ck(∞), as presented in equation (17) in Section 5, is decreasing in k (we assume

here further that the Xi are non-trivial, i.e. they do not take on a single value with

probability 1, and that all expected values here are finite).

Let Yl > 0, for l = 1, . . . , k, with k ≥ 2, be identically distributed real-valued random

quantities (again, we assume the Yl to be non-trivial, and all expected values to be

finite). Let g(·) be a strictly convex positive function. Then

g(
1

k

k
∑

l=1

Yl) <
1

k

k
∑

l=1

g(Yl), (18)

and the same relation holds for the expected values,

E

{

g(
1

k

k
∑

l=1

Yl)

}

<
1

k

k
∑

l=1

E{g(Yl)}. (19)

The random failure times Xi, for i = 1, . . . , k, as introduced above, have average value

X̄k = 1
k

∑k
i=1 Xi, and let

X̄ l
k =

1

k − 1

∑

i6=l

Xi. (20)



Then

X̄k =
1

k

k
∑

i=1

Xi =
1

k

k
∑

l=1

X̄ l
k. (21)

Let g(x) = 1/x, for x > 0, which is indeed a strictly convex positive function. We now

use (19), with Yl = X̄ l
k, which gives

E

{

k
∑k

l=1 X̄ l
k

}

<
1

k

k
∑

l=1

E

{

1

X̄ l
k

}

= E

{

1

X̄k
k

}

, (22)

where the equality follows from the fact that the Xi are identically distributed, and

therefore so are the X̄ l
k, hence they have the same expected value for all l = 1, . . . , k.

Using (21) in the left-hand side of (22), gives

E

{

k
∑k

i=1 Xi

}

< E

{

k − 1
∑k−1

i=1 Xi

}

, (23)

which completes the proof.
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