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Abstract

Age replacement of technical units has received much attention in the reliability

literature over the last four decades. Mostly, the failure time distribution for the units

is assumed to be known, and minimal costs per unit of time is used as optimality crite-

rion, where renewal reward theory simplifies the mathematics involved but requires the

assumption that the same process and replacement strategy continues over a very large

(‘infinite’) period of time. Recently, there has been increasing attention to adaptive

strategies for age replacement, taking into account the information from the process.

Although renewal reward theory can still be used to provide an intuitively and math-

ematically attractive optimality criterion, it is more logical to use minimal costs per

unit of time over a single cycle as optimality criterion for adaptive age replacement.

In this paper, we first show that in the classical age replacement setting, with known

failure time distribution with increasing hazard rate, the one-cycle criterion leads to

earlier replacement than the renewal reward criterion. Thereafter, we present adaptive

age replacement with a one-cycle criterion within the nonparametric predictive infer-

ential framework. We study the performance of this approach via simulations, which

are also used for comparisons with the use of the renewal reward criterion within the

same statistical framework.

Key words: Age replacement; nonparametric predictive inference; one-cycle optimality

criterion; renewal reward theorem.
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1 Introduction

Age replacement strategies for technical units are aimed at replacing such units preventively

before failure occurs, trying to avoid the need for corrective replacement which tends to be

far more expensive. This requires determination of an optimal preventive replacement time

T > 0, such that the unit will be replaced preventively if it reaches age T , or correctively

if failure occurs before it reaches age T . In the classical stochastic literature [1, 2], age

replacement is presented within a traditional Operational Research framework, with the

failure time distribution of the unit assumed to be known. If one aims at optimisation in

the sense of minimal costs per unit of time, over a very long period of time during which

the process considered does not change, and the units used all have the same failure time

distribution, then renewal reward theory [1] provides a mathematically convenient way of

computing the expected costs per unit of time. In practice, even though one acknowledges

the fact that assuming such a long period for the same process may not be realistic, the

renewal reward optimality criterion is still often considered attractive and reasonable, with

benefit of its mathematical simplicity.

During the last decade [3, 4, 5], researchers have become interested in so-called adaptive

replacement strategies, where instead of assuming complete knowledge of a unit’s failure

time distribution, one uses information from the process to learn about this distribution.

For example, the Bayesian statistical framework [3, 4, 5] allows the use of a parametric

distribution, with an assumed prior distribution reflecting subjective information available

before the process starts, and which, combined with process information, gives a posterior

distribution, which can be used to determine the optimal replacement strategy for the next

unit in the process. As discussed by Mazzuchi and Soyer [3], such an adaptive approach

undermines the use of the renewal reward criterion as one explicitly does not wish to use the

same replacement strategy over a very long period of time. Hence, they proposed the use of

a ‘one-cycle’ optimality criterion, aiming at minimal expected costs per unit of time for the

cycle corresponding to the unit considered.

Throughout this paper, the term ‘cycle’ is used for the period starting at the moment

that a new unit starts functioning, and ending at the moment that the next unit has been

installed, following either preventive or corrective replacement. The time required for any re-

placement is assumed to be neglectible throughout (adapting to include a known replacement

time is relatively straightforward), and the costs of preventive replacement and corrective

replacement are assumed to be known constants, where the ‘costs per cycle’ include the costs
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incurred by the replacement at the end of a cycle.

Recently, we have introduced and studied the use of nonparametric predictive inference

(NPI) for adaptive age replacement strategies [6, 7], leading to optimal strategies which

are fully adaptive to process data without the need to assume a parametric probability

distribution for a unit’s failure time. So far, we studied NPI-based age replacement using

the renewal reward criterion, in this paper we follow Mazzuchi and Soyer’s approach by

adopting the one-cycle optimality criterion.

For a detailed introduction to NPI in reliability we refer to Coolen, et al. [8], here we

briefly give the main concept. Consider the situation where we have observed n failure times

for units in the same process, ordered as 0 < x(1) < x(2) < . . . < x(n) (we assume throughout

this paper that there are no ties in the observed failure times). Instead of assuming a

known probability distribution for the failure time Xn+1 of the next unit, we directly specify

probabilities for Xn+1 according to Hill’s assumption A(n) [9, 10], that is,

P (Xn+1 ∈ (x(j), x(j+1))) =
1

n + 1
, j = 0, . . . , n, (1)

where x(0) = 0 and x(n+1) = r, where r is either infinity or a finite upper bound for the

support of Xn+1. For a further discussion of A(n) , and historical references which provide

justifications of this statistical approach, see [8, 10]. As a consequence of (1), the predictive

survival function for Xn+1, at the times x(j), is equal to

SXn+1(x(j)) =
n + 1 − j

n + 1
, j = 0, . . . , n + 1. (2)

Without further assumptions it is not possible to give a precise value for this survival function

at other times, as A(n) assigns probability mass 1/(n + 1) to the open intervals created by

the observed failure times, but does not put any further restriction on the distribution of the

probability mass within these intervals. Straightforward bounds for this survival function

can be derived at all times [8], these are upper and lower survival functions within the theory

of interval probability [10]. These upper and lower survival functions can themselves be used,

without further assumptions, as was e.g. done for our NPI-based age replacement strategies

using the renewal reward criterion [6, 7]. In this paper, we will instead introduce a further

assumption on the distribution of the probability mass within these intervals, creating a

precise survival function for Xn+1, as we will explain in Section 3.

In Section 2, we compare the optimal age replacement strategies corresponding to the

renewal reward criterion and the one-cycle criterion from the classical stochastic perspective,

with the failure time distribution assumed to be known. We will show that, for distributions
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with increasing hazard rates, optimal preventive replacement based on the one-cycle criterion

will take place earlier than when based on the renewal reward criterion. As our NPI-based

method does not assume increasing hazard rates, this result does not apply automatically for

NPI-based age replacement with a one-cycle criterion, as presented in Section 3. In Section 4

we illustrate our method via a small example, including comparison with our NPI-based age

replacement using the renewal reward criterion [6, 7]. In Section 5 we present and discuss

the results from a simulation study, which provide further insights in our adaptive method.

We end the paper with some concluding remarks in Section 6, and an appendix containing

the proofs of two lemmas presented in Section 3.

2 Classical age replacement

In this section, we consider the classical stochastic model for age replacement [1, 2], where

the failure time of the unit is assumed to be an absolutely continuously distributed random

quantity X ≥ 0 with known probability distribution, with cumulative distribution function

F (x) = P (X ≤ x), probability density function (pdf) f(x), hazard rate h(x) = f(x)/(1 −

F (x)), and expected value E(X). To avoid mathematical complications, we assume that

F (0) = 0, F (x) > 0 for all x > 0, and E(X) < ∞. The costs included in the age replacement

model are assumed to be known constants, with cost of preventive replacement c1 and cost

of corrective replacement c2, where c2 > c1 > 0.

The renewal reward criterion minimises the expected costs per unit of time, where the

same replacement strategy is assumed to be used over an infinite period of time, applied to a

sequence of units whose failure time random quantities all have the same known probability

distribution. Application of the renewal reward theorem [1] implies that the cost function,

for replacement strategy T > 0 (i.e. replacement at time T , or at failure if that occurs before

T ), equals the expected costs per cycle divided by the expected length of a cycle,

Cr(T ) =
c1(1 − F (T )) + c2F (T )
∫ T

0
(1 − F (x))dx

. (3)

Let the optimal strategy be denoted by Tr (which might be equal to infinity), then the

first-order necessary condition for optimality (e.g. [11]) of a finite Tr is that it must satisfy

h(T )

∫ T

0

(1 − F (x))dx − F (T ) =
c1

c2 − c1
. (4)

We define

gr(T ) = h(T )

∫ T

0

(1 − F (x))dx − F (T ). (5)
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Clearly, gr(T ) is a continuous function with gr(0) = 0, and, if h(∞) = limT→∞ h(T ) exists,

then

lim
T→∞

gr(T ) = h(∞)E(X) − 1. (6)

If h(T ) is monotonously strictly increasing, then gr(T ) is also strictly increasing as

dgr(T )

dT
= h′(T )

∫ T

0

(1 − F (x))dx (7)

is positive if h′(T ) > 0 for all T > 0. Hence, for monotonously strictly increasing h(T ),

the condition gr(T ) = c1
c2−c1

either has no solution, if h(∞) ≤ c2
(c2−c1)E(X)

, in which case one

would not replace the unit preventively at a finite time, or it has a unique finite solution Tr,

if h(∞) > c2
(c2−c1)E(X)

.

If there is no finite optimal preventive replacement time, then the cost function obtains

its minimal value in the limit,

Cr(∞) = lim
T→∞

Cr(T ) =
c2

E(X)
. (8)

Hence, if there is a finite optimal preventive replacement strategy, the minimal expected costs

per unit of time, over an infinite time horizon and based on the renewal reward criterion, is

less than c2
E(X)

.

The one-cycle criterion [3] minimises the expected costs per unit of time for a single

cycle. This criterion has been mostly neglected in the literature, which may be caused by the

fact that, traditionally, one assumes a known probability distribution for the unit’s failure

time, in which case it is logical to use the same optimal replacement strategy over many

cycles. However, when aiming at adaptive age replacement strategies, where the optimal

replacement time can change per cycle, the one-cycle criterion is particularly attractive, as

such changing replacement times are explicitly excluded by the underlying justification for

use of the renewal reward criterion. Mazzuchi and Soyer [3] proposed this one-cycle criterion

for Bayesian adaptive age replacement strategies. The cost function, as function of the

random failure time X, for replacement strategy T , is the costs per unit of time during one

cycle,

C1(X, T ) =

{

c2/X if X < T,

c1/T if X ≥ T.
(9)

To avoid mathematical complexity for one-cycle optimality, we assume that E(1/X) exists,

which is a condition on the failure time distribution for X for values close to 0 (which

particularly excludes the use of the Exponential distribution close to 0 in what follows). The
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one-cycle optimality criterion is minimisation of the expected value of C1(X, T ) with regard

to the probability distribution for X,

C1(T ) = E(C1(X, T )) = c2

∫ T

0

1

x
f(x)dx +

c1

T
(1 − F (T )). (10)

The optimal strategy T1, corresponding to this criterion, might be infinite, but if a finite

optimum exists it must satisfy the first-order necessary condition for optimality, which leads

to

Th(T ) =
c1

c2 − c1
. (11)

We define

g1(T ) = Th(T ), (12)

which is clearly a continuous function with g1(0) = 0, and which is monotonously strictly

increasing with no upper bound for T → ∞ if h(x) is monotonously strictly increasing.

Hence, for failure time distributions with such hazard rates, a unique finite optimal preventive

replacement time T1 exists according to this one-cycle criterion, and this is derived via

g1(T1) = c1
c2−c1

. If the hazard rate h(x) is such that g1(T ) < c1
c2−c1

for all finite T , which

is unlikely to be the case in relevant replacement situations as it relates to a very strong

wear-in effect, then the cost function would have minimal value in the limit,

C1(∞) = lim
T→∞

C1(T ) = c2E(1/X). (13)

Hence, in most situations of interest for possible preventive replacement, the minimal ex-

pected costs per unit of time when considered over one cycle is less than c2E(1/X).

We can now compare the optimal age replacement strategies Tr and T1, corresponding

to the renewal reward criterion and the one-cycle criterion, respectively. If the probability

distribution of a unit’s absolutely continuously distributed failure time X > 0 is such that

E(X) and E(1/X) are both finite, and that it has a monotonously strictly increasing hazard

rate h(x), then

T1 < Tr. (14)

This follows immediately from the fact that, for all T > 0,

gr(T ) < g1(T ), (15)

which easily follows from
∫ T

0
(1 − F (x))dx < T and F (T ) > 0, and the fact that these

functions are continuous and gr(0) = g1(0) = 0. Of course, Tr can be infinite as discussed
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above. Hence, in the classical stochastic setting with known probability distribution for a

unit’s failure time, if the unit is subject to wearout in the sense of a strictly increasing hazard

rate for its failure time, then the optimal age replacement strategy according to the one-cycle

criterion leads to earlier preventive replacement than the optimal strategy according to the

renewal reward criterion.

3 NPI age replacement with a one-cycle criterion

In this section, we present NPI-based adaptive age replacement for unit n + 1, using the

one-cycle criterion, hence aiming at minimisation of the cost function C1(T ), as given by

(10), for random failure time Xn+1. This provides an intuitively attractive alternative to

NPI-based age replacement using the renewal reward criterion, as presented in [6, 7].

In [6, 7], we did not add any further assumptions on the probability distribution for Xn+1

to the inferences which follow directly from A(n), using both the upper and lower survival

functions for Xn+1, leading to two optimal age replacement strategies which could be differ-

ent. The emphasis there was not on such differences, but on how well these strategies adapt

to underlying distributions, which was studied via simulations and turned out to be pretty

impressive already for sample sizes of n = 10, when sampling from Weibull distributions

with increasing hazard rate.

If we attempt to follow the same approach in this paper, we run into difficulty when using

the lower survival function [8] for Xn+1, as this puts probability 1/(n + 1) adherent to 0,

which implies that the expected value of 1/Xn+1 is not finite. To overcome this problem, we

use a pragmatic solution by assuming, in addition to A(n), a particular manner in which the

probability masses 1/(n + 1) are divided over the intervals created by the n observed failure

times. Of course, this additional assumption will influence the resulting strategies, but this

influence will decline with increasing n. An advantage of this pragmatic approach is that we

only need to study our approach for a single survival function related to n observed failure

times, while keeping the A(n) assumption.

In this paper, we assume, for NPI-based age replacement with a one-cycle criterion, in

addition to A(n), that the probability masses 1/(n+1) assigned to the open intervals between

consecutive observed failure times x(1), . . . , x(n) are uniformly distributed per interval. The

two end intervals of this partition of the real axis require special attention. The probability

mass in the interval beyond x(n) can only be distributed uniformly by assuming a finite

end-point r for the support of Xn+1. Alternatively, we could have assumed a particular
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distribution of the probability mass 1/(n + 1) over (x(n),∞). However, from the expected

costs C1(T ), as presented in Section 2, it is clear that the precise distribution of probability

mass beyond preventive replacement age T is irrelevant. In situations where the data indicate

that preventive replacement may actually be useful, one expects that the optimal preventive

replacement age T is less than the largest observed failure time x(n). Therefore, in this paper

we assume a finite r and distribute the probability mass 1/(n + 1) uniformly over (x(n), r),

where of course we always take r larger than x(n). If the optimal replacement time over (0, r]

would occur beyond x(n), the data would clearly not support preventive replacement.

For the interval (0, x(1)), a Uniform distribution of the probability mass 1/(n+1) cannot

be assumed together with the one-cycle criterion, as the integral of f(x)/x would still not

converge over a small interval immediately to the right of 0. The same problem would also

remain with an Exponential distribution over this interval. Hence, we assume that this

probability mass 1/(n + 1) is distributed over (0, x(1)) according to a Gamma distribution

with shape parameter 2, and scale parameter α chosen such that

x(1)
∫

0

α2te−αtdt =
1

n + 1
, (16)

so α is calculated via the equation

n

n + 1
= e−αx(1)(1 + αx(1)). (17)

The assumption A(n), and these additional assumptions for the distribution of the probability

masses 1/(n+1) over the intervals created by the observed failure times, lead to the following

specification of the predictive survival function for the failure time Xn+1 of unit n+1 within

these intervals, to be used together with the A(n)-based values at the observed failure times

as given by (2) (with x(n+1) = r as before),

SXn+1(x) = 1 − α2

x
∫

0

te−αtdt, x ∈ (0, x(1)), (18)

SXn+1(x) =

(

x(j+1) − x

x(j+1) − x(j)

)

SXn+1(x(j)) +

(

x − x(j)

x(j+1) − x(j)

)

SXn+1(x(j+1))

= SXn+1(x(j+1)) +
1

n + 1

(

x(j+1) − x

x(j+1) − x(j)

)

, x ∈ (x(j), x(j+1)), j = 1, . . . , n. (19)

Using this predictive survival function for Xn+1, and the fact that the pdf fXn+1 for Xn+1

satisfies fXn+1(x) = −dSXn+1(x)/dx, we obtain the following expression for the pdf for Xn+1
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which we use in our NPI-based age replacement with a one-cycle criterion in this paper,

fXn+1(x) =











1

n + 1

(

1

x(j+1) − x(j)

)

, x ∈ (x(j), x(j+1)), j = 1, . . . , n,

α2xe−αx, x ∈ (0, x(1)).

(20)

With this pdf, the expected costs per unit time for NPI-based age replacement of unit

n + 1, using a one-cycle criterion, and based on ordered observed failure times x(1), . . . , x(n),

is

Cone(T ) = EXn+1 [C1(Xn+1, T )] =

T
∫

0

c2

x
fXn+1(x)dx +

∞
∫

T

c1

T
fXn+1(x)dx. (21)

Throughout this paper, we use the notation Cone(T ) for the one-cycle criterion cost function

in case of our NPI-based age replacement, with the additional assumptions leading to pdf

fXn+1 as in (20). Substituting this pdf into (21) yields Lemma 1, the proof is given in the

Appendix.

Lemma 1

a. For T = x(j) and j = 1, . . . , n + 1, we have

Cone(x(j)) = c2α(1 − e−αx(1)) +
1

n + 1

{

c2

j−1
∑

l=1

ln(x(l+1)) − ln(x(l))

x(l+1) − x(l)

+ c1

(

n + 1 − j

x(j)

)

}

.

(22)

b. For T ∈ (x(j), x(j+1)) and j = 1, . . . , n, we have

Cone(T ) = c2α(1 − e−αx(1)) +
1

n + 1

{

c2

(

j−1
∑

l=1

ln(x(l+1)) − ln(x(l))

x(l+1) − x(l)

+
ln(T ) − ln(x(j))

x(j+1) − x(j)

)

+
c1

T

(

x(j+1) − T

x(j+1) − x(j)

+ n − j

)}

.

(23)

c. For T ∈ (0, x(1)), we have

Cone(T ) = c2α(1 − e−αT ) +
c1

T
α

(

e−αT (T +
1

α
) − e−αx(1)(x(1) +

1

α
)

)

+
c1

T

n

n + 1
. (24)
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It is easy to show that the cost function Cone(T ), as given in Lemma 1, is continuous

for all T . Lemma 2, of which the proof is also given in the Appendix, uses the fact that if

the ratio c2/c1 satisfies a certain condition, then Cone(T ) is first decreasing and thereafter

increasing over (x(j), x(j+1)), j = 0, . . . , n, so that Cone(T ) has a unique local minimum over

each interval (x(j), x(j+1)).

Lemma 2

a. For each interval (x(j), x(j+1)), j = 1, . . . , n, if

x(j+1) + (n − j)(x(j+1) − x(j))

x(j+1)

<
c2

c1
<

x(j+1) + (n − j)(x(j+1) − x(j))

x(j)

(25)

then Cone(T ) has a local minimum in

ξj =
c1

c2

(x(j+1) + (n − j)(x(j+1) − x(j))). (26)

b. For the interval (0, x(1)), if

ξ0 =
c1 +

√

c1(4c2 − 3c1)

2α(c2 − c1)
< x(1) (27)

then Cone(T ) has a local minimum in ξ0.

Denote by Tj the value of T that minimises Cone(T ) over the interval [x(j), x(j+1)], that

is,

Tj = argmin{Cone(T ), T ∈ [x(j), x(j+1)], j = 0, . . . , n}. (28)

As a result of Lemma 2 we now obtain the following analytical expressions for Tj.

A. Let

a =
x(j+1) + (n − j)(x(j+1) − x(j))

x(j+1)

, and b =
x(j+1) + (n − j)(x(j+1) − x(j))

x(j)

. (29)

For each interval [x(j), x(j+1)], j = 1, . . . , n, the value of T that minimises Cone(T ) for

unit n + 1 is

Tj =























x(j) if
c2

c1
≥ b,

x(j+1) if
c2

c1
≤ a,

c1

c2

(x(j+1) + (n − j)(x(j+1) − x(j))) if a <
c2

c1

< b.

(30)
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B. For the interval [0, x(1)], Cone(T ) is minimal for

T0 =















c1 +
√

c1(4c2 − 3c1)

2α(c2 − c1)
if

c1 +
√

c1(4c2 − 3c1)

2α(c2 − c1)
< x(1),

x(1) if
c1 +

√

c1(4c2 − 3c1)

2α(c2 − c1)
≥ x(1).

(31)

As a consequence, the global minimum T ∗

one of the expected costs per unit time for our

NPI-based age replacement with a one-cycle criterion, over the interval [0, r] satisfies

T ∗

one = argmin{Cone(Tj), j = 0, . . . , n}. (32)

Computations involved in deriving this T ∗

one, for given ordered failure times x(1), . . . , x(n) and

assumed value of r > x(n), are straightforward, as every expression is available analytically,

except for computation of the scale parameter α determining the specific Gamma distribution

used for the interval (0, x(1)), which is easily derived numerically from (17).

4 Example

Suppose we have observed five failure times: 4, 6, 10, 11 and 15. Each preventive replacement

costs c1 = 1, while each corrective replacement costs c2 = 10. Assume that an upper bound

for the support of X6 is given by r = 25. We want to find the NPI-based optimal age

replacement time for unit 6 in the sense of minimising Cone(·), so based on the one-cycle

criterion, and using A(5), together with uniformly distributed probability masses within

each of the intervals (x(1), x(2)), . . . , (x(5), r), Gamma distributed probability mass within the

interval (x(0), x(1)), and the observed failure times. Applying (30) and (31) yields the local

optima Ti, and the corresponding values of Cone(Ti), per interval, as given in Table 1. Hence,

the optimal age replacement time is T ∗

one = 2.153, with corresponding Cone(T
∗

one) = 1.0312.

We compare this optimal strategy with the optimal age replacement time in case the

cost function is based on a renewal argument [6, 7]. Using a renewal argument, the long-run

expected costs per unit time, for unit n + 1, are Cr(T ) as given by (3), which can also be

written as

Cr(T ) =
c2 − S(T )(c2 − c1)

T
∫

0

S(x)dx

. (33)
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Ti Cone(Ti)

[0, 4] 2.153 1.0312

[4, 6] 4 1.1561

[6, 10] 6 1.3968

[10, 11] 10 1.5485

[11, 15] 11 1.6877

[15, 25] 15 1.7977

Table 1: Local optima Ti per interval, with corresponding values Cone(Ti)

In NPI-based age replacement with the renewal criterion [6, 7], we used A(n) without adding

further assumptions on the distributions of the probability masses per interval. A lower

(upper) bound for the survival function is then obtained by shifting all the probability mass

in the interval in which x lies to the left (right) end-point of the interval, see [6] for more

details. These lower and upper bounds for the survival function lead to upper and lower

bounds, respectively, for the long-run expected costs per unit time, also called the renewal

upper and lower cost functions. From [6] we know that, for this example, minimising the

renewal upper cost function yields an optimal age replacement time of 4, with corresponding

upper cost function value of 0.75, while minimising the renewal lower cost function yields an

optimal age replacement time of ‘just before’ 4 (see [6] for further details), with corresponding

cost function value of 0.25. Figure 1 shows the cost function based on a one-cycle criterion,

together with the renewal upper and lower cost functions. The optimal age replacement time

based on a one-cycle criterion is less than the optimal age replacement times corresponding

to both the renewal upper and lower cost functions. This is in line with our result (14),

which was proven for the classical situation with the probability distribution for the failure

time assumed known, and with increasing hazard rate. Hence, the result (14) does not

apply in our NPI-based setting, as we do not add any assumption on the hazard rate in our

renewal reward setting. In our simulation study, presented in Section 5, we also consider

this comparison in detail. Figure 1 also illustrates that, in this example, the one-cycle cost

function lies above the renewal upper and lower cost functions for larger values of T . We

also consider this further in Section 5.
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Figure 1: Cost functions for one-cycle and renewal criteria

5 Simulations

In this section we present results from simulation studies, to illustrate our NPI-based method

and to discuss several of its features. The simulations and computations were performed with

the statistical package R [12]. The failure times are simulated from a known probability dis-

tribution, where we have restricted attention to the Weibull distribution with scale parameter

1 and shape parameter β (denoted by W (β, 1)), which has pdf

fX(t) = βtβ−1e(−tβ), t ≥ 0. (34)

This enables us to compare our simulation results for the NPI-based optimal replacement

times according to the one-cycle criterion, denoted by T ∗

one, with the theoretical optimal
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replacement times according to the same criterion but with the known Weibull distribution,

which we denote by T ∗

1 , and which are obtained by minimisation of the cost function C1(T )

as given by (10).

As in the example in Section 4, we also compare our results under the one-cycle criterion

with the results under the renewal reward criterion, by calculating the NPI-based optimal

replacement times for the renewal lower and upper cost functions, denoted by T ∗

ren and

T
∗

ren, respectively. We denote by T ∗

r the theoretical optimal age replacement time under the

renewal reward criterion for the known probability distribution for X, which is obtained by

minimisation of the cost function Cr(T ) as given by (3).

For as far as the replacement costs are concerned, only the ratio c2/c1 is relevant for the

minimum of the cost function, so we have used c1 = 1, without loss of generality. We have

run simulations with c2 equal to 10 or 50. The number of initially observed failure times, n,

equals 10 or 50, and in each case we have simulated 1000 times. An upper bound r = 5 for

the support of Xn+1 is assumed, we checked to ensure that all simulated observations where

less than 5, which was indeed the case.

Studying the simulation results below, great care must be taken with notation, as we

compare two different optimality criteria, for both we consider the NPI-based cost functions

and optima as well as the theoretical ones with the Weibull distribution assumed to be

known, and we also consider the theoretical cost function values at the NPI-based optimal

replacement times, in order to compare the effectiveness of our NPI-based method with

the underlying theoretical model. Throughout, we continue to use notation as introduced

above. For our NPI-based approach, the one-cycle cost functions and corresponding optimal

replacement times have an index ‘one’, whereas the corresponding NPI-based renewal cost

functions and optimal replacement times have an index ‘ren’. The theoretical cost functions

and optima, related to the one-cycle criterion, have an index ‘1’, those related to the renewal

criterion have an index ‘r’. This leads to the following notation.

The optimal theoretical one-cycle expected age replacement costs per unit time are

C1(T
∗

1 ), and the optimal theoretical long-run renewal expected costs per unit time are

Cr(T
∗

r ). Within our NPI-based approach, so explicitly in terms of unit n + 1, the opti-

mal expected age replacement costs per unit time with the one-cycle criterion is Cone(T
∗

one).

Using similar notation, Cren(T
∗

ren) and Cren(T ∗

ren) are the NPI-based optimal renewal upper

and lower long-run expected costs per unit time, respectively. For comparisons in our simu-

lations, we use Λone = (C1(T
∗

one)−C1(T
∗

1 ))/C1(T
∗

1 ), Λren = (Cr(T
∗

ren)−Cr(T
∗

r ))/Cr(T
∗

r ) and

Λren = (Cr(T
∗

ren) − Cr(T
∗

r ))/Cr(T
∗

r ). These Λ′s indicate how good our NPI-based optimal

14



W (2, 1) W (3, 1)

c2 = 10 c2 = 50 c2 = 10 c2 = 50

T ∗

1 0.2357 0.1010 0.3333 0.1895

C1(T
∗

1 ) 8.6416 19.8663 4.5332 7.9272

C1(∞) 17.7245 88.6227 13.5412 67.7059

Λ1(∞) 1.0511 3.4610 1.9871 7.5410

T ∗

r 0.3365 0.1431 0.3825 0.2170

Cr(T
∗

r ) 6.0561 14.0239 3.9494 6.9215

Cr(∞) 11.2838 56.4190 11.1985 55.9923

Λr(∞) 0.8632 3.0231 1.8355 7.0896

Table 2: Theoretical results

replacement times are, compared to the corresponding theoretical optima. Clearly, a low

value of such a Λ indicates that our method performs well, in the sense that our optimal

NPI-based replacement time, which is based directly on the simulated set of failure data,

provides a replacement strategy which is nearly as cost effective as the theoretically best

strategy, which of course in practice is not known as the underlying failure time distribu-

tion will not be known. Hence, these Λ’s are useful performance measures for our method,

illustrating the joint effects of how well our NPI-based age replacement strategies adapt to

the data, and how well the data capture the characteristics of the underlying failure time

distribution for as far as relevant to these inferences.

Table 2 gives the theoretical optimal replacement times T ∗

1 and T ∗

r , and the corresponding

minimal cost function values C1(T
∗

1 ) and Cr(T
∗

r ), for the failure time distributions W (2, 1)

and W (3, 1). We have also included the limiting values of these cost functions for T → ∞,

denoted by C1(∞) and Cr(∞), which relate to no preventive replacement being carried out,

and the values Λ1(∞) = (C1(∞)−C1(T
∗))/C1(T

∗) and Λr(∞) = (Cr(∞)−Cr(T
∗

r ))/Cr(T
∗

r ),

which are indicators of the theoretical losses, relative to the optimal costs, if no preventive

replacements were carried out. The values of Λ1(∞) and Λr(∞) are larger for W (3, 1)

than for W (2, 1), which indicates that preventive replacement is more effective for W (3, 1)

than for W (2, 1). This results from the fact that the variance of the W (3, 1) distribution is

smaller than the variance of W (2, 1), and replacement policies tend to be more effective if

the underlying distribution has a smaller variance [6, 7]. Tables 3 and 4 give the simulation

results for W (2, 1) and W (3, 1), respectively. Tables 5 and 6 show the positions of the
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T ∗

one Cone(T
∗

one) Λone T
∗

ren Cren(T
∗

ren) Λren T ∗

ren Cren(T
∗

ren) Λren

CASE 1-1: W (2, 1), c2 = 10 and n = 10

Mean 0.2669 16.2644 0.0989 0.5454 6.5055 0.1357 0.4793 3.7927 0.0974

Median 0.2526 10.7120 0.0438 0.4978 6.1994 0.0809 0.3949 3.4985 0.0437

Sd 0.1137 48.7599 0.1698 0.2336 2.1377 0.1545 0.5118 1.5494 0.1418

CASE 1-2: W (2, 1), c2 = 10 and n = 50

Mean 0.2602 11.0495 0.0416 0.3921 5.7470 0.0450 0.3613 5.0962 0.0438

Median 0.2552 9.6318 0.0188 0.3715 5.7014 0.0214 0.3438 5.0497 0.0213

Sd 0.0733 6.1479 0.0598 0.1204 1.0545 0.0605 0.1138 1.0055 0.0579

CASE 1-3: W (2, 1), c2 = 50 and n = 50

Mean 0.1078 34.1054 0.1334 0.2375 14.2651 0.1651 0.1836 8.6752 0.1020

Median 0.0999 24.4769 0.0605 0.2244 13.4647 0.1024 0.1737 7.9462 0.0553

Sd 0.0491 37.3376 0.2226 0.0845 4.5893 0.1808 0.0742 3.7394 0.1265

Table 3: Simulation results for W (2, 1)

individual values T ∗

one in relation to the corresponding values T ∗

1 , T
∗

ren and T ∗

ren.

The main conclusions that can be drawn from these simulation results are discussed

below. We also pay attention to the results based on the one-cycle criterion versus those

for the renewal criterion. We refer to [6, 7] for conclusions on such results from similar

simulation studies for the renewal criterion only.

Conclusions from simulations:

1. Tables 3 and 4 show that the means and medians of T ∗

one are smaller than the means and

medians of T
∗

ren and T ∗

ren, which is in line with result (14) (even though, as discussed

before, (14) does not apply here). Tables 5 and 6 show that this not only holds for the

means and medians, but for all individual simulated data sets in our study, although

in several situations the optima according to the different criteria are equal (see point

7 below). The standard deviations of T ∗

one are also smaller than the corresponding

ones for the renewal criterion, indicating less spread in the optima, in particular fewer

relatively large values occur when the one-cycle criterion is used.
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T ∗

one Cone(T
∗

one) Λone T
∗

ren Cren(T
∗

ren) Λren T ∗

ren Cren(T
∗

ren) Λren

CASE 2-1: W (3, 1), c2 = 10 and n = 10

Mean 0.3484 8.1485 0.1225 0.5475 4.8295 0.2064 0.4843 2.6125 0.1529

Median 0.3397 6.9477 0.0609 0.5429 4.6075 0.1343 0.4764 2.4340 0.0888

Sd 0.1160 4.7086 0.1850 0.1527 1.4773 0.2271 0.1518 0.9619 0.1814

CASE 2-2: W (3, 1), c2 = 10 and n = 50

Mean 0.3660 5.6566 0.0565 0.4338 3.8672 0.0589 0.4139 3.3477 0.0535

Median 0.3577 5.2749 0.0249 0.4297 3.8237 0.0315 0.4037 3.2960 0.0276

Sd 0.0814 1.9090 0.0772 0.0919 0.6792 0.0741 0.0920 0.6261 0.0685

CASE 2-3: W (3, 1), c2 = 50 and n = 50

Mean 0.1815 14.6619 0.1356 0.3080 8.3397 0.2185 0.2723 4.5780 0.1590

Median 0.1784 12.2366 0.0558 0.2995 8.0505 0.1185 0.2670 4.2240 0.0799

Sd 0.0613 9.1017 0.2515 0.0819 2.3185 0.2563 0.0835 1.6400 0.2036

Table 4: Simulation results for W (3, 1)

2. Tables 3 and 4, when compared to Table 2, show that the means and medians of

T ∗

one are pretty close to the corresponding T ∗

1 , which indicates that our method adapts

well to the underlying distribution for data sets of size 10 and 50, as used in this

simulation study. For the corresponding values based on the renewal criterion, there is

a noticeable improvement in the adaptation to the underlying distribution for n = 50

over n = 10. From this study, it seems that our NPI-based method adapts better to

the underlying distribution for the one-cycle criterion than for the renewal criterion, in

particular for smaller values of n (see also points 5 and 6 below). Tables 5 and 6 show

that, for individual cases, T ∗

one can be smaller or larger than the theoretical T ∗

1 based

on the underlying failure time distribution. This is caused by our NPI-based method

adapting well to the sampled data, and the randomness in such simulated data.

3. The means and medians of Cone(T
∗

one) are larger than C1(T
∗

1 ). However, for individual

cases (not shown), Cone(T
∗

one) can also be smaller than C1(T
∗

1 ). The means and medians

of Cone(T
∗

one) are also larger than the corresponding values of Cren(T
∗

ren), Cren(T
∗

ren),

and Cr(T
∗

r ).
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Case 1-1 Case 1-2 Case 1-3

T ∗

1 T
∗

ren T ∗

ren T ∗

1 T
∗

ren T ∗

ren T ∗

1 T
∗

ren T ∗

ren

T ∗

one > 562 0 0 607 0 0 495 0 0

T ∗

one = 0 0 0 0 324 451 0 0 0

T ∗

one < 438 1000 1000 393 676 549 505 1000 1000

Table 5: The positions of the NPI-based T ∗

one for W(2,1)

Case 2-1 Case 2-2 Case 2-3

T ∗ T
∗

ren T ∗

ren T ∗ T
∗

ren T ∗

ren T ∗ T
∗

ren T ∗

ren

T ∗

one > 514 0 0 632 0 0 437 0 0

T ∗

one = 0 0 0 0 562 676 0 0 0

T ∗

one < 486 1000 1000 368 438 324 563 1000 1000

Table 6: The positions of the NPI-based T ∗

one for W(3,1)

4. The medians of T ∗

one are smaller than the corresponding means, which is due to the

fact that the distributions of the T ∗

one’s are skewed to the right. In our earlier work on

NPI-based age replacement with the renewal criterion [6, 7], this was also discussed,

and we regard the medians as better indicators of the performance of our methods

than the means.

5. The means and medians of Λone are pretty small, indicating that our method tends to

adapt well to the data, in the sense that the resulting NPI-based optimal replacement

times would not lead to large losses compared to the theoretically optimal replacement

times. The distributions of the values Λone from our simulations are highly skewed to

the right, meaning that many values are very close to 0, but some are large (which is

shown both by the large differences between corresponding means and medians, and

the large standard deviations). Due to the nature of the one-cycle cost function, large

values of Λone occur particularly if the NPI-based method suggests relatively small

preventive replacement times, which occurs if the simulated data happens to include

small failure times. For increasing n (compare Cases 1-1 and 1-2, and Cases 2-1 and 2-

2), the Λone tend to decrease, which shows that our method provides better adaptation

to the underlying distribution for larger values of n. In particular, for larger n the effect
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of very small simulated data values decreases, so the NPI-based preventive replacement

times do not become very small as easily as for n = 10.

6. Comparing Cases 1-2 and 1-3, and Cases 2-2 and 2-3, we see that the means and

medians of Λone increase with c2, and also the standard deviations increase noticeably.

For larger corrective replacement costs, one is more careful and tends to plan earlier

preventive replacement. Therefore, if the simulated data include one or more very

small observed failure times, the NPI-based age replacement time is also very small,

leading to large Λone.

7. If n is small or c2/c1 is large (Cases 1-1, 1-3, 2-1 and 2-3), T ∗

one is smaller than T
∗

ren

and T ∗

ren (see Tables 5 and 6). However, if n is not too small and c2/c1 not too large,

T ∗

one is quite often equal to T
∗

ren or T ∗

ren (Cases 1-2 and 2-2). This follows from (30)

and (31) and the fact that the renewal upper and lower cost functions are minimised

in the right end-point of each interval (or ‘just before’ it, see [6]).

6 Concluding Remarks

The method presented in this paper is fully adaptive to available failure data, but therefore

requires availability of such data, which may often be unrealistic. However, one should

not forget that the classical method assumes full knowledge of an underlying failure time

distribution, which is even more far stretched. Of course, if such failure data are available, our

method is of direct use, either on its own or, which may be more attractive, in combination

with more established methods for age replacement [1] or alternative adaptive methods

[3, 4, 5]. If different methods result in pretty similar preventive replacement times, the

data strongly support the additional assumptions underlying the other methods, and it is

straightforward to decide on a good replacement policy. If, however, these different methods

lead to rather different optimal replacement times, our method has the advantage of being

based on quite minimal modelling assumptions, so the resulting strategies from the other

models are more influenced by modelling assumptions, which one should then try to verify

or study in more detail. Our method can also be generalized, relatively straightforwardly, to

situations where the observed data include some right-censored observations, which may for

example result from earlier preventive replacements. This can be achieved by replacing A(n)

by the generalized assumption presented by Coolen and Yan [13], which similarly provides

predictive probabilities for the failure time of the next unit based on such data.

19



A key motivation for this work, as alternative to our recent NPI-methods for age replace-

ment based on the renewal criterion [6, 7], is the natural use of the one-cycle criterion for

fully adaptive methods, with the idea that the replacement time for unit n+2 will also adapt

to the information that we would get on unit n + 1 within the process. We have not studied

this adaptation for further future units in this paper, but we did consider it explicitly in

[7] for the renewal criterion. Clearly, for smaller n the extra information from unit n + 1

has relatively more influence on the optimal replacement time for unit n + 2 than for larger

values of n. As far as we are aware, no detailed comparisons of different optimality criteria

for age replacement have been published. In practice, it may not be precisely clear which

criterion is most suitable, there may well be other criteria that fit better with some particular

applications. In addition to direct comparisons of optimal replacement times according to

different criteria, as presented in Sections 2 and 5, it is also of interest to study robustness

of replacement strategies with regard to different optimality criteria, both within NPI and

more generally.

Of course, in the literature many variations to age replacement have been studied, and

many of these can also be studied from NPI perspective. One such variation is so-called

‘opportunity-based age replacement’ [14], where it is acknowledged that one may not be able

to plan preventive replacement at any moment, but can only perform such replacement at

randomly occurring opportunities. In [15] we studied this from NPI perspective, restricting

to the renewal criterion, where again the methods seem to provide good adaptation to the

failure data.
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Appendix

Proof of Lemma 1

a. For T = x(j) and j = 1, . . . , n + 1, we have

Cone(x(j)) =

x(1)
∫

0

c2

x
fXn+1(x)dx +

j−1
∑

l=1

x(l+1)
∫

x(l)

c2

x
fXn+1(x)dx +

c1

T

r
∫

x(j)

fXn+1(x)dx

= c2

x(1)
∫

0

1

x
α2xe−αxdx +

j−1
∑

l=1

x(l+1)
∫

x(l)

c2

x

1

(n + 1)

1

(x(l+1) − x(l))
dx +

c1

T

(

n + 1 − j

n + 1

)

= c2

x(1)
∫

0

α2e−αxdx +

j−1
∑

l=1

c2

(n + 1)(x(l+1) − x(l))

x(l+1)
∫

x(l)

1

x
dx +

c1

x(j)

(

n + 1 − j

n + 1

)

= c2α(1 − e−αx(1)) +
1

n + 1

{

c2

j−1
∑

l=1

ln(x(l+1)) − ln(x(l))

x(l+1) − x(l)

+ c1

(

n + 1 − j

x(j)

)

}

. (35)

b. For T ∈ (x(j), x(j+1)) and j = 1, . . . , n, substituting (20) into

Cone(T ) =

x(1)
∫

0

c2

x
fXn+1(x)dx +

j−1
∑

l=1

x(l+1)
∫

x(l)

c2

x
fXn+1(x)dx +

T
∫

x(j)

c2

x
fXn+1(x)dx

+

x(j+1)
∫

T

c1

T
fXn+1(x)dx +

r
∫

x(j+1)

c1

T
fXn+1(x)dx (36)

yields the expression given in Lemma 1b.

c. For T ∈ (0, x(1)), substituting (20) into

Cone(T ) =

T
∫

0

c2

x
fXn+1(x)dx +

x(1)
∫

T

c1

T
fXn+1(x)dx +

r
∫

x(1)

c1

T
fXn+1(x)dx (37)

yields the expression given in Lemma 1c.
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Proof of Lemma 2

a. For T ∈ (x(j), x(j+1)), j = 1, . . . , n, we have

dCone(T )

dT
=

1

n + 1

[

c2

T (x(j+1) − x(j))
−

c1

T 2

(

x(j+1) − T

x(j+1) − x(j)

+ n − j

)

−
c1

T (x(j+1) − x(j))

]

=
1

(n + 1)T (x(j+1) − x(j))

[

c2 −
c1x(j+1)

T
−

c1(n − j)(x(j+1) − x(j))

T

]

(38)

Hence, we have that
dCone(T )

dT T=ξj

= 0 where

ξj =
c1

c2
(x(j+1) + (n − j)(x(j+1) − x(j))) (39)

while
dCone(T )

dT
< 0 for T ∈ (x(j), ξj) and

dCone(T )

dT
> 0 for T ∈ (ξj, x(j+1)) as long as

x(j) <
c1

c2
(x(j+1) + (n − j)(x(j+1) − x(j))) < x(j+1), (40)

that is, as long as the ratio c2/c1 satisfies the condition given in Lemma 2a.

b. For T ∈ (0, x(1)), we have

dCone(T )

dT
= c2α

2e−αT − c1α
2e−αT −

c1

T 2
e−αT − α

c1

T
e−αT +

c1

T 2
αe−αx(1)(x(1) +

1

α
)

−
c1

T 2

n

n + 1

= e−αT
(

(c2 − c1)α
2 −

c1

T 2
−

c1

T
α
)

(41)

where we have used the fact that α has been chosen such that it satisfies (17). Hence,

we have that
dCone(T )

dT T=ξ0

= 0 where

ξ0 =
c1 +

√

c1(4c2 − 3c1)

2α(c2 − c1)
(42)

while
dCone(T )

dT
< 0 for T ∈ (0, ξ0) and

dCone(T )

dT
> 0 for T ∈ (ξ0, x(1)) as long as

0 < ξ0 < x(1).
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