Moral dominance relations for program comprehension

Simon C Shaw', Michael Goldstein', Malcolm Munro®?, Elizabeth Burd?

! Department of Mathematical Sciences, University of Durham, Science Laboratories,
South Road, Durham, DH1 3LE, UK

2 Research Institute in Software Evolution, Department of Computer Science, University
of Durham, Science Laboratories, South Road, Durham, DH1 SLE, UK

3 Corresponding author. E-mail address: malcolm.munro@durham.ac.uk Tel.: +44-191-
374-2634

ABSTRACT

Dominance trees have be used as a means for reengineering legacy systems into
potential reuse candidates. The dominance relation shapes the form of the reuse
candidates which are identified as the strongly directly dominated subtrees. We
review the approach, illustrating how the dominance tree fails to show the re-
lationship of the strongly directly dominated nodes to the directly dominated
nodes. We propose introducing a relation of generalised conditional independence
which strengthens the argument for the adoption of the potential reuse candi-
dates suggested by the dominance tree by explaining their relationship with the
directly dominated nodes. This leads to an improved dominance tree, the moral
dominance tree, which helps aid program comprehension available from the tree.
We also argue that the generalised conditional independence relation identifies

potential reuse candidates that are missed by the dominance relation.

Keywords: Dominance tree; generalised conditional independence; directed graphical model;

reuse candidate; reengineering; program comprehension.

1 Introduction

For many companies, software drives the business and provides the only true description
of their operations. As businesses evolve, so should the software in order to adapt to this
change. Thus, it is necessary to perform software maintenance, ‘the modification of software
products after delivery to correct faults, to improve performance or other attributes, or to
adapt the product to a changed environment’, [12]. Program comprehension, in this setting,
involves acquiring knowledge about programs, as well as any remaining documentation and
operating procedures. We aim to both understand the software through visualisations of
models of it, such as the call structure, and to identify areas of the software which may
be remodularised into separate modules as a means of aiding the maintenance process by
localising the impacts of change. Further, these identified areas are potentially reusable and
as such we refer to them as potential reuse candidates.

In this paper we investigate current approaches to the identification of potential reuse
candidates via an abstraction of the calling structure called the dominance tree. We then
illustrate potential difficulties with the approach and argue how the adoption of a relation
of conditional independence can strengthen the case for the adoption of the potential reuse
candidates suggested by the dominance tree whilst also aiding comprehension of the calling

structure in areas unexplained by the dominance tree.

2 Program comprehension using dominance trees

2.1 The call graph

The calling structure of a piece of software provides a high level description of the flow of the
program. This structure describes the procedural units and the relationships between them.
The procedural unit of C is termed a function; it is termed a paragraph in COBOL and a
method in Java. In this paper we use the generic term ‘procedure’ and the relationships
between procedures are termed ‘calls’. We visualise the calling structure by presenting it as
a graph. All relevant graph theory notation used in this paper is summarised in Appendix

I

Definition 1 A call graph is a directed graph, G = (V,E). The finite set of nodes, V,
consists of the procedures that may be called in the program. For any two procedures f,
g € V if there is a potential call to g by f then the arc (f,g) appears on the graph. The

complete collection of arcs is denoted by E.

Without loss of generality, we shall assume that the call graph is a directed acyclic graph
(DAG). The representation as a DAG may be obtained from the call graph by collapsing

every strongly connected subgraph into one node; see Section 2 of [1] for further details.

Definition 2 A root node of a call graph G = (V, E) is a procedure which is not called by

any other procedure.

Since a call graph is a DAG, it must have at least one root node. A root node is often called

an entry/exit point. Figure 1 shows an example of a very simple call graph; it has a single

root node A000.

Figure 1: A simple call graph. Procedure A000 calls procedures B000, C000 and D000.
Procedure B000 calls procedures B100 and B200 and so on.

The layout of the nodes in Figure 1 and the paucity of calls make it straightforward to
examine the potential flow of code in the program. For example, by removing the procedure
A000 and the three calls it makes from the graph we are left with a subgraph of G which
consists of three disconnected pieces of code: the ‘B-code’, B* = {B000, B100, B200}; the
‘C-code’, C* = {C000, C'100, C200, C'110}; and the ‘D-code, D* = {D000, D100, D200,
D110}. Intuitively, it would seem that these three collections are unconnected and may
be assessed separately. A software maintainer interested only in B* need not understand
C* or D* for once B0O0O0 has been called, the execution of the program exists purely in the
B* until B000 is exited. Such a conclusion seems intuitively clear from the call graph, but
is there a way we can formalise it and identify these collections of procedures where each
collection is separate from any other? Moreover, the identification of possible collections and
understanding of the call graph of Figure 1 was aided by the simplicity of the call graph. It

will be less clearcut in call graphs that may have thousands of procedures and calls.

One approach is to make a further abstraction of the call structure by converting the
call graph into a directed tree. This may be achieved by using the dominance relation; the

directed tree is termed the dominance tree.

2.2 The dominance tree

The dominance tree aims to assist the program comprehension by reducing information
overload during the early stages of comprehension and by identifying sections of code which
may be remodularised into single modules. The dominance tree is a directed tree over the
collection of procedures on the call graph G = (V, E). It is formed using the relation of

strong direct and direct dominances, [11].

Definition 3 If f € V is a root node of the call graph and procedures g,h € deg(f), the
descendents of f on G, then procedure g dominates h if and only if every path f — h on G
intersects g. We say that g directly dominates h if and only if all procedures that dominate
h dominate g. g strongly directly dominates h if and only if g directly dominates h and is
the only procedure that calls h.

The dominance relation may be viewed as a graph separation (see Appendix I) property. g
dominates h if and only if g separates f from h on G, that is g is a (f, h)-separator. Notice
that whilst the separation property may be applied to any three collections of nodes, the
dominance relation applies to three nodes, one of which is a root node. The direct dominance
relation identifies, for each node, a single dominator from the collection of dominators of that

node.

Definition 4 The dominance tree corresponding to a root node f is the graph Gp, = ({f}U
deg(f), Ep,) formed from the call graph G = (V,E). For any two nodes g, h € deg(f),
(9,h) € Ep, if g directly dominates h. The node h is shaded if g only directly dominates h.

Since Gp, is a tree, there is an easy way to provide the visual representation: we may
place each node immediately below its parent. The dominance tree may aid program com-
prehension by reducing the complexity of visualisation of the call graph. If G has a single
root node, f, then {f} Udeg(f) =V and thus Gp, includes all of the procedures of G; we
write Gp, = Gp. Work on dominance trees have been carried out by [5, 9, 3, 4]. Figure 2
gives the dominance tree corresponding to the call graph of Figure 1.

Figure 1 has a single root node and so there is a single dominance tree, Gp. We shade

the nodes which are not strongly directly dominated. For example, D000 strongly directly

Key:
Strong direct dominance
Direct dominance only

Figure 2: The dominance tree corresponding to the call graph of Figure 1.

dominates D100, whilst D110 is only directly dominated by D000. Nodes that are only
directly dominated have become disinherited from some, possibly all, of their parents: they
had at least two parents and may not be directly dominated by one of their parents. In Figure
2, the node D110 is directly dominated by D000, but D000 is not a parent of D110 on Figure
1. Thus, Ep ¢ E: the dominance tree is not merely the call graph with some edges removed.
The nodes which are only directly dominated indicate a more complex relationship in the call
graph than that shown on the dominance tree and so information is lost in the abstraction
from call graph to dominance tree at the only directly dominated nodes. Intuitively, the
greater the proportion of shaded nodes, the more problematic program comprehension may

be from the dominance tree.

2.3 Identifying reuse candidates

One of the aims of the dominance tree is to identify potential reuse candidates within the
software which may then be reengineered into separate modules. This modularisation helps
make the software more flexible and maintainable.

Burd & Munro [1] describe a 10 step method for reengineering legacy systems into poten-
tial reuse candidates. The identification of potential reuse candidates is made by a dominance
tree analysis and a case study of the approach may be found in [2]. In this subsection, we
review the approach and suggest possible limitations to the understanding gained from the
approach.

Burd & Munro [2] write that ‘the directly dominates and strongly directly dominates

relations define where re-modularisation can occur. For instance, where directly dominates

relations are identified this means that calls are made to other nodes within the branch of
the tree’. In Figure 2, the node C'110 is only directly dominated which indicates that calls
are made to it by either C'100 or C200. From Figure 1, we can confirm that both C'100 and
C200 call C110.

We wish to consider subtrees on the dominance tree. For a dominance tree, Gp,, and
any node h € Vp,, we are interested in the subtree consisting of the collection of nodes
{h} Udep,(h), the node h and all its descendents on Gp,. We denote this subtree by h*,
that is h* = {h} Udep, (h). The dominance relation means that the only calls from Vp, \ h*
to h* on G are to h itself. If h is strongly directly dominated then there is a single call to h
and this is shown on Gp 3 Gp ; illustrates how h* is accessed by the other nodes, Vp ; \ h*.
In this case, we term h* a ‘single call in’ subtree.

We now demonstrate, through a series of examples, the strengths and weaknesses of anal-

ysis based on the dominance tree.

Example 1: All children are strongly directly dominated

The strong direct dominance relation thus identifies ‘single call in’ subtrees and Burd
& Munro [1] identify these subtrees as areas of potential reuse. Figure 1, and the resulting
dominance tree, Figure 2, are discussed by Burd & Munro ([1]; Figure 4). The three subtrees
B000* = B*, C000* = C*, and D000* = D* are identified as potential reuse candidates.
The strong roots of these subtrees (B000, C000, and D000 respectively) are all strongly
directly dominated by A000 and so these are all ‘single call in’ subtrees.

The dominance relation identifies that, for example, once B000 has been called by A000,
execution cannot switch to either C* or D* until B000 is exited. The analogous statement
applies for C000 and D000. Moreover, since B* UC*UD* = V' \ A000, we may deduce from
the dominance tree that once B000 has been called by A000 execution remains solely in B*
until BOOO is exited. The similar statement applies for C000 and D000. We determine from
the dominance tree that the subtrees B*, C*, D* constitute three collections of code for which
the calling structure does not deviate from the collection it enters; there are no interrela-

tionships between B*, C*, and D* and we consider these as three potential reuse candidates.

Example 2: All children are either strongly directly dominated or are service

candidates

Section 3.2 of Burd & Munro [2] considers the reuse candidates available for the call
graph obtained by adding a call between the procedures B0O00 and C110 on Figure 1. This
creates a new path A000 — C'110 via B000 which does not pass through C000. C110 is no
longer dominated by C000; it is directly dominated by A000. The resultant dominance tree

is shown in Figure 3, see also Figure 3 of [2].

Key:
Strong direct dominance
Direct dominance only

Figure 3: The dominance tree resulting from the call graph of Figure 1 with an additional
call between B000 and C'110.

The three subtrees B000* = B*, C000* = C* \ C'110, D000* = D* are all ‘single call
in’ subtrees and so we know, from Figure 3, that there are no calls made between these
subtrees. We may identify these as potential reuse candidates. However, B* U C000* U D* =
V'\ {4000, C110}: we don’t know the relationship between the three ‘single call in’ subtrees
and the directly dominated node, C'110.

Consider a dominance tree Gp ; and any node h € Vp, which is only directly dominated.
Then h has at least two parents on G. Suppose g € Vp, directly dominates h, then g must
dominate every node in pag(h). Thus, pag(h) C g* \ h* and there is at least one node
g € dep,(g) \ h* which calls h.

Hence, in Figure 3, at least one of the three candidates B*, C*\ C'110, and D* will access
C110. C110 is termed a service candidate: a single procedure that can be accessed by one
or more of the reuse candidates. In this case, C110 is accessed by B* and C* \ C110. If a
change is made to C'110, then the effects of this change may ripple up C* \ C'110 or transfer
to B*, as Burd & Munro ([2]; p404) point out ‘ripple effects are additionally restricted to
the two candidates in this case B000 and C000’.

This last statement however cannot be deduced from Figure 3: the dominance tree does
not exhibit how a service candidate is called by the potential reuse candidates which makes
ripple effects hard to map. The dominance tree only tells us that at least one of the candidates
access the service candidate; we need to return to the call graph to determine this interaction.

The limit of the dominance tree is that if a node A is only directly dominated by g then it
is called by at least one node § € dep,(g) \ h*. We do not know whether g itself calls h on G.
This leads to a lack of uniqueness of the dominance tree: different call graphs lead to the same
dominance tree. The same dominance tree is produced by setting pag(h) = g* \ h* rather
than the actuality of pag(h) C g* \ h*. The lack of uniqueness becomes more apparent the
larger g* \ h* is. This could lead to difficulties in identifying reuse candidates and mapping
ripple effects. Consider that instead of adding the arc (B000,C110) to the call graph of
Figure 1, we added the arc (A000,C110). The dominance tree is identical to that shown in
Figure 3 but in this case the only access to the service candidate C'110 is from C* \ C110.
We might argue that the reuse candidates of Figure 2 remain valid here, namely B*, C*,
and D*. Any member of B* does not access C* or D* and similarly for members of C* and
D*. Ripple effects of a change to C'110 are restricted to C* candidate and the root node.
This difference in ripple effects is not apparent on the dominance tree and requires further
study of the call graph, suggesting a failure of the dominance tree to map the ripple effects.

As a further example of the potential difficulty of mapping ripple effects, consider adding
the calls to Figure 1 so that every node calls C'110. This is possible since A000* \ C110* =
V' \ C110. The dominance tree is still identical to Figure 3 but ripple effects from C110
are now no longer restricted. These illustrations of the lack of uniqueness of the dominance

tree suggest that the dominance tree may not be a good vehicle for investigating ripple effects.

Example 3: Failure to isolate reuse candidates

A further example considered in [2] concerns the call graph obtained by adding a call
between B000 and C'000 on Figure 1. The result is that C'000 is no longer strongly directly
dominated by A000 for it is called by more than one node. The resultant dominance tree
for this scenario is given by Figure 4, see also Figure 4 of [2].

The subtree C000* = C* is no longer a ‘single call in’ subtree since the strong root
of this subtree, C000, is only directly dominated. It is called by at least two members of
A000* \ C000* = V' \ C*. From Figure 4, we can not deduce whether A000 calls C000. The

Key:
Strong direct dominance
Direct dominance only

Figure 4: The dominance tree resulting from the call graph of Figure 1 with an additional
call between B000 and C000.

dominance relation means that the nodes in V'\ C* may only call C000 of the nodes contained
in C*. We term C™* a ‘multiple calls in’ subtree. As with the previous two examples, B* and
D* remain ‘single call in’ subtrees and so do not call one another. Their relationship with
C* is not available on the dominance tree. An intuitive viewing of the call graph suggests
two initial reuse candidates: B* U C* and D* but the dominance tree does not suggest an
automated way of obtaining these candidates. As Burd & Munro [2] point out ‘this represents
a failure to properly isolate candidates at an appropriate level of granularity’. Notice that
having called B000, execution does not switch between C* and the single nodes B100 and
B200. We might regard C* as being a separate module within the module B* U C*. This
isolation is not apparent on the dominance tree.

Further, an additional call between D000 and C'000 on Figure 1 yields the identical dom-
inance tree, Figure 4, but in this instance we would suggest the potential reuse candidates
to be B* and C* U D*. The same dominance tree is also obtained by adding the calls
(B000,C000) and (D000,C000) when we might suggest no reuse candidate as the code is
all interlinked via C'000. Observe that there may still be reuse candidates, for once C'000 is

called, execution remains within C*.
Example 4: The problem of multiple root nodes

The dominance relation is determined from a specific root node. Where a call graph has

multiple root nodes multiple dominance trees must be generated and the same procedures

may appear on different root nodes. Burd & Munro ([2]; Section 4) found this problem in case
studies of C code. They write that ‘within the case studies, the largest number of dominance
trees identified from a single code file was 41 ... The fact that multiple dominance trees are
generated can be problematic if procedures are shared between individual dominance trees.
In all cases identified through the case study, this was found to be the case.” For example,

consider adding a procedure, C001, to Figure 1 which calls B200 and C100 but is not called

itself. We also add a call between B000 and C110. The resulting call graph is given in Figure
5.

Figure 5: The call graph obtained by adding the procedure C'001 which calls B200 and C'100
and a call between B000 and C'110 to the call graph of Figure 1.

Figure 5 thus has two root nodes and so will yield two dominance trees: Gp ,,, from the

root node A000 and Gp,,,, from the root node C001. Figure 6 shows the dominance trees.

B200 ‘ ‘ C100 ‘

[B0 | [B2 | | cio | | coo | | pwoo | c110

Key:
Strong direct dominance
Direct dominance only

Figure 6: The dominance tree resulting from the call graph of Figure 5.

Notice that Gp,,,, is identical to Figure 3. C110 is strongly directly dominated by C'100
on Gpy, but only directly dominated by A000 on Gp 00 Do Suggests {C'100,C110} as

a reuse candidate and Gp,,, suggests C*\ C110 as a reuse candidate. It is not clear how we

10

should combine the two; the dominance relation provides no guidance for the relationship

between Gp 00 and Gpggos -
Example 5: Failure to capture potential reuse candidates

We consider the call graph obtained from Figure 1 by adding two procedures: the proce-
dure C001 which calls C000 and C200 and is called by A000, and the procedure D001 which
calls D000 and D200 and is called by A000. This call graph is shown in Figure 7.

A000

B00O CO000 Co01 D000 D001

B100 B200 C100 C200 DlOO

Figure 7: The call graph obtained by adding the procedure C001 which calls C000 and C'200
and is called by A000 and the procedure D001 which calls D000 and D200 and is called by
A000 to the call graph of Figure 1.

The straightforward layout of the call graph may lead one to suggest three reuse candi-
dates: B*, C* U C001, and the D* U D001. Execution never transfers between these three

subtrees. The corresponding dominance tree is shown in Figure 8.

[Bioo | [B0 | [cuwo

Key:
Strong direct dominance
Direct dominance only

Figure 8: The dominance tree resulting from the call graph of Figure 7.

Observe how the C* U C001 and D* U D001 decompose in the identical way on Figure 8

despite the difference in the calling structure. There are children of A000 on Figure 8 which

11

are only directly dominated and are not service candidates. The change from strong direct
dominance to only direct dominance of much of C* between Figure 2 and Figure 8 is caused
by the node C'001 and likewise D001 plays a similar role for D*; the dominance tree does not
illustrate the separations of Figure 7. Recall that following Definition 3 we remarked how
the dominance relation is a graph separation applied to individual nodes. Graph separation
may be applied to collections of nodes as well as single nodes. For example, on Figure
7, {C100,C200,C110} are separated from A000 by {C000,C001} and only A000 (out of
the remaining nodes) calls the set {C000,C001}. This separation seems to identify the set
C* U C001 as a potential reuse candidate. It may be argued that the dominance relation
restricts our identification of reuse candidates by considering separations of individual nodes

rather than separations involving collections of nodes.

These examples suggest that we need a more informative graphical representation to
support program comprehension which clarifies the sense in which we may identify potential
reuse candidates from the dominance tree and supports other candidates which are failed to

be detected on the dominance tree. We now develop such a representation.

3 Generalised conditional independence representations
for the software calling structure

3.1 Procedures and uncertainty in the calling structure

For simplicity of exposition, we regard a piece of software as consisting of a database, D, and
a collection of procedures which may be called and which operate on the database. We view
the database as encoding the state of the program (eg. the variables). Having been called,
each procedure is viewed as processing an input in order to perform an action. Following
the completion of this action, the control of the program returns to the procedure which
made the call. For example, the action may be to read an item in the database or write
to the database. The result of the action is thus functionally dependent on the state of the
database immediately prior to the call being made.

Suppose that on a call graph G = (V, E), a call is made to f € V by g € V with an
input a. Further, assume that immediately prior to the call to f by g, the database is in
state D,. Having processed the input, the result of the action is fp,(a) and the state of the
database is Dy(,) and control is returned to g. There is uncertainty however as to whether

the procedure has operated correctly or whether there is an error in the procedure. Having

12

processed the input a, we observe the result of the action to be fp_(a) and the state of the
database to be D) We have uncertainty as to whether the procedure has performed the
action correctly, that is whether fp,(a) = fp,(a) and also whether the database has been

left in the desired state, that is whether D Fla) = Dy (y)-

Definition 5 The procedure f is said to work for input a if, for all possible database states,

D,, we have
fp.(a) = fp,(a) and Doy = Di(a) (1)
If the two conditions do not both hold, then the procedure f is in error for a.

Notice how this definition makes the error specific to the procedure. Thus, if an earlier
procedure has caused an error in the database, f may still work for a if it can cope with this
error. For example, suppose we have a piece of software operating an accounts system for a
bank. Suppose procedure g has the function of adding a given amount to a specific account
but instead adds that amount to each account. Then g performs its action correctly (the
account in question does have the given amount added) but does not leave the database in
the correct state (as every account has had the given amount added). If procedure f is then
called with the task of reading the amount in a different account it would not be in error if
it correctly read this value, even though the value is incorrect.

For each procedure, f, we define the set of possible inputs by A. We make the following

definition.

Definition 6 The procedure f is said to work if it works for each input a € A. If there is

an input a such that the procedure f is in error for a, then the procedure is said to not work.

Definition 6 allows us to consider the potential propagation of errors. Suppose that procedure
g does not work, that is there is an input & for which g is in error for. g receives input from
the procedures that call it. Assume (f,g) € E and f is called with input a and that this
causes g to be called with input a@. Since g is in error for @, this will cause either the result
of the action to be incorrect or the database to be corrupted. There is an error present
when control is returned to f: the error will propagate from g to f, from child to parent.
In general, the error may only potentially propagate from child to parent: it depends upon
whether the child is called with an input for which it is in error for. If (f,g) ¢ E then an

error in g cannot directly propagate to g.

13

Definition 7 For a call graph G = (V, E) with f, g € V we construct the error propagation
graph G = (V, Eg) where

Er = {(9,f):(f,9) € E}. (2)

The error propagation graph G = (V, Egr) maps the potential physical propagation of errors.
It is the call graph with the arcs reversed. Notice that whilst we talk here about error
propagation, we are interested in actions where a change in the child node on the call graph
could cause a change in the parent action. We view ripple effects as being such an action.
We may view each procedure as a well defined random quantity having two possible states:
1 if the procedure works and 0 if the procedure does not work. The set V', of procedures of
the call graph, may also be considered as a collection of random quantities. If we learn the
state of a procedure, g € V, for example g = 1 indicating that the procedure g is working,
then this may enable us to gain information about the state of another procedure h € V.
Recall the simple example of a call graph given in Figure 1 and the potential propaga-
tion of errors. We have already noted that once a call has been made to D000, calls are
restricted to the set {D100, D200, D110} until execution finishes and procedure D000 is ex-
ited. Suppose that D100 is in error. This error may propagate from D100 directly to D000,
for example by D000 calling D100 with an input for which D100 is in error for. The error
may then propagate to A000, but only via D000. If the state of D000 is already known, we
would not expect to learn anything further about A000 from D100. Thus, knowledge of the
state of D000 separates the uncertainty, in terms of whether the procedure is working, be-
tween A000 and D100. We may represent such separations using the concept of conditional

independence as follows.

3.2 Generalised Conditional Independence

A random quantity X is defined to be probabilistically independent of Y if knowledge of the
value of Y does not affect the uncertainty about X: there is no influence between X and
Y. X is probabilistically dependent of Y if knowledge about Y does affect the uncertainty
about X. Suppose that X and Y are (possibly vector valued) random quantities with joint
probability density function p(-). Adopting the notation of Dawid [7], we write X 1LY to
denote that X and Y are probabilistically independent, p(z,y) = p(z)p(y), or equivalently
that p(z|y) = p(z). where p(z|y) is the conditional density of X given Y = y. For random
vectors X, Y, Z, we say that X is conditionally independent of Y given Z, written (X 1L.Y")|Z,

if p(z,y|2) = p(x|2)p(y|z), or equivalently if p(z|y, z) = p(z|2).

14

We may interpret X 1Y as meaning that any information we receive about Y does not
alter our uncertainty about X, whilst (X 11Y)|Z may be understood as having observed Z,
any information we learn about Y does not alter our beliefs about X.

Dawid [7], [8] developed probabilistic conditional independence as a basic intuitive con-
cept with its own axioms. He showed that ‘many of the important concepts of statistics
(sufficiency, ancillarity, etc.) can be regarded as expressions of conditional independence,
and that many results and theorems concerning these concepts are just applications of some
simple general properties of conditional independence.” Smith [17] discusses a generalised
version of the conditional independence property writing that ‘in a Bayesian statistical or
decision analysis it is common to be told that, given certain information W, a variable X
will have no bearing on another Y. It is often quite easy to ascertain this type of informa-
tion from a client for various combinations of variables. Such information can be gathered
before it is necessary to quantify subjective probabilities which, in contrast, are often very
difficult to elicit with any degree of accuracy.” Pearl [16] agrees, arguing that * the notions of
relevance and dependence are far more basic to human reasoning than the numerical values
attached to probability judgements’.

Smith [17], [18] extends [7], [8] and shows that any tertiary relation (-L-)|- satisfying the
following three properties, for any collections W, X, Y, Z, will behave computationally as

a generalised conditional independence (g.c.i.) property.

1L (WX)XUY; (3)

2. (WLX)|Y if and only if (X LW)|Y; (4)
(W1LY)|Z;

3. (WX UY)|Z implies and is implied by the pair of conditions {(WJ.LX)|Y Uz (5)

Equation (3) expresses the property that ‘once X is known (along with anything else Y),
then no further information can be gained about X by observing W.” Equation (4) is the
symmetry relation: ‘if once Y is known, W is uninformative for X, then X is uninformative
for W, having observed Y.” Equation (5) may be read as ‘if having observed Z, W is
uninformative for both X and Y, then equivalently, having observed Z, W is uninformative
about Y and, having observed Y and Z, W conveys no information about X.’

We may construct the g.c.i. relation qualitatively and examine its implications in an
identical manner to those for probabilistic conditional independence, or use the relation for
other properties which represent types of lack of influence quantitatively without requiring

the use of the full probabilistic conditional independence. Goldstein [10] constructs a tertiary

15

property satisfying equations (3) - (5) based on the partial quantitative specification of
beliefs.

3.3 Directed graphical model

A collection of conditional independence relations may be represented graphically as follows.
The nodes of the graph are random quantities; nodes are joined by directed arrows if there

is a possible direct dependency between the nodes.

Definition 8 A directed acyclic graph, G = (V, E), is a directed graphical model if, for any
node X; € V and any X; ¢ deg(X;), the ancestors of X; on G, we have

X lLX|pag(X5), (6)

where (-1L-)|- is a generalised conditional independence property satisfying relations (3) - (5).

pag(X;) represents the set of parents of X; on G.

There are a number of equivalent definitions of a directed graphical model, for example see
Theorem 5.14 of [6]. The most familiar representation is when (-L-)|- represents probabilistic
conditional independence. In this case, the directed graphical model is termed a Bayesian
belief network. The Bayesian belief network represents the independencies embedded in
p(x1,...,T,), the joint distribution over all the random quantities in V', that follow from the
definition of the parent sets. The Bayesian belief network allows immediate construction of

p(z1,...,z,) for, see for example Jensen ([13]; p20)

n

p@1,..) =[] p(zilpag(a:)). (7)

i=1
3.4 Belief separation via the moral graph

One of the uses of directed graphical models is to understand the independence relationships
expressed in a model additional to those, see relation (6), explicitly stated in the creation
of the model. Smith ([18]; p90) writes that a use of the directed graphical model is ‘to
help the decision analyst or statistician to understand and use a model’s c.i. [conditional
independence] structure. He uses graphs directly to derive rigorously both the relationships
embedded between variables and the forms of optimal policies implicit within a given model
structure.’

This understanding is achieved by linking conditional independence with graph separation

on an associated undirected graph; graph separation satisfies the conditions (3) - (5) (see

16

Pearl ([16]; Section 3.1)) and so itself acts as a generalised conditional independence property.

The associated undirected graph is the moral graph, defined as follows.

Definition 9 On the directed acyclic graph G = (V, E) for subsets W1, Wa, W3 C V, the
moral graph QM(Uf:1 W) = (VM(U?:1 W,'),EM(U?:1 W,)) is the undirected graph where

3 3
VM(. W;) = U{Wan"g(Wi)}; (8)
3 3
EM(UWz') = {{(f,g),(g,f)\fg,feVM(UWz-):(f,g)GE}U{(g,h)a(h,g) 9)
3
Vf,g9,h € Vie(|J W) : {(g,), (h,)ICE A (g, h), (R, 9)¢E}}. (10)

=1

If VM(Uf:1 W;) =V then we write GM(Uf:1 W) = Gu and term this the full moral graph.

Less formally, we draw the subgraph of G with nodes Wiy, Wy, W3 and all their ancestors;
for each node we ‘marry’ all of its parents (join them with an edge if not already joined);
drop all arrows to form the moral graph G M(Ule W;). For further details on moral graphs
see [14].

Separations upon the moral graph are then used to identify conditional independences

within the model structure as the following theorem, see Cowell et al. ([6]; p71), explains.

Theorem 1 For any three collections of nodes Wy, Wy, W3 within a Bayesian belief network
G = (V,E), construct the moral graph Gus (U?:1 W;). Then W1, LW, |W3 whenever Wy and
Ws are separated by W3 on the moral graph.

As Smith ([17]; Section 3) illustrates, all the theory we develop about how information
is transferred in probabilistic conditional independence holds for a generalised conditional
independence property and so we may apply Theorem 1 to a directed graphical model rather
than a Bayesian belief network and so meet the aim of Pearl ([16]; p81) as to ‘whether
assertions equivalent to those made about probabilistic dependencies can be derived logically
without reference to numerical quantities.’” If W and X are separated by Y on the moral
graph of a directed graphical model then they are separated when we attempt to quantify the

network by any approach which respects the generalised conditional independence properties.

3.5 Using the call graph to create a directed graphical model

In Subsection 3.1 we argued that each procedure may be viewed as a random quantity, the

uncertainty being whether the procedure is correct, as defined in Definition 6. We argued

17

how if procedure f called procedure g then there was a potential of an error in g propagating
to f. This potential propagation of error means that there is a direct influence between f
and g: if we learn that g is in error then this causes us to increase our belief in the procedure
f being in error because of the possible propagation. We argue that the potential error
propagation may be used as a means to constructing a directed graphical model over the
procedures of the software.

We wish to examine the effect of error propagation upon changing our beliefs about the
state of a procedure. Thus, we are concentrating upon evidence drawn from the call graph,
an object that is readily available. We are not considering other forms of relationships we
could construct. For example, we could attempt to track areas of code written by specific
programmers: learning that they have written one procedure correctly is likely to increase
our belief in their competence and thus reduce our judgment about the chance that the other
procedures they have written are in error. Alternatively, we could consider information flow
across procedures with similar functionality or across areas of code that share similar features
(such as joins between new and old areas of the code). Attempting to model these would
require a detail knowledge of the code and may not even be available.

Consider the simple call graph G as given by the left hand graph of Figure 9. The right

hand graph is the corresponding error propagation graph G.

e] L] e] [h]

Figure 9: Left, a simple call graph with three nodes. Right, the error propagation graph.
The procedures g and h are dependent, but if we know whether f works or not then the
procedures are independent.

If an error is detected in h it could propagate to its parent f when h completes its action
and control returns to f and then to g by the return of the control from f to g. It could not
propagate directly to g. This direction of propagation is exhibited by reversing the arcs on
the call graph. The result is the error propagation graph, shown as the right hand graph on
Figure 9. Observe how the error propagation effects our beliefs about the states of f and
g- Suppose h is found to be in error. The potential propagation causes us to increase our
belief in procedure f not working and this increase is passed on to yield an increased belief

in procedure g not working. Procedures g and h are not independent. However, if the state

18

of f was already known, that is whether or not f was working, then procedures g and h
are independent. For example, if we observe f to work then the additional observation of
h does not change our beliefs about g. If an error is detected in h then f working merely
confirms that this error does not propagate to f. We have the relationship (glLh)|f. It is
worth pointing out here that we have not explicitly defined what tertiary property we are
using for (-1L-)|-. We are thinking in terms of either probabilistic conditional independence
or second-order belief separation depending upon the level of quantification we are prepared
to give but at this stage we may act qualitatively rather than quantitatively.

As a second example, we consider the call graph G as given by the left hand graph of
Figure 10; the corresponding error propagation graph G is the right hand graph.

Figure 10: Left, a simple call graph with three nodes. The procedures g and h are indepen-
dent, but if we know f then the procedures are dependent. The call graph with the arrows
reversed, right, captures this.

The procedures g and h are independent. If g is not working, this gives us no information
about the state of h. Although a potential error in g could result in A being called with the
wrong input, or with the wrong database set-up, all that is relevant is whether h copes
with these correctly. Now suppose that the procedure f is known not to be working. Are
the procedures g and h still independent? f not working could have resulted from an error
propagating from either g or h or from an error in f itself. If we learn that g works, then this
will increase the belief that h is in error; procedures g and h are dependent given f. This
conditional dependency of the procedures g and h given f may be captured by reversing
the arcs of the call graph as shown in the right hand figure of Figure 10, for g and h are
unmarried parents of f on this graph and so are joined on Gy, as illustrated by the dotted
line. This creates a path between g and h which does not pass through f and so f is not a
(g, h)-separator on Gys.

The left hand graph of Figure 11 provides a third example. The corresponding error
propagation graph is the right hand graph.

The procedures g and h are dependent. If g is not working then the chance that f is

not working is increased. Any errors in f may propagate to h and so the chance of h being

19

Figure 11: Left, a simple call graph with three nodes. The procedures g and h are dependent,
but if we know f then the procedures are independent. The call graph with the arrows
reversed, right, captures this.

in error increases. However, if f is known then the procedures g and h are independent.
For example, if f is known to be working, then observing that g is not working gives no
information about the state of h. Again f separates g and h on Gas, but a moral graph
constructed from the call graph sees an arc, see the dotted line on Figure 11, added between
g and h so that f does not separate g and h on Gyy.

The three examples given in Figures 9 - 11 may be viewed as illustrating the following

lemma. A full proof requires showing that equation (6) is satisfied on G.

Lemma 1 The error propagation graph G = (V,ER) is a directed graphical model. If G,
H, F are three sets of procedures on G and F separates G from H on GM(G, H,F) then
(GILH)|F.

In terms of the call graph, we term G (G, H, F) the associated moral graph. By reversing the
arcs of the call graph, we may investigate conditional independences between the procedures.
Identifying conditionally independent sets allows us to assess the influence of one collection

of procedures upon another and use this to obtain potential reuse candidates.

4 Program comprehension using the conditional inde-
pendence relation

4.1 Strongly directly dominated subtrees: ‘single call in’

In Section 2 we reviewed the use of the dominance tree in selecting potential reuse candidates
and how Burd & Munro [2] identify the subtrees of Gp, whose strong root was strongly
directly dominated as potential reuse candidates. We termed these subtrees ‘single call
in’ subtrees. These are identified as possible sites of remodularisation because if we had
two nodes hi, ha strongly directly dominated by g then the subtrees hj, h3 of Gp, have
the property that there are no calls between the nodes in A} and the nodes in hj on G.

We now show how these ‘single call in’ subtrees may be viewed in terms of conditional

20

independence statements. This enables us to strengthen the argument for the adoption of
the reuse candidates whilst also helping to explain the relationship of the candidates with
the directly dominated nodes. We shall make use of the following theorem; the proof is in

Appendix II.

Theorem 2 Suppose G = (V, E) is a call graph and consider any collection of nodes h1, ha,
..+ hy with the property that for any h; # h; there is no direct path between h; and h; on
G. Foranyi € {l,....m},and any1 <1 <m, 1< j; <jo<---< gy <m, ji #4, for
which | J_, {deg(h;) Ndeg(h;,)} = 0 then

{hs Udeg(hs)} AL | J {hy, U deg (R,)}- (11)

k=1
Foranyie {1,....m}, and any 1 <1 <m, 1 <j; <jo <--- < ji <m, jg # i, for which
Ui {deg (hi) N deg(hy,)} # 0 then

{hi Udeg(h)} AL | {hz, Udeg(hy)} | {deg(hi) 1 deg)} (12)
k=1 k=1

Theorem 2 applies to any collection of nodes {hy, ..., h;,} with the property that there is
no path between any h; and h; on the call graph. Notice that if two nodes are both strongly
directly dominated by the same node on a dominance tree then there is no path between
them on the call graph. Furthermore, it is straightforward to see that any subtree h* on the
dominance tree has the property that h* C {h U deg(h)}. We may link Theorem 2 to the

reuse candidates generated by the ‘single call in’ subtrees via the following corollary.

Corollary 1 Suppose G = (V, E) is a call graph and f is a root node of G. Additionally,
consider a node g on Gp, which strongly directly dominates the nodes hy, ... hy,. For any
i €{l,...om}, and any 1 <1 <m, 1 < j; <jo<---<gi <m, jx # 4, for which
Uk: {deg (h;) N deg(hj,)} = 0 then

l
TR A (13)

k=1
Foranyie {l,....m}, and any 1 <1 <m, 1 <ji <jo <---< gy <m, jg # i, for which
Uk {deg(h;) N deg(hy,)} # O then

l l
i A k3| | {deg(hs) N deg (hy,)} (14)
k=1

k=1

21

Proof - The results follow by observing that since h} \ h; forms the set of nodes dominated
by h; on Gp,, then {h} \ h;} C deg(h;). The reduction of the sets h; U deg(h;), of equations
(11) and (12), to h} follows by the c.i. property (5). m|

Corollary 1 thus provides the relationship between the subtrees on the dominance tree
Gp, whose strong root is strongly directly dominated by g. We illustrate the results of

Corollary 1 by returning to the examples of Subsection 2.3.

Example 1 revisited: All children are strongly directly dominated

The first example was drawn from Figure 1. The resulting dominance tree is Figure 2. The
node A000 strongly directly dominates B000, C000 and D000. The subtrees B0O00* = B*,
C000* = C*, and D000* = D* are all ‘single call in’ subtrees. Without reference to Fig-
ure 1, Figure 2 reveals that there are no calls between these three subtrees. Corollary 1
enables us to deduce immediately that these subtrees are either conditionally independent
or independent of one another. In Figure 2 there are no other available subtrees and so
these subtrees must be independent. Applying Corollary 1 we establish, using relation (13),
that B*1L.C* U D*, C*1LB* U D* and D* 1l B*U C*. The reuse candidates suggested by [1]
are independent. Notice that the three independence statements may be reduced to illus-

trate pairwise independence either by using relation (13) or via the conditional independence

property (5).

Example 2 revisited: All children are either strongly directly dominated or are

service candidates

Notice that if g has a child hg on Gp, which it only directly dominates, then hg is a
descendent, on G, of at least one of the h;. This situation was present in the second example
of Subsection 2.3 when we created a service candidate by adding a call between B000 and
C110 to Figure 1. The resultant dominance tree was given by Figure 3. We identify the
three ‘single call in’ subtrees, B000* = B*, C000* = C* \ C'110, and D000* = D* but also
the addition of the service candidate, C'110, and from Figure 3 we may deduce that it is
called by at least one of the subtrees B*, C000* and D*. The original call graph is required

to determine how this service candidate is accessed by the ‘single call in’ subtrees. If it

22

is called by at least two of the ‘single call in’ subtrees then we will have, from Corollary
1, a relationship of conditional independence between the ‘single call in’ subtrees. In this
instance, C110 € deg(B000) N deg(C000). Using Corollary 1 with D000, we find, from
relation (13), that D000* 1L B0O0O0* U C000*. Indeed, Theorem 2 shows that D* 1L B*UC*. If
we wish to consider the relationship between B* and C* \ C110 then C'110 € deg(B000)N
deg(C000) and so relation (14) is activated: we have a conditional independence relation,
(B*1L.C* \ C110)|C110.

In the discussion of this example in Subsection 2.3, we pointed out the lack of uniqueness
of the dominance tree by illustrating that alternative call graphs lead to the same dominance
tree. The relationship between the service candidate and the reuse candidates was not
explained. The conditional independence relation however captures this. Suppose we added
only the call A000 to C110 to Figure 1. The dominance tree is Figure 3 and Corollary 1
may be used to obtain the conditional independence statements B* 1L {C* \ C110} U D*,
{C*\ C110} 1LB* U D* and D* 1L B* U {C* \ C110}. The service candidate is only accessed
by one of the reuse candidates and this supports our intuition of using the C* as the reuse
candidate in this case, for the conditional independence statements between B*, C* and D*
are identical to those in Figure 2. In the other alternative of allowing every procedure to call
C110 then C110 € deg(B000)N deg(C000)N deg(D000) and the conditional independence
statements derived from Corollary 1 capture this as: B*1L{C*\ C'110}|C110, B* 1. D*|C110
and {C* \ C110} 1L D*|C110. Notice how the conditional independence relation can capture
the role of the service candidate automatically; the visual aid of the call graph is not needed.

This illustrates a difference between the dominance relation and the conditional indepen-
dence relation. The dominance relation is only concerned with calls to a procedure whilst
the conditional independence statement takes account of calls made by a procedure. The
subtrees with strongly directly dominated nodes as the strong root are, at least, condition-
ally independent of the adjoining subtrees which are also strongly directly dominated by the
same node but whether they are conditionally independent or independent is not available
on the dominance tree but this information has a vital role when considering potential ripple
effects. In Figure 2, deg(B000) = dep,(B000) but this was not the case in Figure 3 and
this was highlighted by the independence of B* from C* in Figure 2 but only conditional
independence of B* and C* in Figure 3. In the latter, B* called other subtrees, in the former

it did not.

23

4.2 Relations around ‘isolated’ subtrees

If for any node h, € Vp,, we have deg(h,) = dep, (h.) then the subtree A}, does not call
any other subtree on Gp,. We call h;, an ‘isolated’ subtree. In terms of the call graph, this
means that once h,, has been called, execution remains solely in the subtree A}, until A, is
exited. This suggests that we may wish to consider this subtree as a single unit. Notice that
this may include subtrees where multiple procedures call the strong root, h,. We have the

following theorem; the proof is in Appendix II.

Theorem 3 Suppose that G = (V, E) is a call graph and h, € V is such that deg(h,) =
dep,(hy) for some dominance tree Gp, = (Vp,,Ep,). If g1, ..., gm are any collection of
nodes on Gp, with the property that, for each i, there is no direct path between each g; and
hy on G then

hy Udeg(hy) 1L | J{g: U deg(g:)}- (15)

i=1

If{91,-..,9m} C {ang(h.) N Vp,} then
deg (hy) L {GT\ AL} |hu, (16)

where GT\ bl = {UiZ,{9: U deg(g:)}} \ {hu U deg(hu)}-

Theorem 3 enables us to identify subtrees on the dominance tree which are independent
of subtrees where the two strong roots are not on a common path on the call graph. For
example, in the first example of Subsection 2.3, the ‘single call in’ subtrees B*, C*, and D* are
also ‘isolated’ subtrees and so the independence of these subtrees may also be established
via relation (15), whilst relation (16) may be used to deduce, for instance, that {B* \
B000} 1.A000|B000. In the second example of Subsection 2.3, the ‘single call in’ subtree D*
is also an ‘isolated’ subtree but B* and C* \ C'110 are not for they do not dominate their
shared descendent C'110.

Theorem 3 may be applied to any node h,, with the property that deg(h,) = dep, (hy);
whether h, is strongly directly dominated or only directly dominated is irrelevant. For
example, in the third example of Subsection 2.3, we may check that deg(C000) = dep, (C'000)
and deg(D000) = dep,(D000). Thus, the D* subtree does not call C000 and we have
C* U D*.

Assessing whether deg(h,) = dep,(h,) is simple, and we may choose to identify these
subtrees on the dominance tree. This will provide us with more information about the calling

structure without altering the layout of the dominance tree.

24

We may check that deg(C000) = dep,(C000) but we cannot tell from Figure 4 which
nodes are responsible for the direct dominance of C000. Assessing whether deg(h,) =
dep, (hy) is simple, and we may choose to identify these subtrees on the dominance tree.
This will provide us with more information about the calling structure without altering the
layout of the dominance tree. Firstly, it restricts the number of potential call graphs that
could produce the dominance tree. In the second example of Subsection 2.3, adding the call
B000 to C'110 on Figure 1 means that neither B000 nor C'000 satisfy the requirement for
they do not dominate C'110. Adding only the call A000 to C110 on Figure 1 means that
B000 now dominates all of its descendents on the call graph: the dominance trees would no
longer be the same. Secondly, these differences will indicate the ability of the dominance tree
to represent more detailed information, for example the independence (and not conditional

independence) of D* in this example.

4.3 Modifying the dominance tree to highlight ‘isolated’ subtrees:
the moral dominance tree

The ‘single call in’ subtrees are easy to identify on the dominance tree by the shading of
the nodes, unshaded nodes representing strongly directly dominated nodes. ‘single call in’
subtrees have a strongly directly dominated node as the strong root. The node shading may
be viewed as representing parental loss in the abstraction of the calling structure to create
the dominance tree from the call graph. Strongly directly dominated nodes have not lost
any parents, whilst directly dominated nodes had at least two parents on the call graph.
We may modify the shading to indicate whether directly dominated nodes are dominated by
one of their parents from the call graph or by an ancestor. This provides more information
about the call graph without decreasing the simplicity of the dominance tree.

The ‘isolated’ subtrees on the dominance tree are those subtrees for which the strong root
has not lost any descendents in the simplification of the calling structure. They are identified
by establishing the truth of the equality deg(h) = dep, (h). This does not rely on any visual
representation of the call graph. Notice that chg(h) = chp,(h) does not imply that deg(h) =
dep, (h) but the converse is true. We may use shapes to identify ‘isolated’ subtrees by using
different shaped nodes to represent those nodes for which chg(h) # chp,(h), chg(h) =
chp, (h) only, or deg(h) = dep, (h).

We make the following amendments to Definition 4 to obtain a revised dominance tree,

which we term the moral dominance tree.

25

Definition 10 The moral dominance tree corresponding to a root node f is the graph Gp, =
({f}ude(f),Ep,) formed from the call graph G = (V, E). For any two nodes g, h € de(f),
(9,h) € Ep, if g either directly or strongly directly dominates h. If g strongly directly
dominates h, then the node h is unshaded and h is shaded if g only directly dominates it.
Two shadings are used to distinguish nodes directly dominated by one of their parents on
G and those directly dominated by a non-parent. If deg(h) = dep,(h) then the node is a
rectangular box with rounded corners. If only chg(h) = chp,(h) then the node is an ellipse.

If neither of these occur, then the node is a rectangular box.
The dominance tree of Definition 10 has the identical shape to Definition 4; we merely alter
the shapes and shadings of the nodes. An example helps clarify this.

Example 3 revisited: Failure to isolate reuse candidates

This third example of Subsection 2.3 concerned the addition of a call between B000 and
€000 to Figure 1. The dominance tree corresponding to Definition 4 is given in Figure 4;

the moral dominance tree corresponding to Definition 10 is given in Figure 12.

-(E

Key:

Strong direct dominance

Direct dominance (only) by parent
Direct dominance (only) by non-parent

T

Figure 12: The moral dominance tree resulting from the call graph of Figure 1 with an
additional call between B000 and C'000 deduced from Definition 10.

Burd & Munro [2] argued that Figure 4 failed to isolate the reuse candidates for it is
not clear from Figure 4 how C* is accessed. The strong dominance of C000 means that
C* C deg(B000) U deg(D000) but nothing further. The conditional independence relation
captures this; we obtain from Corollary 1 and Theorem 3 that D* 1l B* U C*, D* 1l B* and

26

D* 11 C*. Thus of the two candidate subtrees, headed by B000 and D000, which may access
C* we find that only B* does. This information was automatic from the structure of the call
graph and had no reliance on any visual representation. Observe how this is represented on
Figure 12 by the node D000 being displayed in a rectangular box with rounded corners: we
deduce that deg(D000) = {D100, D200, D110} and D* is thus, via Theorem 3, independent
of all other nodes on the same or lower level on Figure 12. The shape of the boxes in
the B* subtree on Figure 12 reveal that the only member of B* which calls C000 is B000
for BO0O appears in a rectangular box. The conditional independence relation supports a
reuse candidate of B* U C* and this may be viewed on Figure 12. From Theorem 3 we may
obtain the relationship that {B100, B200}1L.C* allowing scope for comprehension within the
reuse candidates that was not available from the dominance relation but is captured by a
conditional independence relation.

The shape of the boxes surrounding the nodes help us to visualise whether the rela-
tionships between subtrees headed by strongly directly dominated nodes are conditional
independences or independences; the latter being represented by rectangular boxes with
rounded corners. The choice between ellipses and rectangular boxes help restrict the num-
ber of different call graphs that could yield the same dominance tree, the same is true with
the modified shadings between Definition 4 and Definition 10. On Figure 12, we see that the
node C000 is directly dominated by A000 and the shading indicates that A000 is a parent
of C000 on the call graph. The node C110 is directly dominated by C000 but the lighter
shading indicates that C'110 was not called by C'000 on the call graph. We could not have
detected this on Figure 4. In fact, although this will not always be the case, only a single

call graph can generate Figure 12.

4.4 Using the conditional independence relation to aide compre-
hension where the dominance relation fails

Example 4 revisited: The problem of multiple root nodes

The power of the conditional independence relation is that it may be used to assess the
relationship between any collection of nodes. The fourth example of Subsection 2.3 con-
cerned the problem of multiple root nodes. From Corollary 1, we identify that B* 1L {C* \
C110}|C110 on Figure 5. Notice that although B200 and C100 share a parent on Fig-
ure 5, they are not married on the moral graph Gy ({B000,C000}) since C001 is not a

node on this moral graph. The dominance relation may only be considered in relation to

27

a root node and so provides no information about the relationship between different root
nodes. However, we can do this with the conditional independence relation. For exam-
ple, A0001L.C001|{B200,C100}. We have a determinable relationship between the two root

nodes, a feature that was not possible with the dominance relation.

Example 5 revisited: Failure to capture potential reuse candidates

The fifth example of Subsection 2.3 was given in Figure 7 and suggested that the domi-
nance relations dependence upon single node separators rather than collection of nodes may
limit its ability to identify potential reuse candidates. The visual representation of Figure 7
suggests three clear reuse candidates: B*, C* U C001, and D*. However, this intuition was
not supported by the dominance tree given in Figure 8. We may redraw the dominance tree

in line with Definition 10; the resultant moral dominance tree is shown in Figure 13.

(B0) (B0) [ca0 | D100

Key:
C-Strong direct dominance
@ rect dominance (only) by parent
Direct dominance (only) by non-parent

Figure 13: The moral dominance tree resulting from the call graph of Figure 7 deduced from
Definition 10.

Notice that the strictly directly dominated node B00O is contained in a rectangular box
with rounded corners. This illustrates that BO00 dominates all of its descendents on Figure
7 and provides an immediate visual identification of the conditional independence statement
B* 1L {C* U C001U D* U D001}. Thus, Figure 13 draws our attention to the adoption of B*
as a reuse candidate completely separate of any other collection of nodes: once execution
enters B* it does not switch to any other node before exiting whilst it may only enter B* via
B000. This information could not have been deduced from inspection of Figure 8. Figure 13
illustrates that dominance trees derived from Definition 10 cannot always be mapped back to
a unique call graph: the C*UC001 and D*UD001 decompose in an identical way on Figure 13

despite the difference in the calling structure between these two (there is a call between D100

28

and D200 but no call between C100 and C200). Figure 13 does provide us with guidance as
to how to understand the remaining code. We may look first at the relationships between
the subtrees headed by strongly directly dominated nodes, for we know from Corollary 1
that these are either conditionally independent or independent. This includes the subtrees
consisting of just single nodes, namely C001 and D001. The conditional independence
relation will home in on the relationship of these strongly directly dominated nodes with the
directly dominated nodes. Applying Corollary 1 we find that C*UC0011L{B*UD*UD0001}
and D*UD001 LL{B*UC*UC0001}. This provides an argument for the adoption of the three
reuse candidates suggested by the visual representation of the call graph, but did not rely
on the layout of Figure 7 and would have derived the identical results for a more confused
layout of Figure 7. Observe how even though the dominance relation failed to identify the
reuse candidates it did help the program comprehension process for it highlighted an area of
code that was insufficiently explained by the dominance relation and was in need of further
investigation. We understood B* from Figure 13 but not the C* U C001 U D* U D001. We
can immediately home in on these nodes and in particular the nodes C001 and D001 with

the conditional independence relation.

The dominance relation fails in this example, Figure 7, because it looks for a single node
separator. We could investigate further ways of modifying the dominance tree to detect this
structure. For example, we noted that the dominance relation may be viewed as a graph
separation property but graph separation may be applied to a collection of nodes rather
than single nodes. Consider the collection of nodes {A000, D000, D001} on Figure 7. If we
ignore the direction of the arcs, we see that each of these nodes is joined, by an arc, to every
other node in the collection. If we try to add any other node to this collection, for example
D200, this is no longer the case as there is no arc between A000 and D200. The collection
{A000, D000, D001} is called a clique. We may identify a number of cliques on Figure 7. For
instance the collection {A000,C000,C001} or the collection {C000,C001,C200}. Cliques
are central to the study of conditional independences for any node in a clique on the moral
graph is always dependent upon the other nodes in the clique. If a collection of nodes on a
dominance tree, Gp,, form a clique on the call graph, G, then they will be present in a clique
on the associated moral graph, Gas (f), and so cannot be separated from one another.

In this paper, we have linked the results of the dominance relation with conditional

independence statements. The dominance relation is good at identifying conditionally inde-

29

pendent areas of the code (‘single call in’ subtrees) but struggles to cope with dependencies
in the call graph (mapping the relationships with the only directly dominated nodes). It
may be unable to cope with cliques for the nodes are inseparable from other members of
the clique. We could modify the dominance relation to handle cliques. Notice that since
the call graph is acyclic, any clique on the call graph must contain a unique node which
calls all the other nodes in the clique. We call this node the clique-parent. In the clique
{A000, D000, D001} the clique-parent is A000, whilst in the clique {C000,C001,C200} the
clique-parent is C001. For any clique, we may form the collection of nodes which are not the
clique-parent. We shall denote this collection by G. We then seek the collection of nodes, H,
for which for all h € H, G is a (f, h)-separator. Compare this with the dominance relation:
g dominates h if g is a (f, h)-separator. We merely expand the separator set in a formal way.

As an illustrative example, suppose we consider the cliques {A000, C'000, C001} and
{A000, D000, D001} on Figure 7. We find that for each h. € {C100, C200, C110},
{C000,C001} is an (AO000, h.)-separator and that for each hqy € {D100, D200, D110},
{D000, D001} is an (A000, hy)-separator. We may redraw Figure 13 as Figure 14 to represent

these revised separations.

€000, C001 D000, D001

[] étrong direct dominance
Direct dominance (only) by parent
Direct dominance (only) by non-parent

Figure 14: The moral dominance tree resulting from the call graph of Figure 7 deduced from
Definition 10 and taking account of the cliques { A000, C000, C001} and {4000, D000, D001}.

We consider that {C000,C001} strongly directly dominates C'100 and C200 for the only
nodes that call these two nodes are contained in {C000,C001}. C110 is only directly dom-
inated by {C000,C001} for this node is called by nodes other than {C000,C001}. The
similar sentiments may be applied to D100, D200 and D110. Notice the similarity of Figure

30

14 with the moral dominance tree that would be obtained from Figure 1 (compare Figure
2). Figure 14 shows three ‘isolated’ subtrees: B*, C* U C001 and D* U D001 which are
independent as our earlier analysis reveals. We could have dealt with further cliques on the
call graph which would have given us additional information.

This suggestion of handling cliques in an automated way may provide a valuable tool
in producing a dominance tree in situations where available reuse candidates, supported by
a conditional independence relation, are not visualised. Figure 14 provides a much more

preferable visualisation of the call graph than Figure 13.

5 Conclusion

The dominance tree analysis may be used to identify subtrees which may be considered as
potential reuse candidates. The subtrees considered are those whose strong root is strongly
directly dominated. We termed these ‘single call in’ subtrees. The dominance tree does
not explain the relation between ‘single call in’ subtrees and nodes who are only directly
dominated. We address this problem by introducing a generalised conditional independence
relation over the call graph. This supports the argument for the potential reuse candidates
obtained from the dominance tree by identifying ‘single call in’ subtrees as being either in-
dependent or conditionally independent of other ‘single call in’ subtrees. The conditional
independence occurred when ‘single call in’ subtrees made calls to the same ‘multiple call in’
subtrees. The ‘multiple call in’ subtrees have a strong root which is only directly dominated
and so the conditional independence relation not only supports the dominance tree anal-
ysis but strengthens it by explaining the relationship between strongly directly dominated
nodes and directly dominated nodes. We argue that it is not just ‘single call in’ subtrees
that should be highlighted as potential reuse candidates but also ‘isolated’ subtrees, sub-
trees which make no calls to any other subtree on the dominance tree. As such, we propose
modifying the dominance tree to the moral dominance tree which provides a greater under-
standing of the relationships between individual branches and also highlights areas where
further investigation is required. The conditional independence relation is a tool for investi-
gating any collection of nodes in the software and so we are able to understand collections
where the dominance relation exhibited a lack of understanding. Finally, we considered how
the dominance relation could be improved so that it could handle cliques. Combining the
dominance tree analysis with the conditional independence relation provides us with a more

detailed understanding of the relationships within the calling structure and thus our level of

31

comprehension.

Acknowledgements

This work has been supported by grant GR\M76775 from EPSRC.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

E. Burd and M. Munro. A method for the identification of resuable units through the

reengineering of legacy code. The Journal of Systems and Software, 44:121-134, 1998.

E. Burd and M. Munro. Evaluating the Use of Dominance Trees for C and COBOL. Pro-
ceedings of the International Conference on Software Maintenance, ISCM’99, 00:401-
410, 1999.

E. Burd, M. Munro, and C. Wezeman. Analysing Large COBOL Programs: the ex-
traction of reusable modules. Proceedings of the International Conference on Software

Maintenance, IEEE Press, 1996.

E. Burd, M. Munro, and C. Wezeman. Extracting Reusable Modules from Legacy Code:
Considering issues of module granularity. Proceedings of the 3rd Working Conference

on Reverse Engineeringl, IEEE Press, 1996.

A. Cimitile, A. De Lucia, G. Di Lucca, and Fasolino A. Identifying Objects in Legacy
Systems. International Workshop on Program Comprehension, IEEE Press, 1997.

Robert. G. Cowell, A. Philip. Dawid, Steffan. L. Lauritzen, and David. J. Spiegelhalter.
Probabilistic Networks and Expert Systems. Springer, New York, 1999.

A. P. Dawid. Conditional independence in statistical theory (with discussion). J. R.

Statist. Soc. B, 41:1-31, 1979.

A. P. Dawid. Conditional independence for statistical operations. Ann. Statist., 8:598—
617, 1980.

J-F. Girard and R. Koschke. Finding Components in a Hierarchy of Modules: a step to-
wards architectural understanding. International Conference on Software Maintenance,

IEEE Press, 1997.

32

[10] M Goldstein. Influence and Belief Adjustment. In R. M. Oliver and J. Q. Smith, editors,
Influence Diagrams, Belief Nets and Decision Analysis, pages 143-174. Wiley, 1990.

[11] M. S. Hetch. Flow Analysis of Computer Programs. North-Holland, Amsterdam, 1977.

[12] IEEE. IEEE Standard Glossary of Software Engineering Terminology. IEEE Press, New
York, 1983.

[13] Finn. V. Jensen. An introduction to Bayesian networks. University College London

Press, London, 1996.

[14] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graph-
ical structures and their application to expert systems (with discussion). J. R. Statist.

Soc. B, 50:157-224, 1988.
[15] Steffan. L. Lauritzen. Graphical Models. Oxford Science Publications, Oxford, 1996.

[16] Judea Pearl. Probabilistic Inference in Intelligent Systems. Morgan Kaufman, San

Mateo, California, 1988.

[17] J. Q. Smith. Influence diagrams foe statistical modelling. Annals of Statistics, 17:654—
672, 1989.

[18] J. Q. Smith. Statistical Principles on Graphs. In R. M. Oliver and J. Q. Smith, editors,
Influence Diagrams, Belief Nets and Decision Analysis, pages 89-120. Wiley, 1990.

Appendix I: Graph theory and notation

In this appendix, we briefly review graph theory and the notation used in the paper. The
approach mirrors that of [15] and further details may be found there.

A graph is a pair G = (V, E), where V is a finite set of vertices and E is the set of
edges, a subset of V' x V the set of ordered pairs of distinct vertices. Thus, we shall consider
graphs with no loops.

An edge (f,g) € E is said to be directed, denoted f — g, if (f,9) € EA(g,f) ¢ E.
An edge (f,g) € E is said to be undirected, denoted f ~ g, if (f,g) € EA(g,f) € E. If
(f,9) ¢ E, we write f Agand if (f,9) ¢ EA(g,f) ¢ E, we write f & g.

The graph G is said to be directed if there is no (f,g) € E such that f ~ g. Similarly,
G is said to be undirected if there is no (f,g) € E such that f — g.

33

If f — g then f is said to be a parent of g and g is said to be a child of f. We denote
by pag(g) the set of parents of g on G, and chg(f) denotes the set of children of f on G.

A path of length n from f to g is a sequence f = fo, f1,.-., fn = g such that (f;_1, fi) €
EVi=1,...,n. We write f — g. If both f — g and g — f we say that f and g connect
and write f = g. If either f — g or g — f we say that there is a direct path between f
and g

An n-cycle is a path of length n from f to itself. If the graph G contains no cycles then
it is said to be acyclic.

The vertices f such that f — g and g - f are the ancestors of g on G, denoted ang(g).
The vertices g such that f — g and g +4 f are the descendents of f on G, denoted deg(f).

A subset H C V is said to be an (f,g)-separator if all paths from f to g intersect
H. Thus, for a directed graph, for each path f — g 3 h € H such that f € ang(h) and
g € deg(h). If F,G, H are non-overlapping subsets of V then H is said to separate F' from
G if H is an (f, g)-separator for every f € F, g € G

Appendix II: Proofs of theorems

Proof of Theorem 2 - For any node h € V, let ht = hUdeg (h). We construct the associated
moral graph Q~M(h;r U HY), where Hf = U;Zl h;r-k, and from Lemma 1, we need to consider
separations on this graph. Notice that Var(hi U HY) = bl U H'. Let A = U_,{deg(h:) N
deg(hj,)}, B = Uy {deg(hi) Ndeg (hy,)} and C = Uy_, {deg (hi) Ndeg(hyy,)}; A, B, and C
are mutually incompatible.

If A = () then the subgraphs h! and H' are unconnected on G and thus on G. Tf
they are connected on g~M(hI U H'), the path must have been formed by the marriage
of some h;; € deg(h;) and some h, € U2:1 deg(hj,). Since A = 0, deg(h;) = B and
Ule1 deg(hy,) = C.

If A # () then the subgraphs h‘; and H' are connected on G and thus on G. The connecting
nodes are A. There is no arc between any h;; € B and any h,; € C (and vice versa). Any
path between B and C which does not pass through an element of A must evolve through
the marriage of some h;; € B and some h,; € C.

In either case, we require the addition of an arc between some h;; € B and some h,; € C.
This will occur, see equation (10), if there exists ho € h}LUHJr such that {(h;1, ha), (hs1, ha)} C
Eg, or equivalently {(hz2, hi1), (h2, hi1)} C E. If hy € Athen {h;1, ha1} C A: acontradiction.
If hy € hi\ A then h., € deg(h;): a contradiction. If hy € H \ A then hyy € U_, deg(hj,):

34

a contradiction. Thus, there is no such hy € h;f U HT and the results follow. O

Proof of Theorem 3 - Once more, for any h € V, we let At = h Udeg(h). Let Gt =
U?, gf. From Lemma 1, we need to consider separations on Gu(hi, U G1). Notice that
Var(hl, UGT) = bl UGT. Since deg(h,) = dep, (hy) then the only calls from Vp, \ h}, to hf,
on G are to h, only.

If there is no direct path between each g; and h, then each g; € Vp, \h! and h, ¢ deg(g;).
Thus, g/ N Al = § and the subgraphs hf and G are unconnected on G and thus on G. For
them to be connected on Gas(hf UG'), the path must have been formed by the marriage of
some h,; € hl, and some g.; € G'. We may show this cannot occur in an identical way to
the proof of Theorem 2. Property (15) thus follows.

Property (16) also follows by observing that if each g; € ang N Vp, then the subgraphs
h! and G' are unconnected on G but only at h,. Following the proof of Theorem 2 we show

that there can be no marriage between some h,; € hf, and some g.; € H \ hf. O

35

