Moralising the call graph as a means of program
comprehension

Simon C Shaw & Michael Goldstein
Department of Mathematical Sciences

University of Durham, UK
in collaboration with:

Elizabeth Burd & Malcolm Munro
Centre for Software Maintenance
University of Durham, UK

January 2001

1 Graph theory and notation

In this section, we briefly review graph theory and the notation we shall use. The approach
mirrors that of Lauritzen (1996) and further details may be found there.

A graph is a pair G = (V, E), where V is a finite set of vertices and E is the set of
edges, a subset of V' x V the set of ordered pairs of distinct vertices. Thus, we shall consider
graphs with no loops.

An edge (f,g) € E is said to be directed, denoted f — g, if (f,9) € EA(g,f) ¢ E.
An edge (f,g) € E is said to be undirected, denoted f ~ g, if (f,g9) € EA(g,f) € E. If
(f,9) ¢ B, we write [g and if (f,9) ¢ E A (g, f) ¢ E, we write f £ .

The graph G is said to be directed if there is no (f,g) € E such that f ~ g. Similarly,
G is said to be undirected if there is no (f, g) € E such that f — g.

If f — g then f is said to be a parent of g and g is said to be a child of f. We denote
by pa(g) the set of parents of g, and ch(f) denotes the set of children of f. If f ~ g, then f
and g are said to be neighbours. The complete set of neighbours for f is denoted by ne(f).
If f + g then f and g are said to be non-adjacent. We may make similar definitions for
groups of vertices, F'. Namely,

pa(F) = Userpa(f)\ F (1)
ch(F) = Userch(f)\ F 2)
ne(F) = Urerne(f) \ F 3)

Thus, for example, pa(F') is the collection of parents of the vertices in F' that are not
themselves in F'.

A path of length n from f to g is a sequence f = fo, f1,..., fn = g such that (f;_1, fi) €
EVYi=1,...,n. We write f — g. If both f — g and g — f we say that f and g connect
and write f = g.

An n-cycle is a path of length n from f to itself. If the graph G contains no cycles then
it is said to be acyclic.

The vertices f such that f — g and g 4 f are the ancestors of g, denoted an(g). The
vertices g such that f — g and g ~» f are the descendents of f, denoted de(f).

A subset H C V is said to be an (f, g)-separator if all paths from f to g intersect H.
Thus, for a directed graph, for each path f — g 3 h € H such that f € an(h) and g € de(h).
If F,G, H are non-overlapping subsets of V then H is said to separate F' from G if H is an
(f, g)-separator for every f € F, g € G

We want to use the graph as a visual aid and we draw it as follows. Each vertex is
represented by a circle and we connect the circles associated with vertices f, g with a line if
f ~g. If f— gthen we join the associated circles by an arrow from f to g.

2 The call graph

We view a piece of software as working on a database and consisting of a number of procedures
which may be called and which operate on the database. The calling structure of a piece of
software provides a high level description of the flow of the program. It may be represented
graphically by a call graph.

Definition 1 A call graph is o directed acyclic graph (DAG), G = (V,E). The finite set
of nodes, V, consists of the procedures that may be called in the program. For any two
procedures f, g € V if there is a potential call to g by f then the arc (f,g) appears on the
graph. The complete collection of arcs is denoted by E.

The call graph is thus a full representation of the calling structure of the program: the
arcs represent potential calls as opposed to actual calls. It may be that later on in the
comprehension process, we want to refine the graph, perhaps by constructing the call graph
for subsets of inputs of interest. Any such graph will be a subgraph of G. The code may
need restructuring before the construction of the call graph. For example, to ensure that the
graph is acyclic, every strongly connected subgraph is collapsed to a single vertex. Section 2
of Burd & Munro (1998) lists three conditions that must be satisfied by a piece of COBOL
code before the call graph is formed.

Definition 2 A root node of a call graph G = (V, E) is a procedure which is not called by
any other procedure.

Since a call graph is a DAG, it must have at least one root node. A root node is often called
an entry/exit point. Figure 1 shows an example of a very simple call graph; it has a single
root node A000.

Figure 1: A simple call graph. Procedure A000 calls procedures B000, C'000 and D000.
Procedure B00O calls procedures B100 and B200 and so on.

The layout of the nodes in Figure 1 and the paucity of calls make it straightforward to
examine the potential flow of code in the program. For example, by removing the procedure
A000 and the three calls it makes from the graph we are left with a subgraph of G which
consists of three disconnected pieces of code: the ‘B-code’, { B000, B100, B200}; the ‘C-code’,
{C000, C100, C200, C110}; and the ‘D-code, {D000, D100, D200, D110}. Intuitively, it
would seem that these three collections are unconnected and may be assessed separately. A
software maintainer interested only in the ‘B-code’ need not understand the ‘C-code’ or the
‘D-code’ for once B0O00 has been called, the execution of the program exists purely in the
‘B-code’ until B0O0O is exited. Such a conclusion seems intuitively clear from the call graph,
but is there a way we can formalise it and identify these collections of procedures where each
collection is separate from any other. Moreover, the identification of possible collections and
understanding of the call graph of Figure 1 was aided by the simplicity of the call graph. It
will be less clearcut in call graphs that may have thousands of procedures and calls.

One approach is to make a further abstraction of the call structure by converting the
call graph into a directed tree. This may be achieved by using the dominance relation and
constructing a directed tree called the dominance tree.

3 The dominance tree

The dominance tree aims to assist the program comprehension by reducing information
overload during the early stages of comprehension but have the additional use of identifying
sections of code which may be remodularised into a single module. The dominance tree
provides a visualisation of the code that is at least as simple as the call graph for it is a
directed tree over the collection of procedures on the call graph G = (V, E).

It is formed by using the relations of strong and direct dominance as identified by Hetch
(1977).

Definition 3 If f € V is a root node of the call graph and procedures g,h € de(f) on G,
then procedure g dominates h if and only if every path f — h on G intersects g. We say
that g directly dominates h if and only if all procedures that dominate h dominate g. We
say that g strongly directly dominates h if and only if g directly dominates h and is the only
procedure that calls h.

Thus, we see that g dominates h if and only if g separates f from h on G. Notice that this
relationship is not symmetric since G is directed: there is no path from any procedure to
f since f is a root node. Note also that for every g € de(f), f dominates g so that there
exists at least one dominating node for each g. The direct dominance relation identifies, for
each node, a single dominator from the collection of dominators of that node. To show this,
suppose g and h dominate ¢ but g doesn’t dominate h and h doesn’t dominate g. Then,
there is a path f — ¢g which doesn’t intersect h and a path g — ¢ which doesn’t intersect
h and so combining these two yields a path f — i which does not intersect A and so h is
not a dominator of i: a contradiction. Further, if g directly dominates a node ¢ then either
g € pa(i) and g dominates h for all h € pa(i) \ {g} on G or g ¢ pa(i) and g dominates h for
all h € pa(i).

Definition 4 The dominance tree corresponding to a root node f is the graph Gp, = ({f}U
de(f),Ep,) formed from the call graph G = (V,E). For any two nodes g, h € de(f),
(9,h) € Ep, if g either directly or strongly directly dominates h. If g strongly directly
dominates h, then the node h is unshaded and h is shaded if g only directly dominates it.

If G has a single root node, f, then {f} Ude(f) =V and the dominance tree Gp, includes
all the procedures and we write Gp ;= Gp. The advantage of the dominance tree is that
there is a single path from the root node to any other procedure on the dominance tree
and so the number of arcs have been reduced from the call graph. The disadvantage is that
if G has more than one root node then the dominance tree corresponding to a root node
f will not contain all the procedures that may be called in the software. Moreover, the
same procedures are likely to appear on different dominance trees and it may be hard to
ascertain the relationships between different dominance trees. Burd & Munro (1998; Section
4) found this problem in case studies of C code. They write that ‘within the case studies,
the largest number of dominance trees identified from a single code file was 41 ... The fact
that multiple dominance trees are generated can be problematic if procedures are shared
between individual dominance trees. In all cases identified through the case study, this was
found to be the case.’

Figure 2 gives the dominance tree corresponding to the call graph of Figure 1.

Figure 1 has a single root node and so there is a single dominance tree, Gp. Notice that we
shade the nodes which are only directly dominated. Thus, D000 strongly directly dominates
D100, whilst D110 is only directly dominated by D000. Direct dominance corresponds to
nodes that have become disinherited from their parents: they had at least two parents and

| B200 | | cioo |

Key: C110 D110

Strong dominance
Direct dominance

Figure 2: The dominance tree corresponding to the call graph of Figure 1.

may not be directly dominated by one of their parents. For example, in Figure 2, the node
D110 is directly dominated by D000, but D000 is not a parent of D110. Thus, Ep ¢ E: the
dominance tree is not merely the call graph with some edges removed.

Notice that the dominance tree is identical to the call graph if and only if the call graph
is a tree. In this case, every node is strongly directly dominated. Where only directly
dominated nodes are present on the dominance tree, disinheritance of that nodes parents
has occurred. The directly dominated nodes indicate a more complex relationship in the call
graph than that shown on the dominance tree and so information is lost in the abstraction
from call graph to dominance tree at the (only) directly dominated nodes. This may create
problems in comprehension and intuitively, the greater the proportion of shaded nodes, the
more problematic program comprehension may be from the dominance tree.

4 Identifying reuse candidates

One of the aims of the dominance tree is to use it as a means for identifying potential reuse
candidates within the software which may then be reengineered into separate modules. This
modularisation helps make the software more flexible and maintainable.

Burd & Munro (1999) write that ‘the directly dominates and strongly directly dominates
relations define where re-modularisation can occur. For instance, where directly dominates
relations are identified this means that calls are made to other nodes within the branch of the
tree’. For example, in Figure 2, C110 is called by both C'100 and C200. Burd & Munro (1999)
evaluates the use of dominance trees using two factors to assess the suitability of dominance
trees. Firstly, that the results of the dominance tree analysis will identify candidates suitable
for reconstruction into reuse candidates and secondly that the reuse candidates generated,
and the restructuring performed, represents an improvement to the structure of the code.

The subtrees headed by the nodes B000, C000 and D000 have the property that the
strong roots of these subtrees (B000, C000, and D000 respectively) are all strongly directly
dominated by A000 and are the only nodes directly dominated by B000. As we highlighted
in the description of the call graph, once B00O0 is called, execution can only take place in
the ‘B-code’. Likewise, once C'000 is called, execution only takes place in the ‘C-code’ and
having called D000, we confine ourselves to execution in the ‘D-code’ until D000 is exited. It
is only after execution ceases at these strong roots that we may switch between the branches.

If a change happens to say procedure C'110, then the ripple effects of this are blocked from
the ‘B-code’ and the ‘D-code’ by the head of the ‘C-code’, C000. This intuition leads us to
the following definition.

Definition 5 Suppose G = (V, E) is a call graph and f € G is a root node. If there is a
node g € Vp, such that g strongly directly dominates h for each h € ch(g) on Gp,, then the
subtree of Gp, consisting of the nodes {h} U de(h) and all arcs between them is a potential
reuse candidate.

If we apply this definition to Figure 2, then we may identify the collections { B000, B100,
B200}, {C000, C100, C200, C110} and {D000, D100, D200, D110} as potential reuse
candidates.

We now consider alternative call graphs and their associated dominance trees. We shall
consider the effect of additional calls to Figure 1 in a similar vein to the analysis in Section
3.2 of Burd & Munro (1999).

Firstly, consider the addition of a call between the procedures B000 and C'110. This
creates a new path A000 — C'110 which does not pass through C'000. If we remove A000
and all arcs from it on the call graph then we no longer get three separate subgraphs: the
‘D-code’ is separate but the call between B000 and C110 connects the ‘B-code’ with the
‘C-code’. The additional call creates a path A000 — C110 via B000 which does not pass
through C000. Thus, C110 is no longer dominated by C000; it is directly dominated by
A000. The resultant dominance tree is shown in Figure 3.

Key: D110
H Strong dominance
Direct dominance

Figure 3: The dominance tree resulting from the call graph of Figure 1 with an additional
call between B000 and C'110.

How may we interpret reuse candidates on this dominance tree? The children of A000
are no longer all strongly directly dominated and so it would appear that Definition 5 no
longer applies. In the ‘B-code’, execution only switches to the single procedure C'110 in the
‘C-code’ and removing C'110 and all edges connecting it from the call graph as well separates
the ‘B-code’ from the remaining ‘C-code’. If a change is made to C'110, then the effects of
this change may ripple either up the ‘C-code’ or to the ‘B-code’, but if we know there is no
change made to C'110 then we conceive the ‘B-code’ and the collection {C000,C'100,C200}
as being separate. Burd & Munro (1999) argue that the collections {8000, B100, B200},
{C000, C100, C200} and {D000, D100, D200, D110} are potential reuse candidates and
the node C'110 is a service candidate; a service candidate being a single procedure that can

be accessed by one of more of the reuse candidates. This leads us to extend Definition 5 to
the following.

Definition 6 Suppose G = (V, E) is a call graph and f € G is a root node. If there is a
node g € Vp, such that g either strongly directly dominates h for each h € ch(g) on Gp,,
or any h € ch(g) which is only directly dominated has no children, then the subtree of Gp,
consisting of the nodes {h} U de(h) and all arcs between them is a potential reuse candidate
if de(h) # 0 and a service candidate if de(h) = 0.

Notice that the dominance tree does not exhibit how a service candidate is called by the
other reuse candidates. This results in a loss of information which may make ripple effects
hard to map.

Consider that instead of adding the arc (B000,C110) to the call graph of Figure 1, we
added the arc (4000, C110). The only effect again concerns paths to C110: the dominance
tree is identical to that shown in Figure 3, for there is no a path A000 — C'110 which passes
through no other nodes. In this instance there is no direct link between the initial reuse sets
{B000, B100, B200} and {C000, C100, C200, C'110} and we may wish to consider the reuse
candidates to be identical to those corresponding to the dominance tree of Figure 2. Thus,
the addition of the arc (A000, C110) to the call graph of Figure 1 makes no difference to the
potential reuse candidates. These two differences are not apparent on the dominance tree
itself and require further study of the call graph.

The effect of a change to C110 is also not apparent on the dominance tree. For the
addition of the arc (B000,C110) to the call graph of Figure 1 then as Burd & Munro point
out ‘ripple effects are additionally restricted to the two candidates in this case B000 and
C000’. The fact that the ‘D-code’ does not call the reuse candidate C110 and so remains
separate from the ‘B-code’ and the ‘C-code’ can only be detected by referring back to the call
graph. Suppose instead, that to the call graph of Figure 1 we add calls (8,C110) for each
B € {A000, B000, B100, B200, C000, D000, D100, D200, D110}, then every procedure now
calls C'110, but once more the resulting dominance tree is identical to that given in Figure
3. However, every node calls C'110 and any change to C'110 would immediately ripple across
the whole graph. Adding only the arc (4000, C110) to the call graph of Figure 1 sees the
same dominance tree, but the ripple effects restricted to the candidate C000. This suggests
that the dominance tree may not be a good vehicle for investigating ripple effects for whilst
we know that calls will be made to C110, we do not know which of the reuse candidates call
it.

As a second example, suppose that to the original call graph of Figure 1, we add the arc
(C000, D000). The result is that the node D000 is no longer strongly directly dominated by
A000 since it is now called by more than one node. The resultant dominance tree for this
scenario is given by Figure 4.

The consequence of the change is that upon execution of C'000, we could execute D000
and so the sets {C000, C'100, C200, C110} and {D000, D100, D200, D110} should not be
regarded as separate reuse candidates. However, the relation between these candidates is
not clear on the dominance tree and Burd & Munro point this out when considering the
analogous scenario caused by adding a call between B000 and C'000 on the call graph of
Figure 1 by stating that ‘the result of this change, unlike the first, could potentially indicate
a failing of the dominance tree approach as a means of identification of reusable candidates.
This is because, the approach has apparently failed to identify a possible connection between
the two reuse candidates. Thus, this represents a failure to properly isolate candidates ...
and therefore to control a ripple effect between them.” Again, it is possible to illustrate this
more by adding calls to the call graph that don’t alter the dominance tree. For example, the
dominance tree of Figure 4 also results from adding the arcs (B000, D000) and (C000, D000)

| B200 | | cioo |

Key: C110 D110

Strong dominance
Direct dominance

Figure 4: The dominance tree resulting from the call graph of Figure 1 with an additional
call between C'000 and D000.

to the call graph of Figure 1 so that the execution of the program may switch between each
of the reuse candidates. Likewise, the addition of the arc (C'110, D000) to the call graph
of Figure 1 also results in the dominance tree of Figure 4. In this case, might we consider
using the sets {8000, B100, B200}, {C000, C'100, C200} and {D000, D100, D200, D110}
as reuse candidates?

5 Procedures and uncertainty

We view each procedure as having the following form. It processes an input in order to
perform an action and the result of this action is then returned. The return is thus, minimally,
a sign for the program to continue. We denote the procedure by f and the input by a. We
remark here that a may be vector valued. Immediately prior to f being called by a, the
database is in state D,. The procedure is then called and the action performed. For the input
a, the desired output is fp, (a) and the desired state of the database after the performance
of fonais Dy). Notice that the desired output is functionally dependent upon the current
state of the database. The function should be able to handle the input according to any
state of the database, and the output may depend upon the state of the database. A simple
example may help to clarify this.

Suppose that we are considering the bank account details of customers of a bank. The
database thus consists of a record for each customer. The fields of each record contain
information such as the customers address and the balance of his account. Suppose that f
is a procedure that takes two arguments, a; and as, as its input. a; denotes the name of an
account holder and a» a numeric value. The aim of f is to add the amount as to the account
of a;. The input is thus the two dimensional vector a = (a1,a2) and the output fp,(a) will
be an error message if there is no account corresponding to a; in D,; an error message if as
is not a numeric quantity; a message to continue if the account corresponding to a; has been
found and ay is numeric. Thus, f should be able to handle the cases when a; is and isn’t in
the database and also when data is entered in the incorrect format. The desired state of the
database after the execution of f, Dy(,), is that it is equal to D, if a; was not in D, (or az
was incorrectly entered) and if a; is found, then the only change should be the addition of
as to the variable corresponding to a;’s account balance.

In reality, after the execution of f, the output is fDa (a) and the state of the database is
D Fla): We have uncertainty as to whether the procedure has performed the action correctly,

that is whether fp,(a) = fp,(a) and also whether the database has been left in the desired
state, that is whether D Fa) = Pr(a)-

In the example of the bank database, we may see that if we enter an account name for an
account we expect to find in the database with a numerical quantity then we may see fp, (a)
return a message indicating we may proceed and we may be confident that fp,(a) = fp, (a).
However, if the action of f has merely been to add the sum to every existing account, then
we would not have D7,y = Dy(,). The procedure f has caused an error in the database
which may only manifest itself later.

Definition 7 The procedure f is said to work for input a if, for all possible database states,
D,, we have

fp.(@) = fp,(a) and Dj, = Dy (4)
If the two conditions do not both hold, then the procedure f is in error for a.

Notice how this definition makes the error specific to the procedure. Thus, if an earlier
procedure has caused an error in the database, f may still work for a if it can cope with this
error.

For example, if in the bank record database, the procedure f to add a specified sum
to the account of the account holder adds the amount to every account holder, then the
database is in error. However, if the procedure, g which checks the account balance for a
specified account holder correctly gives the balance held in the database for an alternative
recognised account holder then this procedure is not in error, although the returned sum is
not the correct balance.

For each procedure f there is a set of possible inputs, A. We make the following definition.

Definition 8 The procedure f is said to work if it works for each input a € A. If there is
an input a such that the procedure f is in error for a, then the procedure is said to not work.

Thus, we may attach to each procedure a well defined random quantity, namely the
‘Procedure working?’ quantity which has two possible states, 1 if the procedure works and
0 if the procedure does not work. Thus, attached to each procedure f inV, the collection
of procedures, is the random quantity f-working? If we learn about the state of a random
quantity f-working? this may enable us to gain information about the state of a further
random quantity g-working? for an alternative procedure g € V. Intuitively, a random
quantity X is judged to be independent of Y if knowledge about Y does not affect the
uncertainty about X: there is no influence between X and Y. X is judged to be dependent
of Y if knowledge about Y does affect the uncertainty about X. In a similar way, a notion
of conditional independence can be established. How does this fit into our aims for program
comprehension and the call graph? Consider the simple example we gave in Figure 1. We
noted that once a call had been made to D000, the calls are restricted to the set {100, D200,
D110} until execution finishes and the procedure D000 is exited and then execution may
switch to any other section of the program. Intuitively, we could argue that if we know the
state of D000-working? then there is nothing further we could learn about A000-working?
from learning about the collection {D100-working?, D200~working?, D110-working?} since
if there is an error in any of these procedures it could only possibly propagate to A000 via
D000. The value to program comprehension is that for a given collection of procedures
of interest we may determine which, if any, procedures they are independent of, when the
independence is considered for the associated random quantities. The most familiar notion
of independence and conditional independence is that concerning probability distributions.

6 Probabilistic Conditional Independence

Suppose that X and Y are random quantities; a random quantity being any quantity whose
value is currently unknown to us. Note that X and Y may themselves be vector valued and
so could be considered as collections of random quantities. We assume that we are able to
attach to each random quantity a probability density function p(-). Thus, p(z,y) denotes
the joint density of (X,Y"), and the marginal densities of X and Y are denoted, respectively,
by p(z) and p(y). denote, respectively, the marginal densities of X and Y. Adopting the
notation of Dawid (1979), we write X 1l Y to denote that X and Y are probabilistically
independent. In terms of the density functions, this requires that

p(z,y) = px)p(y) (5)

Equation (5) expresses the notion X 1LY as a property of the probability densities, which are
numerical quantities. However, this quantitative statement can be viewed in an intuitive,
qualitative sense. We may interpret X 11 Y as meaning that any information we receive about
Y does not alter our uncertainty about X. For example, if X is ‘the score on a single roll of
a die’ and Y is ‘the number of heads obtained in 2 tosses of a coin’ then learning about the
value of Y does not alter our beliefs about X. An equivalent expression to equation (5) of
probabilistic independence which better captures this intuition is that X 1LY requires that

p(zly) = plz), (6)

where p(z|y) is the conditional density of X given Y = y.

This notion of independence and the use of conditional densities leads us to extend the
notion to more than two random quantities. For random quantities X, Y, Z (again, possibly
vector valued), we say that X is conditionally independent of Y given Z, written X 1LY |Z if

p(z,ylz) = ple|2)p(yl2)- (7)

Equation (7) reduces to equation (5) in the case where Z = (), the empty set. Thus, as Smith
(1989) points out, we may write X 1LY as a shorthand for X 11 Y|(. For general Z, we may
once more understand X 1LY|Z intuitively. Having observed Z, any information we learn
about Y does not alter our beliefs about X. An equivalent representation of equation (7)
quantifies this intuition:

plzly,2) = p(zl2). (®)

We have thus defined conditional independence in terms of equalities on the probability
density functions which suggests the property to be a quantitative feature of these density
functions, identified only by testing the equality of an equation such as (8). Pearl (1988;
p79) calls this the ‘most striking inadequacy of traditional theories of probability’ arguing
that ‘people tend to judge the three-place relationship of conditional dependency (i.e. X
influences Y, given Z) with clarity, conviction, and consistency ... the notions of relevance
and dependence are far more basic to human reasoning than the numerical values attached to
probability judgements’. We will later argue that we are able to make such basic statements
of dependencies for the random quantities relating whether procedures in the call graph are
working. Dawid (1979, 1980) was the first to treat probabilistic conditional independence
as a basic intuitive concept with its own axioms. He showed that ‘many of the important
concepts of statistics (sufficiency, ancillarity, etc.) can be regarded as expressions of con-
ditional independence, and that many results and theorems concerning these concepts are
just applications of some simple general properties of conditional independence.” Treating

10

conditional independence as a basic quantity is also supported by Smith (1989; p656) who
writes that ‘in a Bayesian statistical or decision analysis it is common to be told that, given
certain information W, a variable X will have no bearing on another Y. It is often quite
eagy to ascertain this type of information from a client for various combinations of variables.
Such information can be gathered before it is necessary to quantify subjective probabilities
which, in contrast, are often very difficult to elicit with any degree of accuracy.’

Smith (1989) is interested in a generalised conditional independence property as opposed
to the probabilistic conditional independence property we have discussed up until this point.
He highlights three properties of probabilistic conditional independence given by Dawid
(1979) and extends it to any tertiary property (-1L - |-) on collections of objects which obeys
the three properties. For any collections W, X, Y, Z, we have

1L.WUX|(XUY); 9)
2.W1ILX|Y if and only if X ILWY; (10)
3. W1 (X UY)|Z implies and is implied by the pair of conditions {%ﬁ?'g} U Z).(ll)
Equation (9) expresses the property that ‘once X is known (along with anything else Y),
then no further information can be gained about X by observing W.” Equation (10) is the
symmetry relation: ‘if once Y is known, W is uninformative for X, then X is uninformative
for W, having observed Y. The final property, equation (11), may be read as ‘if having
observed Z, W is uninformative for both X and Y, then equivalently, having observed Z, W
is uninformative about Y and, having observed Y and Z, W conveys no information about
X0

Smith (1989; 1990) shows that any tertiary relation obeying these properties will be-
have computationally as a conditional independence property. Hence, we may construct the
relation qualitatively and examine its implications in an identical manner to those for prob-
abilistic conditional independence, or use the relation for other properties which represent
types of lack of influence quantitatively without requiring the use of the full probabilistic
conditional independence.

For example, Goldstein (1981, 1990, 1994, 1999) has long advocated that there is a need
to develop statistical methods based upon partial prior specifications to enable the handling
of problems where the level of complexity means that it is beyond our ability or inclination
to construct a full probability specification. Goldstein (1990) constructs a tertiary property
based on the orthogonality of certain adjusted belief structures (see Goldstein (1986, 1988)
for further details).

The advantage of this generalised conditional independence property is that provided
properties (9) - (11) are satisfied for a set of random quantities, as Smith (1989; p656) writes
‘all the theory we develop about how “information” is transferred between those uncertain
quantities will also hold’. At the outset, we may only be willing to specify our qualitative
judgments of independence but through the use of a generalised conditional independence
property we need not restrict ourselves to requiring a full probabilistic either at the outset
or at all. We may focus attention on making independence statements, the very thing both
Smith and Pearl argue we are willing and able to do. Thus, the aim of Pearl (1988; p81)
as to ‘whether assertions equivalent to those made about probabilistic dependencies can be
derived logically without reference to numerical quantities’ may be accomplished if such a
system exists for probabilistic conditional independencies. The solution to this lies in graph-
ical representations and, in particular, Bayesian belief networks and the associated moral
graphs. Construction of the Bayesian belief network allows us to represent graphically cer-
tain independencies present in the full probability distribution over all the random quantities

11

of interest. The moral graph uses the Bayesian belief network to provide us with a logical
and tractable way to identify further independence statements between the collections of
random quantities as we now explain.

7 Graphical representations: Bayesian belief network

A collection of conditional independence properties may be represented graphically. The
nodes of the graph are random quantities. Nodes are joined by directed arrows if there is
a possible direct dependency between the nodes. The direction of the arc represents the
causal influence, for as Whittaker (1990; p71) writes ‘in many, if not most, studies of several
interacting variables there is a striking lack of symmetry in the roles played by variables that
corresponds to a notion of causality’. For example, there is a possible direct dependency
between an individual having lung cancer and that individual being a smoker, smoking
being the possible cause of the cancer. Pearl (1988; pl116) gives a similar example: ‘if the
sound of a bell is functionally determined by the outcomes of two coins, we will have the
network coinl — bell « coin2, without connecting coinl to coin2. This network reflects
the natural perception of causal influences; the arrows indicate that the sound of the bell
is determined by the coin outcomes, which are mutually independent’. The most familiar
graphical representation of a collection of conditional independence properties is the Bayesian
belief network.

Definition 9 Given a probability distribution p(x1,...,z,) and any ordering d of the vari-
ables, a Bayesian belief network of p(xi,...,x,) is the DAG G = (V,E) with node set
V ={Xy, ..., Xn}. The set of vertices E is created by designating as parents of X;, for
each i, any minimal set pa(X;) C {X1, ..., X;_1} of ancestors satisfying

p(zilpa(zi)) = plzilze,. .. 2io1). (12)

The immediate question arises of whether we can identify when a DAG is a Bayesian belief
network. The following lemma, see Pearl (1988; p120), answers this question.

Lemma 1 Given a probability distribution p(zi1,...,x,) and a DAG G = (V,E) where
V = {X1, ..., Xn}, a necessary and sufficient condition for G to be a Bayesian belief
network of p(xy, ..., x,) is that each variable X; is conditionally independent of all its
non-descendents given its parents pa(X;), and that no proper subset of pa(X;) satisfy this
condition.

The Bayesian belief network thus represents the independencies embedded in p(z1, ... , Zn)
that follow from the definition of the parent sets. On the other hand, inspection of the
Bayesian belief network allows us to immediately reconstruct p(z1, ..., Z,) as
n—1
p(T1,... ,2n) = Hp(xn,i|xn,i,1,... , 1) (13)
=0
n
= [r@ilpa(z:)). (14)
i=1

For further details on this see Jensen (1996; p20).
Having represented p(z1, ... , 2,) as a Bayesian belief network, we are interested in how
it can be used for deducing new independence relationships from those explicitly used to

12

construct the DAG. The way this is achieved is by linking probabilistic conditional indepen-
dence with graph separation on an associated undirected graph; graph separation satisfies
the conditions (9) - (11) (see Pearl (1988; Section 3.1)) and so acts as a generalised con-
ditional independence property. An undirected graphical model is said to have the global
Markov property if whenever a collection of nodes Y separates collections W and X on the
graph then W1 X|Y; see Cowell et al. (1999; p67) for further details on the global Markov
property. If we are interested in assessing whether W 1L X|Y for our Bayesian belief network
we construct an undirected graph called the moral graph.

Definition 10 On the DAG G = (V, E) for subsets W CV, X CV,Y CV, the moral
graph Gy (W, X, Y) = (Vi (W, X, Y), Epf(W, X,Y)) is the undirected graph where
VW, X,Y) = {W}Uan(W)U{X}Uan(X)U{Y}Uan(Y); (15)
Ey(W,X,Y) H(f59), (9, F)Vy, f € Vu(W, X,Y) : (f,9) € E} U{(g,h), (h,g) (16)
Vf,g,h € Vu(W, X,Y) : {(g, f), (h, [IYCE A (g,), (h, 9)¢E}}. (17)
IfVu(W,X,Y) =V then we write Gyg(W, X,Y) = Gur and term this the full moral graph.
Less formally, we draw the subgraph of G with nodes W, X, Y and all their ancestors; ‘marry’
all parents (join them with an edge if not already joined); drop all arrows to form the moral
graph Gy (W, X,Y). For further details on moral graphs see Lauritzen & Spiegelhalter
(1988).
The moral graph satisfies the global Markov property; see Lauritzen et al. (1990; Section

6). The following theorem, see Cowell et al. (1999; p71), is then used to determine the
conditional independence properties of our Bayesian belief network.

Il

Theorem 1 For any three collections of nodes W, X, Y within a Bayesian belief network
G = (V, E), construct the moral graph Goyy(W,X,Y). Then W1LX|Y whenever W and X
are separated by Y on the moral graph.

8 Viewing the call graph as a Bayesian belief network

In the previous section, we reviewed the use of a Bayesian belief network and its associ-
ated moral graph to exhibit conditional independencies present in the specification of the
probability distribution p(z1, ... ,z,) over the nodes. However, as was discussed in Section
6, our independence and dependence statements are more basic than the specification of
p(x1,...,zn). As Pearl (1988; p79) writes, ‘the language used for representing probabilistic
information should allow assertions about dependency relationships to be expressed qual-
itatively, directly, and explicitly ... once asserted, these dependency relationships should
remain a part of the representation scheme, impervious to variations in numerical inputs’.

The representation comes from constructing a DAG as previously, but the parent sets,
pa(X;), are now specified directly by the modeller as opposed to being a feature of a quantified
probability distribution, p(z1,...,2,). Pearl (1988; p23) writes about how this should be
done:

The parents of X; are those variables judged to be direct causes of X; or
to have direct influence on X;. The informal notions of causation and influence
replace the formal notion of directional conditional independence. An important
feature of the network representation is that it permits people to express directly
the fundamental, qualitative relationships of direct influence; the network aug-
ments these with derived relationships of indirect influence and preserves them,
even if the numerical assignments are just sloppy estimates.

13

Later, we may seek to quantify the numerical assignments, and notice that by the generalised
conditional independence property of Smith (1989), we may choose this using any system
that satisfies the three properties (9) - (11). For example, we could elect to make a full
probability specification, resulting in the Bayesian belief network discussed in the previous
section. An alternative involves only a second order specification. This leads to a Bayes
linear graphical model as described in Goldstein & Wilkinson (2000; Section 2.3).

We now reach the stage when we discuss how a graphical representation of conditional
independence between procedures in our software may help program comprehension. Smith
(1990) argues that there are three uses of graphical representations of conditional indepen-
dence statements. Firstly, to enable quick and efficient calculations of marginal and condi-
tional distributions of interest from p(x1,...,pn). This is done through local computation
as expressed in Lauritzen & Spiegelhalter (1988). Goldstein & Wilkinson (2000) consider
the principles of local computations when using a partial prior specification. The second to
help in the elicitation of a model structure. If we constructed a graphical model over a piece
of software and we wished to then test the software, we may wish to go down this route. It
is the third use that we are interested in in this paper. Smith (1990; p90) writes

The third use of graphical methods, which is linked but distinct from the
second, is to help the decision analyst or statistician to understand and use a
model’s c.i. [conditional independence] structure. He uses graphs directly to
derive rigorously both the relationships embedded between variables and the
forms of optimal policies implicit within a given model structure. Since this
analysis works only on the conditional independence statements in a model, the
results obtained will be completely distribution-free.

We shall consider the propagation of errors in the call graph and use this as a means of
deriving independencies between sets of random quantities f-working? for each procedure
f €V on a call graph G = (V, E). These sets enable us to track the potential propagation
of errors in the code and hence map the ripple effects.

Before we explore the dependence between the random quantities f-working? for each
procedure f € V on a call graph G = (V, E), we make the following definition to link
dependencies and independencies in the random quantities with the associated procedures.

Definition 11 Suppose F = {f1,...,fi}, G = {91,--. ,9m}, and H = {hy,... ,h,} are
three subsets of V where V is the collection of procedures of a call graph G = (V, E). The col-
lection G is said to be procedurally conditionally independent of H given F, written GLLH|F,
if for the collections F-working? = {fi-working?,... fi-working?}, G-working? = {g1-
working?, ... gm-working?}, and H-working? = {hi-working?, ... hp-working?} we have
G-working? \L H-working?|F-working? for a chosen generalised conditional independence
property.

Having made this definition, we now explore how we may use the call graph to suggest
dependencies and independencies between collections of procedures. We make it explicit
here that we are concerned with tracing the possible path of errors in the call graph, that
is if a procedure f on the call graph is found to be in error for some input z, to which
other procedures could this error be propagated and so affect our judgments of whether a
second procedure g is in error in light of this information. We are ruling out other forms of
relationships we could construct in the code. For example, we could attempt to track areas
of code written by specific programmers: learning that they have written one procedure
correctly is likely to increase our belief in their competence and thus reduce our judgment
about the chance that the other procedures they have written are in error. Alternatively, we

14

could consider information flow across procedures with similar functionality or across areas
of code that share similar features (such as joins between new and old areas of the code).
Attempting to model these would require a detail knowledge of the code and may not even
be available. We thus restrict our attention to dependencies that we can derive from the call
graph, an object that is readily available.

Definition 12 For a call graph G = (V, E), with f, g € V, we judge g-working? to be a
direct cause of f-working? if and only if (f,g9) € E

We shall motivate this definition through three examples.
In the first case, consider a simple call graph G = (V,E) where V = {f,g,h} and
E ={(g,f),(f,h)}. This is illustrated as the left hand figure of Figure 5. Suppose that the

f f-w?

g h g-w? h-w?

Figure 5: Left, a simple call graph with three nodes. If an error is detected in a child
node, it could propagate to the parent node. This direction of propagation is exhibited by
reversing the arcs in the call graph as shown in the figure on the right, where f-?, g-?7, h-?7
represent, respectively, the random quantities f-working?, g-working? and h-working?. The
procedures g and h are dependent, but if we know f then the procedures are independent.

procedure h does not work, so that the state of its associated random quantity h-working?
is 0. There is at least one possible input for which h either yields the incorrect output or
causes a mistake in the database. Suppose we call procedure f with input a. This input
may cause procedure h to be called with input b(a), the input being dependent upon the
initial input @ into f. It is possible that b(a) may be an input that yields the error in h,
so that when h returns to f, an error is present and so procedure f is in error. The error
has directly propagated from h to f; the cause of an error in f could be h. We could view
this as there being a potential physical propagation of an error from h to f. However, the
reverse is not true since the execution of h must cease before the execution of f. Procedures
f and h are dependent: knowledge of an error in h will cause us to increase our belief that
f is in error for f may call h with the input that yields the error, whilst if f is in error,
than we may judge that this error may be caused by a procedure it calls, namely h, which
propagates the error. There is a dependence between f and h and we may reflect this by
creating a new graph with a link between f and h; the propagation argument suggests this
arc should be directed from A to f, the reverse of the direction of the arc on the call graph.
A similar argument shows that g and f should be viewed as dependent. An error in A can
propagate to g but not directly but via f. The dependence is indirect and if f is known, h
and g are independent, that is g-working? 1L h-working? |f-working? The moral graph of
the right hand figure captures this for it is simply the figure with the arrows dropped. There
is a single path from g-working? to h-working? and that is through f-working?.

15

In the second case, consider the call graph G = (V, E) where V = {f,g,h} and E =
{(f,9),(f,h)}; the call graph is shown as the left hand figure of Figure 6. The procedures

f

9

f-w?

h

g-w?

h-w?

Figure 6: Left, a simple call graph with three nodes. The procedures g and h are independent,
but if we know f then the procedures are dependent. The call graph with the arrows reversed,
right, captures this.

g and h are independent. If g is not working, this gives us no information about the state
of the h-working? variable. Although a potential error in g could result in h being called
with the wrong input, or with the wrong database set-up, all that is relevant is whether A
copes with these correctly. Now suppose that the procedure f is known not to be working.
Are the procedures g and h still independent? f not working could have resulted from an
error propagating from either g or h or from an error in f itself. If we learn that g works,
then this will increase the belief that h is in error; procedures g and h are dependent given
f- This conditionally dependency of the procedures g and h given f may be captured by
reversing the arcs of the call graph as shown in the right hand figure of Figure 6, for random
quantities g-working? and h-working? are parents of f-working? on this graph and are not
joined by an arrow, so we marry them. This creates a path from g-working? to h-working?
which does not intersect f-working?.

As a third case, we consider the call graph G = (V, E) where V = {f,g9,h} and E =
{(9, 1), (h, f)}, as shown as the left hand figure of Figure 7. The procedures g and h are

g h g-w? h-w?

f f-w?

Figure 7: Left, a simple call graph with three nodes. The procedures g and h are dependent,
but if we know f then the procedures are independent. The call graph with the arrows
reversed, right, captures this.

dependent. If g is not working then the chance that f is not working is increased. Any
errors in f may propagate to h and so the chance of h being in error increases. However,
if f is known then the procedures g and h are independent. For example, if f is known to

16

be working, then observing that g is not working gives no information about the state of
h-working?.

The right hand figures of Figures 5 - 7 illustrate the direct dependencies on the call
graphs shown as the respective left hand figures. Definition 12 enables us to identify for each
random quantity f-working? for each f € V on the call graph the parent sets; these are
precisely the child sets of f on the call graph but considered as random quantities.

Definition 13 The qualitative conditional independence network for the call graph G =
(V,E) is the DAG G = (V-working?, Eg) where

V-working? = {f-working?: feV}; (18)
Er = {(g-working?, f-working?): (f,g) € E}. (19)

If G, H, F are three sets of procedures on G, then G is procedurally conditionally independent
of H given F, written GALH|F if F-working? separates G-working? from H-working? on
the moral graph G (G-working?, H-working?, F-working?).

The qualitative conditional independence network for the call graph G = (V, E) thus maps
the potential physical propagation of errors and the moral graph pinpoints the conditional
independencies. As we have a one-to-one mapping between the collection of procedures V'
and the collection of random quantities V-working? with f — f-working?, for simplicity,
we relabel the random quantities on the qualitative independence network as f rather than
f-working?. Whilst also saving space, this allows us to visualise the qualitative conditional
independence network as the call graph with the arrows reversed.

9 Conditional independencies around a root node

Suppose we have a DAG G = (V, E) and the node f € V is a root node. That is there is no
g € V such that (g, f) € E. Form the collections

A; = fuch(f), (20)
By = |J {9Uch(g) Upa(g) U ch(pa(g))}. (21)
9eV\Af

Notice that when considered on the associated moral graph Gy, the collection of nodes By
may be considered as

By = |J {guti(e)}, (22)
9eV\Ay

where bl(g) denotes the Markov blanket of g. The Markov blanket is the set of neighbours
of g on the moral graph Gy, as can be easily checked. For further details on the Markov
blanket see Cowell et al. (1999; p71). Notice that f ¢ By.

Lemma 2 Consider the call graph G = (V,E) and let f € V be a root node. Form the
collection

A; = fuUch(f). (23)
If Ay #V form the collection
By = |J {gvile)} (24)
gEV\Af

Then {Af n BJCC}J.L{A; n Bf}|{Af n Bf}.

17

Proof - Since the moral graph, Gy is second-order global Markov then to show {Af N
By {A$ N Bj}|{Af N By}, we merely need that {A; N By} separates {A; N B$} and
{A§C N By} on Gyr. Since {A$N By} = V\Af, we have for each g € {A$ N By}, bl(g) C By.
Since Ay # V and {A; N B$} # 0, consider an element f4 € {Ay N B¢} and an element
gB € {A;c N By} and suppose there is a path fa — gp. If there is no path, then the sets
{AsNB$}, {AGN By} are separate on the moral graph and {4y N By} = 0: the two sets are
independent. If there is a path, then for every path of this type, there is a node f} € Ay and
anode g € V' \ Ay such that the edge (f},g%) is present on the moral graph, Gas. Hence,
fi € bl(gy) and hence f3 € {AfN By}

Having determined {A;N B¢}, we may divide it into three sets, {f}, Ry and N Ry, where:

Ry = {freAs:{ch(fr) =0} n{pa(fr) \ {f} = 0}}, (25)
NR; = {A;NBi\{fUR;}. (26)
f B;
Ry NR
NR; !

Figure 8: Dividing the nodes in V into two collections of nodes, Ay N B¢ and By U N Ry.
The oval box represents a separator and contains the nodes Ay N By. Notice that Ay =
{Af N B}:} U {Af n Bf} and that {Af n B;}J_L{A; n Bf}|{Af n Bf}

Suppose that Ay # V and {A; N By} # 0. Then Figure 8 shows a possible graphical
representation of these sets, and the derived conditional independence. We choose a suitable
notation so that the sets {f}, Ry and NR; are identifiable on the graphic. For example, we
may always write f first and asterisk the nodes in NRy. Thus, the graph is represented as
two nodes and a separator.

If Ay =V, then the associated moral graph, G, is complete; that is all the vertices are
joined by an (undirected) arc. We may still represent this graphically by regarding By as
being empty. Figure 9 shows the representation.

f

x, (o) VR,

NRy

Figure 9: The representation when Ay = V. The associated moral graph is complete and
there are no nodes that we can separate f from.

The third case to consider is when Ay # V but {A; N By} = 0. In this case there are
unconnected subgraphs within the graph, and at least two root nodes. If we considered these
subgraphs separately, then the subgraph with root node f would have its associated moral
graph as being complete, yielding the identical situation as shown in Figure 9. The remaining
nodes, A; N By are completely separate. A graphical summary of this circumstance is given
in Figure 10. Since the nodes in the set By form at least one graph themselves, we could form
conditional independencies around the root nodes here. However, it is not just in this case

18

Figure 10: The representation when Ay = V. The associated moral graph is complete and
there are no nodes that we can separate f from.

that we may have obvious further conditional independencies to investigate in an identical
manner.

Returning to the graph G, we may construct the associated moral graph Gar (V\{fUR;}).
Notice that it does not include the nodes {f U Ry} within its set of nodes, indeed the moral
graph Gy (V' \ {f U R;}) is identical to the full moral graph formed from the call graph
G\{fUR;} = (V\{fURy},E\ Ey), where Ey is the set of edges from f on G, namely:

Er = {(f,h) Vh € ch(f)}. (27)

This observation thus shows the usefulness of splitting Ay N B¢ into the three collections
{f}, Ry, NRy. We could perform a similar independence check with a root node of the
call graph G \ {f U Ry}. Since this call graph has fewer nodes, but shares a moral graph
with the original call graph G this suggests a possible algorithm for producing conditional
independencies from the call graph G. We derive such an algorithm in the next section.

10 An algorithm for deriving conditional independen-
cies from a call graph

Suppose that G = (V, E) is a call graph and that |V| = n. Then it is always possible to
well-order the nodes. That is there is a numbering such that if two nodes are connected, the
arc between the node runs from the lower to the higher of the two nodes. Cowell et al (1999;
p4T7) give an algorithm to construct a well-ordering of the nodes. We repeat the algorithm
here.

Algorithm 1 For the graph G = (V, E), we may well-order the nodes as follows.
e Begin with all nodes unnumbered.
o Set counter i = 1.
o While any nodes remain:

— Select any root node.

— Number the selected node as i.

— Delete the node and all edges from the node to its’ children.
— Seti=1+1.

19

Thus, we can construct a bijective mapping a : V — {1,... ,n} sothat if f € V, a(f) = k for
some k € {1,...,n}. We may derive from the call graph G = (V, E) a series of conditional
independence statements, similar to those derived in the previous section. The following
algorithm explains how we do so.

Algorithm 2 For the call graph G = (V, E), with |V| = n and mapping a: V — {1,... ,n},
form the 1 x n vector nodesplit = (0 0 ... 0).

o Set G = (Vi,Er), where Vi =V and Ey = E.
o Seti=1.
o While |V;| # 0 do:

We work on the graph G; = (V;, E;).
If f € V; is a root node, with a(f) =k, set

nodesplitlk] = mnodesplit[k] + 1, (28)
and form the set
RN; = {f€Vi:pa(f)=0}. (29)
Choose any node f; € RN; such that
nodesplitla(f;)] = [min nodesplit[a(f)], (30)

and if nodesplit[a(f;)] > 1, and Ay,_, N By,_, # 0 then there exists y € Ay,_, N
By,_, such that v € de(f;).

Construct the sets

A, = fiUch(fi); (31)
By, = |J {g9Uch(g) Upa(g)Uch(pa(g))}. (32)
gEVi\Ay,

If Ay, # 'V, we have the conditional independence statement that
{Afi n B;;}J-L{AC; N Bfi} {Afi N Bfi}‘ (33)

Construct the sets

Ry = {fre€ Ay :{ch(fr =0} n{pa(fr\{fi} = 0}}; (34)

NRy, = {ApnBg\{fiURy}. (35)
Construct the graph Giy1 = (Viy1, Eiy1) where
Vim = Vi\{fiURy} (36)
Eiyn = E;\Ey, (37)
where Ey, 1is the set of edges from f; on G;, namely
Er = {(fi,;h) Vh € ch(fi)}. (38)
Seti=1+1.

Having run this algorithm, we may use a graphical representation to illustrate the sets
we calculate during the operation of the algorithm. The graphical display builds upon those
given in Figures 8 - 10. We'll investigate in detail the first two stages of the graphical
construction, before illustrating, by means of an example, the full representation and its’

features.

20

10.1 Building a graphical representation of the results of the algo-
rithm: first stage

We have our call graph G = (V, E). Suppose that at the first stage of the algorithm, we
discover root nodes fi1, ..., fm1 and decide to use fi1 as our root node of interest in the
algorithm. Suppose that As,, # V and {Ay,, N By,, } # 0. Thus, we have a situation similar
to that illustrated in Figure 8. We could however have chosen any of the f;; as the root node
we split upon in the algorithm and so we choose to make there availability explicit. Figure
11 shows how this would be constructed.

fi B,
NR f11
f11
fa1
fml
Figure 11: The available root nodes are fi1, ..., fim1 and we show these on the left hand

side to illustrate with which other nodes they were first available for splitting upon. The
graph should be read as {Ay,, N B}, }UL{A$ N By, }{As, N By, }. Notice that for each
J=2,...,m, fii € {Af, N By,}. In later stages, the nodes fj1 will be replaced by the
relevant Ay, , but their positioning directly beneath Ay, will remain in place.

We then follow the second stage of the algorithm. We shall illustrate two cases in order
to make the layout of our graphical representation more explicit.

10.2 Building a graphical representation of the results of the algo-
rithm: second stage

Having performed the first split upon G = (V, E) with the root node fi1, for the second split
we work with the graph G\ {fi1 URys,} = (V \ {fi1 URy,}, E\ Ey,). Notice that fo1,
..., fma are also root nodes on this graph. There are two cases to consider. Firstly that G\
{fi1 U Ry,, } has additional root nodes fi2, ..., fp2 as well as the remaining fo1, ..., fm1.
The second scenario is that G\ {fi1URy,, } has no other root nodes other than fa1, ..., fm1.

In the first case, the algorithm determines that we will choose to split upon one of the
fj2 nodes since these are newly available so that nodesplitja(fj2)] = 1 for each j =1, ...,
p, whilst nodesplit{a(f;1)] = 1 for each j = 2, ..., m. Notice that, for each j =1, ..., p,
fij2 € Ag,. The algorithm thus states that we have a free choice of the fj» to split upon.
Suppose that we choose fi» and that Ay, # {V \ {fi1 URy,, }, and {4y, N By, } # 0. We
build upon Figure 11 by including the information from the second run of the algorithm.
This extension is shown in Figure 12.

Ap, N BY, ={fuU Ry, UNRy,, } and Ag,, N By, = {fi2U Ry, UNRy,, } are readily
read off the graphic, alongside their corresponding separators, Ay, N By, and Ay, N By,,
respectively. By, may be read off and

Bf11 = {f12 U Rfm U NRf12 U Bf12} \ Nana (39)

21

By
Rfu -Afu men > Rf12 -Af12 mem > NleZ
12

NRy,, NRy,,
f22
T
fa1
o
Figure 12: For the second step, the root nodes fi2, ..., fp2 are additionally available and
we illustrate where these became available. They are to the right of the f;; for j =2,... ,m

as they became available for splitting later. After splitting on fi5, the displayed root nodes,
waiting for splitting, are all members of {A} N By, }.

or, all the nodes on the directed path from the node Ay, Bf which are not in this node.
The two basic conditional independence statements we may read off are:

{Afll N B;u }J'L{Acu N Bfll}l{Afll N Bfu}; (40)
{Af12 N BJC‘m}J'L{ACm N Bf12}|{Af1z N Bfm}' (41)

Using the properties of conditional independence, we may combine these. For example, we
have that

{Afu N BJC‘H}J'L{ACQ N Bf12}|{{Af11 N Bfu}U {Af12 N Bf12}}' (42)

A close inspection of the algorithm shows that in this case, we will only now select one of
the f;1 root nodes, for some j = 2,... ,m, for splitting after we have split upon all of the
fr2 nodes.

The second scenario is that on the second stage of the algorithm, no new root nodes
become available. We will then split upon one of fa1, ..., fim1- We choose fa1. Suppose that
Ap #{V\{fir URy, }}, and {4y, N By, } # 0. This we add to Figure 11 as shown in
Figure 13. We may then proceed through the stages of the algorithm in a similar way. The
resulting construction is termed a moral tree. We now show its construction for a simple
example; for spacial reasons the graph is drawn from north to south rather than the west to
east direction of Figures 11 - 13.

11 Moral trees: an example
Recall Figure 1. We constructed the resulting dominance tree for the call graph; this was

displayed in Figure 2. As an alternative approach, we construct the corresponding moral
graph for Figure 1 using the algorithm. The moral tree is displayed in Figure 14.

22

fun

Ry,
NRfu

f21 Bf
R NR.
NRf21 i
fml

Figure 13: Following the split on f11, no additional root nodes become available. The second
split is on an f; for some j = 2,... ,m. We choose f21. Notice how the node Ay, assumes
the same position as the node f2; on Figure 11.

From Figure 14, we can see how the algorithm developed. At the first stage, we op-
erate with the call graph as given in Figure 1. It has a solitary root node, A000 and we
split upon this node. A000 and the arcs (A000, B000), (A000,C000) and (4000, D000) are
then removed from the call graph and we proceed with the remaining nodes and arcs as
our graph in the algorithm. This has three root nodes: B000, C000 and D000 available
for splitting upon. These three nodes are all placed on the second step of the graphic. We
are free to choose to split on any of these. Since these nodes are all root nodes of uncon-
nected graphs, the choice makes no difference to the graphical representation. Observe the
node containing the set {B000, B100, B200}. The root node is B000 and {B100, B200}
= Rpooo: the nodes have a single parent in B000 and no children. However, if we observe
the node {D100, D200, D110} we see that an asterisk appears alongside D200 and D110.
This identifies that {D200, D110} = NRpigo: at this stage in the algorithm, D200 and
D110 still have additional parents or children, which are also children of D100. As the node
{D200, D110} confirms, D110 is a child of D200 on the call graph, G. This relationship
is identifiable on the moral tree and needs no recourse to the call graph. Indeed, we may
observe that there is a node that contains every node and its children and that these are
identifiable. For example, the children of A000 are B000, C'000 and D000. Since A000 is
the only root node of Figure 1 and A000 appears in isolation in a node, then its children
(which thus all appear in the adjoining separator) all have children that are not also children
of A000. We don’t split upon either B100, B200, C'110 or D110: we know that these are
childless nodes. Notice that after splitting upon A000, we observe that the graph splits into
three unconnected subgraphs. Thus, we may immediately read the following (interesting)
conditional independencies from the graph:

1. {A000}1L{B100, B200, 100, C200,C110, D100, D200, D110}|{B000, C000, D000}{43)
2 {B000, B100, B200} 1L{C000, C'100, C200, C110}|0; (44)
3. {B000, B100, B200} LL{ D000, D100, D200, D110}|0; (45)
4 {C000, C100, C200, C110} 1L{ D000, D100, D200, D110}|0. (46)

Notice that the sets in equations (44) - (46) were the sets suggested by Burd & Munro
(1999) as reuse candidates from inspection of the dominance tree (see Figure 2). Indeed, in

23

B000, C000, D000

]
B00O
B100
B200 C100, C200 D100, D200

c200

C110

C110

D200*

D110*

Figure 14: The moral tree resulting from the call graph of Figure 1.

shape, Figure 14 is very similar to Figure 2. It is straightforward to read off the dominance
tree from Figure 14. Strongly directly dominated nodes will appear in one node on the
moral tree, and at most one separator. If they appear in a separator then they must be the
root node of the node they appear in on the moral tree to be strongly directly dominated.
They are strongly directly dominated by the split upon node that the separator corresponds
to. Hence, we immediately see that B000, C000, D000, C'100, C200 and D100 are strongly
directly dominated as they appear in exactly one node (as root nodes) on the moral graph and
one separator. The dominators are, respectively, A000, 4000, A000, C000, C000 and D000.
A000, B100, B200 only appear in a solitary node and so are strongly directly dominated by
the root node of that node; namely A000, BO00 and B00O0 respectively.

C110 appears in exactly one node and one separator on the moral tree, but it is not the
root node. Thus, it is not strongly directly dominated: it has more than one parent. Its
parents are C'100 and C'200, which are both strongly directly dominated by C'000 which thus
directly dominates C'110. D200 appears in two nodes and one separator on the moral tree.
Its parents are D000 and D100 and D000 strongly directly dominates D100 and thus directly
dominates D200. D110 appears in two nodes, having parents D100 and D200. These are
both directly dominated by D000 (D100 strongly so) and so D000 directly dominates D110.
Notice how we may visually see this directly dominators on the graph. Recall that a forward
step (across a non-empty separator) on the moral tree constitutes a path on the call graph
and the backward step a return to the head of a new path, then the arrow from the C'110
separator to the node {C200,C110} may be interpreted as an arrow from the {C100, C200}
separator to the {C200,C110} node. The direct dominator of C110 is then the root-node
in the node on the moral graph which is the root of these two branches on the moral tree,
namely C000.

Suppose that we consider adding a call between B000 and C110 on the call graph of
Figure 1. This results in a new moral tree as shown in Figure 15. The corresponding

24

dominance tree to this scenario is that shown in Figure 3.

B00O, C000, D000

]
B00O
B100
B200 C100, C200 D100, D200

00
C110

C110

D200*

D110*

Figure 15: The moral tree resulting from the call graph of Figure 1 with an additional call
between B000 and C110.

Observe the differences between Figure 14 and Figure 15. In Figure 14, we highlighted
relations (43) - (46). The equivalent relations may be read from Figure 15.

1. {A000}1L{B100, B200,C100,C200,C110, D100, D200, D110}|{B000, C000, DO00}47)
2. {B000, B100, B200} 1L{C000, C100, C200}|C110; (48)
3. {B000, B100, B200} 1.{ D000, D100, D200, D110}|0; (49)
4 {C000, C100, C200, C110} 1L{ D000, D100, D200, D110}|0. (50)

The only change to these four conditional independencies is to equation (48) which explicitly
shows that the sets {B000, B100, B200} and {C000, C100, C200} cease to be independent as
a resultant of the added call, but that they are conditionally independent given C'110. Thus,
the moral tree explicitly shows that the sets { B000, B100, B200} and {C000, C100, C200}
are related to each other, but remain independent of {D000, D100, D200, D110}. There is
no need to refer back to the call graph to deduce this, but this relationship cannot be found
in Figure 3. We should emphasise a point about the algorithm here. Having split upon
A000, B000, C'000, D000 are all available for splitting upon and we have free choice. We
choose B000 and after splitting, the only available root nodes are C000 and D000, so that
we perform a backwards step in the algorithm. However, Apgoo N Bpogo = C'110, so that
we know that the three sets de(B000), de(C000), de(D000) on G are not all unconnected.
For the choice between C000 and D000 for splitting upon, we have to choose one that has
C110 in its descendents. Thus, we choose C'000. This enables us to identify D000 as being
the root node of a separate subgraph since Acago N Beiio = 0, but Beiio = {D000, D100,
D200, D110}.

Suppose that, as an alternative, we consider adding a call between A000 and C'110 of

25

Figure 1. This results in a new moral tree as shown in Figure 16. As we explained when
discussing Figure 3, the dominance tree corresponding to this is also given by Figure 3.

(‘Booo, 000, G110 D000)

]
B00O
B100
B200 C100, C200 D100, D200

C110 D200*

D110

D200*
D110*

C100 C200 D100
110

Figure 16: The moral tree resulting from the call graph of Figure 1 with an additional call
between A000 and C110.

Observe the differences between Figure 14 and Figure 16. We state the equivalent rela-
tions on Figure 16 to those given by relations (43) - (46).

1. {A000}.L{B100, B200, C'100, C200, D100, D200, D110}|{B000, C000, C110, D000}{51)
2 {B000, B100, B200} 1L{C000, C'100, C200, C110}|0; (52)
3. {B000, B100, B200} 1L{ D000, D100, D200, D110}|0; (53)
4 {000, C100, €200, C110} 1L{ D000, D100, D200, D110}(). (54)

Notice that the only change is in relation (51), which results from C'110 also being a child of
A000 and thus marrying B000, C000 and D000 on the corresponding moral graph. However,
relations (52) - (54) remain unchanged. In particular observe that {B000, B100, B200} is
independent of {C000, C'100, C200}. The moral trees shown in Figure 15 and Figure 16 are
different to reflect the different independencies within the call structure; the corresponding
dominance trees do not pick up upon this difference. The addition of a call between B000
and C110 and the conditional independencies shown by relations (48) - (50) supports the
argument of the three reuse candidates:

1. {B000, B100, B200}
2. {C000, C100, C200}
3. {D000, D100, D200, D110}

as argued by Burd & Munro (1999), whilst additionally highlighting the role of the service
candidate C110, which make ripple effects easier to understand. The addition of a call

26

between A000 and C110 argues that whilst we may take the above three sets as reuse
candidates, we may extend {C000, C100, C200} to {C000, C100, C200, C110}.

Suppose that to the original call graph of Figure 1, we add a call between C000 and
D000. The resultant dominance tree for this change was given by Figure 4; the moral tree
is given in Figure 17.

B000, C000, D000

]
BO0O
B100
B200 C100, C200, D000

a0

D100, D200

D100
D200*
D110*

D200*
D110*

Figure 17: The moral tree resulting from the call graph of Figure 1 with an additional call
between C'000 and D00O.

Observe how Figure 17 differs from Figure 16. These are perhaps best seen by examining
the analogous (interesting) conditional independencies exhibited on Figure 17 to those on
Figure 14. We now have:

1. {A000}1L{B100, B200,C100,C200,C110, D100, D200, D110}|{B000, C000, DO00}55)
2. {B000, B100, B200} 1L.{C000, C100, C200, C110}|0; (56)
3. {B000, B100, B200} 1L.{ D000, D100, D200, D110}|; (57)
4. {C100, €200, C110}1L{ D000, D100, D200, D110}|0. (58)

Thus, the consequence of the additional call is seen in relation (58). The call between C'000
and D000 produces a dependence between the sets {C'000, C'100, C200, C110} and {D000,
D100, D200, D110}, but each of these sets remain independent from the set {B000, B100,
B200}. As this dependence is caused by C000 calling D000, then relation (58) holds. This
dependence is suggested in Figure 4 by the change of D000 from being strongly directly
dominated to only being directly dominated, but from the dominance tree alone, it is im-
possible to determine what causes this dependence. The moral tree, however, shows this

27

clearly. Moreover, the relation (58) is only available on the moral tree and suggests that we
may consider, in this case, using the following sets as reuse candidates:

1. {B000, B100, B200}
2. {C100,C200,C110}
3. {D110, D100, D200, D110}

This information is not supported on the dominance tree in this example. Suppose that
there was also calls to D000 from C'100 and C200. The dominance tree in this case does not
change and remains the same as that of Figure 4, but in this case relation (58) no longer
holds and this is picked up by the moral tree. The point was made in the discussion of Figure
4, that the addition of a call C'110 to D000 also results in the dominance tree of Figure 4,
but that we may consider using the sets

1. {B000, B100, B200}
2. {C000,C100,C200}
3. {D110, D100, D200, D110}

as reuse candidates. This intuition is supported by the moral tree in this case as Figure 18
shows.

Notice how Figure 17 differs from Figure 18, although the corresponding dominance
trees are identical. It is clear on the moral tree that the alteration of direct dominance from
strongly directly dominated for the node D000 is caused by the call C'110 to D000, which
appears as a node-separator pair and that the following relations hold:

{C000, C'100, C200} 1L{ D000, D100, D200, D110}|C110; (59)
{C000, C'100, C200, C110}1L{ D100, D200, D110} DO0O. (60)

The two examples given by Figures 17 and 18 show how it is able to detect deeper structure
in the code than the dominance tree, helping to resolve potential difficulties of the moral
tree.

References

Burd, E. and M. Munro (1998). A method for the identification of resuable units through
the reengineering of legacy code. The Journal of Systems and Software 44, 121-134.

Burd, E. and M. Munro (1999). Evaluating the Use of Dominance Trees for C and COBOL.
Proceedings of the International Conference on Software Maintenance, ISCM’99 00,
401-410.

Cowell, R. G., A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter (1999). Probabilistic
Networks and Expert Systems. New York: Springer.

Dawid, A. P. (1979). Conditional independence in statistical theory (with discussion). J.
R. Statist. Soc. B 41, 1-31.

Dawid, A. P. (1980). Conditional independence for statistical operations. Ann. Statist. 8,
598-617.

Goldstein, M. (1981). Revising previsions: a geometric interpretation (with discussion).
J. R. Statist. Soc. B 43, 105—130.

28

A000

(B000, CO00, DOOO)
l l

BO0OO
B100
B200

C100, C200

C100 C200
C110
C110
DO00

D100, D200

D100
D200*
D110*

D200*
D110*

Figure 18: The moral tree resulting from the call graph of Figure 1 with an additional call

between C'110 and D000.

29

Goldstein, M. (1986). Exchangeable belief structures. J. Amer. Statist. Ass. 81, 971-976.

Goldstein, M. (1988). Adjusting belief structures. J. R. Statist. Soc B 50(1), 133-154.

Goldstein, M. (1990). Influence and Belief Adjustment. In R. M. Oliver and J. Q. Smith
(Eds.), Influence Diagrams, Belief Nets and Decision Analysis, pp. 143-174. Wiley.

Goldstein, M. (1994). Revising exchangeable beliefs: subjectivist foundations for the in-
ductive argument. In P. Freeman and A. Smith (Eds.), Aspects of Uncertainty: A
Tribute to D.V.Lindley, pp. 201-222. Wiley.

Goldstein, M. (1999). Bayes linear analysis. In S. Kotz, C. B. Read, and D. L. Banks
(Eds.), Encyclopedia of Statistical Sciences Update Volume 3, pp. 29-34. Chichester:
Wiley.

Goldstein, M. and D. J. Wilkinson (2000). Bayes linear analysis for graphical models:
The geometric approach to local computation and interpretive graphics. Statistics and
Computing 10, 311-324.

Hetch, M. S. (1977). Flow Analysis of Computer Programs. Amsterdam: North-Holland.

Jensen, F. V. (1996). An introduction to Bayesian networks. London: University College
London Press.

Lauritzen, S. L. (1996). Graphical Models. Oxford: Oxford Science Publications.

Lauritzen, S. L., A. P. Dawid, B. N. Larsen, and H.-G. Leimer (1990). Independence
properties of directed Markov fields. Networks 20, 491-505.

Lauritzen, S. L. and D. J. Spiegelhalter (1988). Local computations with probabilities on
graphical structures and their application to expert systems (with discussion). J. R.
Statist. Soc. B 50, 157-224.

Pearl, J. (1988). Probabilistic Inference in Intelligent Systems. San Mateo, California:
Morgan Kaufman.

Smith, J. Q. (1989). Influence diagrams foe statistical modelling. Annals of Statistics 17,
654-672.

Smith, J. Q. (1990). Statistical Principles on Graphs. In R. M. Oliver and J. Q. Smith
(Eds.), Influence Diagrams, Belief Nets and Decision Analysis, pp. 89-120. Wiley.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. Chicester: Wi-
ley.

30

