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Simple random walk

Let Xn be symmetric simple random walk (SRW) on Z
d , i.e.,

given X1, . . . ,Xn, the new location Xn+1 is uniformly distributed
on the 2d adjacent lattice sites to Xn.

Theorem (Pólya 1921)
SRW is recurrent if d = 1 or d = 2, but transient if d ≥ 3.

“A drunk man will find his way
home, but a drunk bird may get
lost forever.” —Shizuo Kakutani



Lyapunov functions

• There are several proofs of Pólya’s theorem available,
typically using combinatorics or electrical network theory.

• These classical approaches are of limited use if one starts
to generalize or perturb the model slightly.

• Lamperti (1960) gave a very robust approach, based on
the method of Lyapunov functions.

• Reduce the d-dimensional problem to a 1-dimensional one
by taking Zn := ‖Xn‖.

• Zn = 0 if and only if Xn = 0, but the reduction of
dimensionality comes at a (modest) price: Zn is not in
general a Markov process.



Lyapunov functions (cont.)

E.g. in d = 2, consider the two events {Xn = (3, 4)} and
{Xn = (5, 0)}. Both imply Zn = 5, but in only one case is there
positive probability of Zn+1 = 6.
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So our methods cannot rely on the Markov property.



Lyapunov functions (cont.)

• Elementary calculations based on Taylor’s theorem and
properties of the increments ∆n = Xn+1 − Xn show that

E[Zn+1 − Zn | X1, . . . ,Xn] =
1

2Zn

(

1 − 1
d

)

+ O(Z−2
n ),

E[(Zn+1 − Zn)
2 | X1, . . . ,Xn] =

1
d
+ O(Z−1

n ).

• In particular, Zn is a stochastic process on [0,∞) with
asymptotically zero drift.

• Loosely speaking, if µk (z) = E[(Zn+1 − Zn)
k | Zn = z], we

have µ1(z) ∼ 1
2z

(

1 − 1
d

)

and µ2(z) ∼ 1
d .



Lamperti’s problem

In the early 1960s, Lamperti studied in detail
how the asymptotics of a stochastic process
Zn ∈ [0,∞) are determined by the first two
moment functions of its increments, µ1 and µ2.

Theorem (Lamperti 1960–63)
Under mild regularity conditions,
the following recurrence classification holds.

• If 2zµ1(z)− µ2(z) > ε > 0, Zn is transient.

• If 2zµ1(z) + µ2(z) < −ε < 0, Zn is positive-recurrent.

• If |2zµ1(z)| ≤ µ2(z), Zn is null-recurrent.



Lamperti’s problem (cont.)

• In particular, for Zn = ‖Xn‖ the norm of SRW,

2zµ1(z) ∼ 1 − 1
d
, and µ2(z) ∼

1
d
.

So 2zµ1(z)− µ2(z) > 0 if and only if d > 2.

• So Pólya’s theorem follows.

• This approach allows one to study much more general
random walk models, including spatially non-homogeneous
random walks, and non-Markovian processes.

• More generally, many near-critical stochastic systems, if a
suitable Lyapunov function exists, can be analysed using
Lamperti’s theorem.



Lamperti’s problem (cont.)

• An interesting family of examples is provided by centrally
biased random walks.

• A concrete example: For x ∈ R
d , let b1(x), . . . ,bd(x)

denote an orthonormal basis for Rd such that
b1(x) = u(x), where u(x) := x/‖x‖.

• For i ∈ {2, . . . , d}, take

P[Xn+1 − Xn = ±bi(Xn) | X1, . . . ,Xn] =
1

2d
.

• Also (with an unimportant correction if ‖Xn‖ is small) set

P[Xn+1 − Xn = ±b1(Xn) | X1, . . . ,Xn] =
1

2d
± ρ

2
‖Xn‖−β.

• Fixed parameters ρ ∈ R and β > 0.



Centrally biased walk

Such a model has a mean drift of the form

E[Xn+1 − Xn | X1, . . . ,Xn] = ρ‖Xn‖−βu(Xn),

which is asymptotically zero as ‖Xn‖ → ∞.
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Here is a simulation of 105 steps of a centrally biased random
walk with ρ = 1 and β = 1/2.



Centrally biased walk (cont.)

• Again we consider the Lyapunov function Zn = ‖Xn‖.

• This time

µ1(z) ∼
(

ρ+
d − 1

2d
1{β = 1}

)

z−β , and µ2(z) ∼
1
d
.

• The critical case from the point of view of
recurrence/transience is when β = 1. Then
2zµ1(z)− µ2(z) ∼ 2ρ+ d−1

d − 1
d > 0 if ρ > 2−d

2d . So, for
example, if d = 2 the walk is transient for any ρ > 0.



Centrally biased walk (cont.)

• Centrally biased random walks in the critical case (β = 1)
can be viewed as prototypical near-critical stochastic
systems.

• They can be positive-recurrent, null-recurrent, or transient.

• But even if transient, they are diffusive,. . .

• and even if positive-recurrent, they do not possess
geometric ergodicity: return times and stationary
distributions have heavy tails.



Centrally biased walk: Critical case
Theorem (Lamperti 1960–63)
Consider the centrally biased random walk in R

d with drift
parameters ρ ∈ R and β = 1. Then, under mild conditions, the
following recurrence classification holds.

• If ρ > 2−d
2d , the walk is transient.

• If ρ < −1
2 , the walk is positive-recurrent.

• If −1
2 ≤ ρ ≤ 2−d

2d , the walk is null-recurrent.

MMW (2010) studied the
angular asymptotics of such
processes, and showed, for
example, that in all the cases
covered by the theorem
above, the walk has no limiting
direction, and visits any cone
infinitely often.



Centrally biased walk: Supercritical case

If ρ > 0 and β ∈ (0, 1), the walk is transient, and the rate of
escape is super-diffusive but sub-ballistic, as shown by the
following result.

Theorem (MMW 2009, MW 2009)
Suppose ρ > 0, β ∈ (0, 1). Then Xn is transient with a limiting
direction, i.e., u(Xn) → u a.s. for some (random) unit vector u.
Moreover there is a law of large numbers

n−
1

1+β ‖Xn‖ → λ(ρ, β) (constant) a.s.

In d = 1, there is an accompanying central limit theorem [MW
2009] which says that

Xn − λ(ρ, β)n
1

1+β

√
n

→ normal.
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Polymer chains in solution

• Polymer molecules in solution are often modelled by
random walks (X1,X2, . . . ,Xn) in R

d .

• The positions Xi represent the locations of the polymer’s
constituent monomers, and the increment vectors
Xi+1 − Xi represent the chemical bonds.

• Typically, all bonds are about the same length. To keep
things simple, we work on a scale such that, for all our
models, ‖Xi+1 − Xi‖ = 1.



Polymer asymptotics

• A fundamental question is the asymptotic behaviour of the
end-to-end distance ‖Xn‖, as n → ∞.

• SRW is diffusive: E‖Xn‖ ≈ n1/2.
• In real polymer chains, behaviour is often very different,

due to:
• the excluded volume effect — no two monomers can

occupy the same space;
• attraction between monomers.

• In real polymers the balance between these two opposing
effects is governed by temperature (equivalently, solvent
efficiency).



Real chain phase transition

• In a good solvent or at high temperature the excluded
volume effect dominates. Polymer chains are extended.

• In a poor solvent or at low temperature the attractive forces
dominate and the polymer collapses into a localized phase.

• For a given solvent, there is a phase transition temperature
(the θ-point) at which the two opposing effects essentially
cancel.



Self-avoiding walk

• The traditional model for
polymer chains in good
solvent (where the
excluded volume effect
dominates) is
self-avoiding walk (SAW)
on Z

d .
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• SAW is conjectured to be super-diffusive for d ∈ {2, 3},
e.g., heuristic arguments (building on work of P.J. Flory
from the 1940s) suggest ‖Xn‖ ≈ n3/4 in d = 2.

• But, SAW is not a progressive stochastic process

• Challenge: produce genuine stochastic processes that
replicate some of the behaviour of (or conjectured for)
SAW.



A new model

• We want a random walk model for polymer chains (Xn),
n = 1, 2, . . ., Xn ∈ R

d .

• We want it to be a genuine stochastic process, in that
conditional on (X1, . . . ,Xn), Xn+1 has some (reasonably
simple) distribution.

• Our choice of scale means ‖Xn+1 − Xn‖ = 1.
• Our model needs to be flexible enough to model the full

range of polymer phases:
• collapsed (sub-diffusive motion);
• θ-point (diffusive);
• extended (super-diffusive, à la SAW).



Barycentric self-interaction

• To respect the motivation, our walk will have some
self-interaction. We want a progressive process, so Xn+1

interacts only with the past X1, . . . ,Xn (unlike SAW).

• Specifically, the self-interaction will be mediated by the
centre of mass (barycentre) of the previous trajectory

Gn :=
1
n

n
∑

i=1

Xi .

• Assume that there is some nice (Borel) kernel f such that

P[Xn+1 ∈ A | X1, . . . ,Xn] = f (A;Xn,Gn), a.s.,

for all (Borel) A ⊆ R
d .



Self-interaction

• Since Gn+1 = (nGn + Xn+1)/(n + 1), this implies that
(Xn,Gn) is a Markov process. Note that (Xn) itself is not
Markovian in general.

• The key to our self-interaction will be an asymptotically
zero drift of Xn+1 towards or away from Gn. That is

E[Xn+1 − Xn | X1, . . . ,Xn] = ρ‖Xn − Gn‖−βu(Xn − Gn),

where ρ ∈ R and β > 0 are fixed parameters and
u(x) := x/‖x‖.



Example

• For x ∈ R
d , let b1(x), . . . ,bd(x) denote an orthonormal

basis for Rd such that b1(x) = u(x).
• For i ∈ {2, . . . , d}, take

P[Xn+1 − Xn = ±bi(Xn − Gn) | X1, . . . ,Xn] =
1

2d
.

• Also (with a correction if ‖Xn − Gn‖ is small) set

P[Xn+1−Xn = ±b1(Xn−Gn) | X1, . . . ,Xn] =
1

2d
±ρ

2
‖Xn−Gn‖−β .

• Analogue of our centrally biased walk example with
repulsion or attraction not from a fixed origin but from Gn.



Example simulation 1
104 steps with d = 2, ρ = 0.1, β = 0.1.
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Example simulation 2
104 steps with d = 2, ρ = 0.1, β = 0.5.
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Example simulation 3
104 steps with d = 2, ρ = 0.1, β = 1.
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Questions

• For which values of the parameters (d , β, ρ) is Xn

recurrent? Or transient?

• If Xn is transient, how rapidly does it escape to infinity? Is
there a limiting direction?

• What information can we get about the process Gn? Or
joint information about (Xn,Gn)?



Lyapunov function

• We try to find a suitable transformation of our
self-interacting walk Xn into a tractable one-dimensional
problem.

• The function we consider should presumably involve both
Xn and Gn. A natural choice is Zn = ‖Xn − Gn‖. Then Zn is
a one-dimensional non-Markov process, but we might
hope it satisfies Lamperti-type conditions.

• In fact, we get

E[Zn+1 − Zn | X1, . . . ,Xn] ≈ ρ′Z−β
n − Zn

n
.

There is an extra term in the drift; it is now time
inhomogeneous.

• Also

E[(Zn+1 − Zn)
2 | X1, . . . ,Xn] ≈

1
d
.



Lyapunov function (cont.)

• As a first guess, we can solve the corresponding
differential equation:

dz
dn

= ρ′z−β − z
n
,

to get z = const.n1/(1+β). So we expect the terms Z−β
n and

Zn/n to be of the same size.

• Thus the starting point of our analysis of the
self-interacting walk Xn is the study of this
time-inhomogeneous analogue of Lamperti’s problem for
processes with drifts of the given form.



Recurrence classification for Xn − Gn

Let ρ0 := 2−d
2d .

Theorem (CMVW 2011)
Suppose that d ∈ N. Let Yn := Xn − Gn.

(i) If β > 1, Yn is recurrent if d ∈ {1, 2} and transient if d ≥ 3.

(ii) If β = 1, Yn is recurrent if ρ ≤ ρ0 and transient if ρ > ρ0.

(iii) If β ∈ (0, 1), Yn is recurrent if ρ < 0 and transient if ρ > 0.

• So in particular if β = 1 and d = 2, Xn − Gn is transient for
any ρ > 0.

• How to convert this into a result about Xn? Some progress
based on the useful formula Gn = X1 +

∑n
j=2

Yj
j−1 .



Results for Xn: β ∈ (0, 1), ρ > 0

When β ∈ (0, 1), ρ > 0 we have a strong push away from the
centre of mass. Here we get super-diffusive behaviour. By
choice of β we can tune the model to (approximately) match
SAW-scaling.

Theorem (CMVW 2011)
Suppose ρ > 0, β ∈ (0, 1). Then Xn is transient (‖Xn‖ → ∞
a.s.) with a limiting direction, i.e., u(Xn) → u a.s. for some
(random) unit vector u. Moreover there is a law of large
numbers

n−
1

1+β ‖Xn‖ → λ′(ρ, β) (constant) a.s.



Results for Xn: β = 1

The case β = 1 is most delicate. Here we currently only have
partial results, including:

• The complete recurrence classification for Xn − Gn (see
above) but not Xn itself (unless d = 1. . . ).

• Bounds on ‖Xn‖. Again depending on ρ, we can obtain
diffusive bounds ‖Xn‖ ≈ n1/2, or, with some attraction (ρ
negative) sub-diffusive bounds ‖Xn‖ ≈ nν for ν < 1/2.

We expect (but cannot yet prove) that there is no limiting
direction in the β = 1 case, even when Xn − Gn (or Xn) is
transient.
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Back to simple random walk

Now let Xn be SRW on Z
d . How does Gn = n−1 ∑n

i=1 Xi

behave? What about the joint behaviour of (Xn,Gn)?

Theorem (Grill 1988)
For Gn the centre-of-mass process for SRW,

• Gn is recurrent for d = 1;

• Gn is transient for d ≥ 2.



Centre of mass for SRW

For SRW, let Zn = ‖Xn − Gn‖. Now

E[Zn+1 − Zn | X1, . . . ,Xn] ≈
1
2

(

1 − 1
d

)

Z−1
n − Zn

n
,

and

E[(Zn+1 − Zn)
2 | X1, . . . ,Xn] ≈

1
d
.

This is exactly of the form that arose in our calculations for the
self-interacting random walk. It follows from our results that:

Theorem (CMVW 2011)
For SRW,

• Xn − Gn is recurrent for d ∈ {1, 2};

• Xn − Gn is transient for d ≥ 3.



Two dimensions

• Amusing fact: Setting ∆n := Xn+1 − Xn, we have
Gn =

∑n−1
i=0 (1 − i

n )∆i , while Xn − Gn =
∑n

i=1(1 − i
n )∆

′

i
where ∆′

i = ∆n−i . So for fixed n, Gn and Xn − Gn are very
nearly time reversals of each other, and so have basically
the same (marginal) distributions. But as processes they
are very different, e.g., in d = 2, Gn is transient (Grill) but
Xn − Gn is recurrent.

• So in d = 2 we have that Xn is recurrent while Gn heads off
to infinity, but infinitely often Xn and Gn approach within
distance 1 (say) of each other.



Picture
Picture: 4 × 104 steps of SRW and its centre of mass.
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