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Classical zero-drift random walks
1. Symmetric simple random walk on Zd

• Xn ∈ Zd , X0 = 0.
• Given X0, . . . ,Xn, new location Xn+1 is uniformly distributed

on the 2d adjacent lattice sites to Xn.

Theorem (Pólya 1921)
SRW is recurrent if d = 1 or d = 2, but transient if d ≥ 3.

1
4
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“A drunk man will find his way
home, but a drunk bird may get
lost forever.” —Shizuo Kakutani



Classical zero-drift random walks
2. Pearson–Rayleigh random walk in Rd

• Xn ∈ Rd , X0 = 0.
• Given X0, . . . ,Xn, new location Xn+1 is uniformly distributed

on the unit circle/sphere centred at Xn.

uniform

“Probably the game of golf in its primitive from, which consisted of
taking a long and healthy walk in the country and hitting a stone with
a walking stick and following it up, had its origin in Scotland. [. . . ] All

of this leads one to believe that Pearson was dedicated to the
above-described hobby. . . ” —Bruno Carazza
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Recurrence/transience of homogeneous random walks
Let (Xn) be a spatially homogeneous random walk in Rd .
So Xn+1 depends only on Xn, but ∆ := Xn+1 − Xn is
independent of Xn (and n).
Let µ = E∆, the mean drift vector of the random walk.

Theorem (Chung–Fuchs)
Under mild conditions, if µ = 0 ∈ Rd , then (Xn) is
• recurrent if d = 1 or d = 2;
• transient if d ≥ 3.

This result applies both to the symmetric simple RW and the
Pearson–Rayleigh RW.

Definition

• recurrence: P[return to (nbrhood of) origin] = 1.
• transience: P[return to (nbrhood of) origin] < 1.



Non-homogeneous random walks
What if we allow ∆, the jump distribution, to depend on the
current location?
Then µ(x) := Ex ∆ := E[∆ | Xn = x ] becomes a function of the
current position x ∈ Rd .

Question
Is zero drift, i.e., µ(x) = 0 for all x ∈ Rd , enough to determine
recurrence/transience?

Answer
For d = 1: yes (essentially) — zero drift implies recurrence.
For higher dimensions: no — either behaviour is possible.

Theorem
There exist non-homogeneous random walks with
µ(x) = 0 for all x ∈ Rd that are
• transient in d = 2;
• recurrent in d ≥ 3.
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Elliptical random walk (d = 2)

• We illustrate general phenomena with a simple family of
examples.

• We modify the Pearson–Rayleigh random walk to make
jumps distributed on an ellipse.

The ellipse has fixed size, but orientation depends on current
position of the walk.

Fix constants a and b:

O

Xn

supp(Xn+1)
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Elliptical random walk (d = 2)

a > b

radial bias

a < b

transverse bias



Simulations
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Elliptical random walk (d ≥ 2)

Suppose Xn = x ∈ Rd . Write x̂ for unit vector in direction x .

u
Du

∆ = Q(x̂)Du
x

O• u uniform on Sd−1

• D = diag(a,b, . . . ,b)

• Q(x̂) orthogonal matrix, with Q(x̂)e1 = x̂ .



Increment moments

Notation: write Ex [ · ] for E[ · | Xn = x ] and write ∆x for the
component of ∆ := Xn+1 − Xn in direction x :

∆x = ∆ · x̂ =
∆ · x
‖x‖

.

Symmetry of sphere: if u is uniform on Sd−1 then E[u] = 0 and
E[uu>] = 1

d I.
Therefore, by construction,

Ex [∆] = 0, Ex [∆∆>] =
1
d

Q(x̂)D2Q>(x̂).

Hence,

Ex [∆x ] = 0, Ex [∆2
x ] =

a2

d
, Ex [‖∆‖2] =

a2 + (d − 1)b2

d
.
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Radial component of Xn

We analyse (Xn) by considering Rn := ‖Xn‖.

By symmetry, Rn is also Markov (Rn is a non-homogeneous
random walk on R+).

Crucially, it has asymptotically zero drift:

E[Rn+1 − Rn | Rn = r ] ∼ c/r ,

where positive constant c depends on model parameters and
ambient dimension.

Xn
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Lamperti’s classification

Define µk (r) := E[(Rn+1 − Rn)k | Rn = r ].

In the early 1960s,
John Lamperti studied in detail how
the asymptotics of a stochastic process on
R+ are determined by the first two moment
functions of its increments, µ1 and µ2.

Theorem (Lamperti, 1960)
Let (Rn) be a Markov chain on R+.
Under mild conditions:
• If 2rµ1(r)− µ2(r) > 0 for all large enough r , then Rn is

transient,
• If 2rµ1(r)− µ2(r) < 0 for all large enough r , then Rn is

recurrent.



Recurrence/transience of elliptical random walk
Given Xn = x ,

Rn+1 − Rn = ‖x + ∆‖ − ‖x‖
= [. . . expand using Taylor’s theorem . . . ]

= ∆x +
‖∆‖2 −∆2

x
2‖x‖

+ O(‖x‖−2).

So,

µ1(r) =
(d − 1)b2

d
1
2r

+ O(r−2), µ2(r) =
a2

d
+ O(r−1).

Theorem (GMMW 2015)
Let (Xn) be an elliptical random walk in Rd , with parameters a
and b.
• If (d − 1)b2 − a2 > 0 then (Xn) is transient.
• If (d − 1)b2 − a2 < 0 then (Xn) is recurrent.
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Elliptical random walk: Summary

• In any dimension d ≥ 2, we can produce a zero-drift,
non-homogeneous random walk with bounded jumps that
is either transient or recurrent, as desired.

• The key property is that the increment covariance varies
with position.

• If we impose the condition that the increment covariance is
fixed throughout space, then we regain the conclusion of
the Chung–Fuchs theorem (recurrence if and only if
d ≤ 2).

• In the case of a fixed increment covariance, to probe more
precisely the recurrence/transience phase transition it is
natural to study walks with asymptotically zero drift.
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Centrally biased random walk

• Again, we illustrate general results with a concrete family
of examples, the so-called centrally biased random walks.

• Again modify the Pearson–Rayleigh random walk, by
shifting the centre of the sphere on which the jumps from x
are supported by an amount f (‖x‖) away from the origin,
where f (r)→ 0 as r →∞.

O

Xn

supp(Xn+1)

f (‖Xn‖)



Centrally biased random walk

O

Xn

supp(Xn+1)

f (‖Xn‖)

• A natural choice is f (r) = ρr−β where ρ ∈ R and β > 0.
• Then the random walk Xn has mean drift

µ(x) = E[∆ | Xn = x ] = ρ‖x‖−β x̂ ,

where x̂ is the unit vector in direction x .
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Centrally biased random walk simulation

-700

-600

-500

-400

-300

-200

-100

 0

 100

-3000 -2500 -2000 -1500 -1000 -500  0

Here is a simulation of 105 steps of a centrally biased random
walk with ρ = 1 and β = 1/2.



Centrally biased walk and Lamperti’s problem

• Again we consider the Lyapunov function Rn = ‖Xn‖.
• This time

µ1(r) = ρ(1 + o(1))r−β +
d − 1

2d
(1 + o(1))r−1;

µ2(r) =
1
d

(1 + o(1)).

• The critical case from the point of view of
recurrence/transience is when β = 1. Then

2rµ1(r)− µ2(r)→ 2ρ+
d − 1

d
− 1

d
,

which is positive (and hence the walk is transient) if
ρ > 2−d

2d .
• So, for example, if d = 2 the walk is transient for any ρ > 0.



Angular asymptotics: Critical case

Theorem (MMW 2010)
Consider a centrally biased random walk with
µ(x) = O(‖x‖−1). Then the walk has no limiting
direction, i.e.,

P[ lim
n→∞

X̂n exists] = 0.

In this case the projection of the walk onto the sphere wanders
without converging, and under mild conditions visits every
neighbourhood on the sphere.



Angular asymptotics: Supercritical case
If ρ > 0 and β ∈ (0,1), the walk is transient, and the rate of
escape is super-diffusive but sub-ballistic, as shown by the
following result.

Theorem (MMW 2009, MW 2009)
Suppose ρ > 0, β ∈ (0,1). Then Xn is transient with a
limiting direction, i.e., X̂n → u a.s. for some (random) unit
vector u. Moreover there is a law of large numbers

n−
1

1+β ‖Xn‖ → λ(ρ, β) (constant), a.s.

In d = 1, there is an accompanying central limit theorem [MW
2009] which says that

Xn − λ(ρ, β)n
1

1+β

√
n

→ normal.



Further properties

• Centrally biased random walks in the critical case (β = 1)
can be viewed as prototypical near-critical stochastic
systems.

• They can be positive-recurrent, null-recurrent, or transient.

• But even if transient, they are diffusive,. . .
• and even if positive-recurrent, they do not possess

geometric ergodicity: return times and stationary
distributions have heavy tails.
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