Non-homogeneous random walks: Anomalous recurrence and angular asymptotics

> Andrew Wade Department of Mathematical Sciences

March 2016

Joint work with Nicholas Georgiou, Iain MacPhee, Mikhail Menshikov, and Aleksandar Mijatović

・ロト ・四ト ・ヨト ・ヨト

Outline

1 From classical to nonhomogeneous random walk

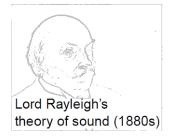
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

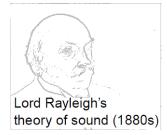
2 Elliptical random walk

Outline

1 From classical to nonhomogeneous random walk

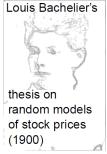
2 Elliptical random walk

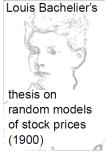




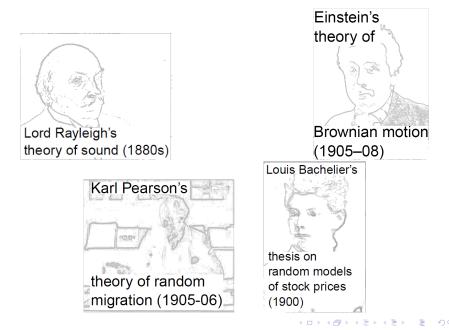
・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ





ъ



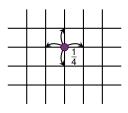
1. Symmetric simple random walk on \mathbb{Z}^d

•
$$X_n \in \mathbb{Z}^d$$
, $X_0 = 0$.

 Given X₀,..., X_n, new location X_{n+1} is uniformly distributed on the 2*d* adjacent lattice sites to X_n.

Theorem (Pólya 1921)

SRW is recurrent if d = 1 or d = 2, but transient if $d \ge 3$.



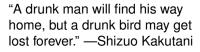
1. Symmetric simple random walk on \mathbb{Z}^d

•
$$X_n \in \mathbb{Z}^d$$
, $X_0 = 0$.

 Given X₀,..., X_n, new location X_{n+1} is uniformly distributed on the 2*d* adjacent lattice sites to X_n.

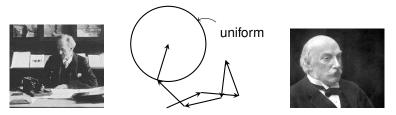
Theorem (Pólya 1921)

SRW is recurrent if d = 1 or d = 2, but transient if $d \ge 3$.



2. Pearson–Rayleigh random walk in \mathbb{R}^d

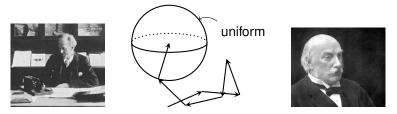
- $X_n \in \mathbb{R}^d$, $X_0 = 0$.
- Given X_0, \ldots, X_n , new location X_{n+1} is uniformly distributed on the unit circle/sphere centred at X_n .



"Probably the game of golf in its primitive from, which consisted of taking a long and healthy walk in the country and hitting a stone with a walking stick and following it up, had its origin in Scotland. [...] All of this leads one to believe that Pearson was dedicated to the above-described hobby..." —Bruno Carazza

2. Pearson–Rayleigh random walk in \mathbb{R}^d

- $X_n \in \mathbb{R}^d$, $X_0 = 0$.
- Given X_0, \ldots, X_n , new location X_{n+1} is uniformly distributed on the unit circle/sphere centred at X_n .



"Probably the game of golf in its primitive from, which consisted of taking a long and healthy walk in the country and hitting a stone with a walking stick and following it up, had its origin in Scotland. [...] All of this leads one to believe that Pearson was dedicated to the above-described hobby..." —Bruno Carazza Recurrence/transience of homogeneous random walks Let (X_n) be a spatially homogeneous random walk in \mathbb{R}^d .

So X_{n+1} depends only on X_n , but $\Delta := X_{n+1} - X_n$ is independent of X_n (and n).

Let $\mu = \mathbb{E}\Delta$, the mean drift vector of the random walk.

Theorem (Chung–Fuchs)

Under mild conditions, if $\mu = 0 \in \mathbb{R}^d$, then (X_n) is

- recurrent if d = 1 or d = 2;
- transient if $d \ge 3$.

This result applies both to the symmetric simple RW and the Pearson–Rayleigh RW.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Definition

- recurrence: $\mathbb{P}[\text{return to (nbrhood of) origin}] = 1.$
- transience: $\mathbb{P}[\text{return to (nbrhood of) origin}] < 1.$

What if we allow Δ , the jump distribution, to depend on the current location?

Then $\mu(x) := \mathbb{E}_x \Delta := \mathbb{E}[\Delta \mid X_n = x]$ becomes a function of the current position $x \in \mathbb{R}^d$.

(ロ) (同) (三) (三) (三) (○) (○)

What if we allow Δ , the jump distribution, to depend on the current location?

Then $\mu(x) := \mathbb{E}_x \Delta := \mathbb{E}[\Delta \mid X_n = x]$ becomes a function of the current position $x \in \mathbb{R}^d$.

Question

Is zero drift, i.e., $\mu(x) = 0$ for all $x \in \mathbb{R}^d$, enough to determine recurrence/transience?

(ロ) (同) (三) (三) (三) (○) (○)

What if we allow Δ , the jump distribution, to depend on the current location?

Then $\mu(x) := \mathbb{E}_x \Delta := \mathbb{E}[\Delta \mid X_n = x]$ becomes a function of the current position $x \in \mathbb{R}^d$.

Question

Is zero drift, i.e., $\mu(x) = 0$ for all $x \in \mathbb{R}^d$, enough to determine recurrence/transience?

Answer

For d = 1: yes (essentially) — zero drift implies recurrence.

(ロ) (同) (三) (三) (三) (○) (○)

What if we allow Δ , the jump distribution, to depend on the current location?

Then $\mu(x) := \mathbb{E}_x \Delta := \mathbb{E}[\Delta \mid X_n = x]$ becomes a function of the current position $x \in \mathbb{R}^d$.

Question

Is zero drift, i.e., $\mu(x) = 0$ for all $x \in \mathbb{R}^d$, enough to determine recurrence/transience?

Answer

For d = 1: yes (essentially) — zero drift implies recurrence. For higher dimensions: no — either behaviour is possible.

Theorem

There exist non-homogeneous random walks with $\mu(x) = 0$ for all $x \in \mathbb{R}^d$ that are

- transient in d = 2;
- recurrent in $d \ge 3$.

Outline

1 From classical to nonhomogeneous random walk

2 Elliptical random walk

- We illustrate general phenomena with a simple family of examples.
- We modify the Pearson–Rayleigh random walk to make jumps distributed on an ellipse.

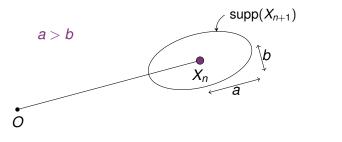
The ellipse has fixed size, but orientation depends on current position of the walk.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- We illustrate general phenomena with a simple family of examples.
- We modify the Pearson–Rayleigh random walk to make jumps distributed on an ellipse.

The ellipse has fixed size, but orientation depends on current position of the walk.

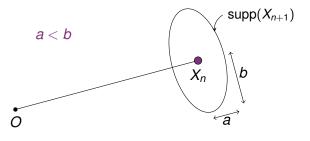
Fix constants *a* and *b*:

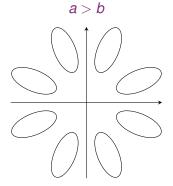


- We illustrate general phenomena with a simple family of examples.
- We modify the Pearson–Rayleigh random walk to make jumps distributed on an ellipse.

The ellipse has fixed size, but orientation depends on current position of the walk.

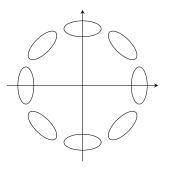
Fix constants *a* and *b*:





radial bias

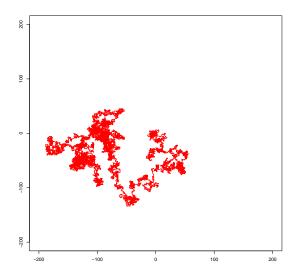
a < *b*



transverse bias

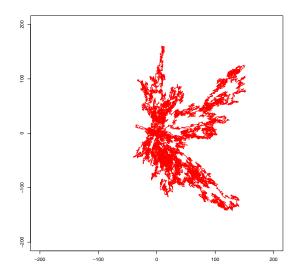
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

a = 1, *b* = 1



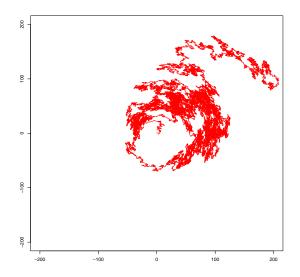
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

a = 2, *b* = 1



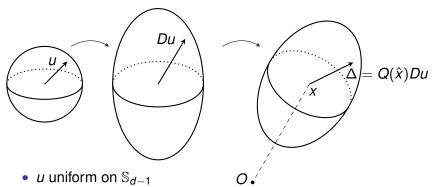
◆ロト ◆課 ▶ ◆語 ▶ ◆語 ▶ ○語 ○ の久(で)

a = 1, *b* = 2



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Suppose $X_n = x \in \mathbb{R}^d$. Write \hat{x} for unit vector in direction x.



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- *D* = diag(*a*, *b*, ..., *b*)
- $Q(\hat{x})$ orthogonal matrix, with $Q(\hat{x})e_1 = \hat{x}$.

Increment moments

Notation: write $\mathbb{E}_{x}[\cdot]$ for $\mathbb{E}[\cdot | X_{n} = x]$ and write Δ_{x} for the component of $\Delta := X_{n+1} - X_{n}$ in direction *x*:

$$\Delta_x = \Delta \cdot \hat{x} = \frac{\Delta \cdot x}{\|x\|}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Increment moments

Notation: write $\mathbb{E}_{x}[\cdot]$ for $\mathbb{E}[\cdot | X_{n} = x]$ and write Δ_{x} for the component of $\Delta := X_{n+1} - X_{n}$ in direction *x*:

$$\Delta_x = \Delta \cdot \hat{x} = \frac{\Delta \cdot x}{\|x\|}$$

Symmetry of sphere: if *u* is uniform on \mathbb{S}_{d-1} then $\mathbb{E}[u] = 0$ and $\mathbb{E}[uu^{\top}] = \frac{1}{d}I$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Increment moments

Notation: write $\mathbb{E}_{x}[\cdot]$ for $\mathbb{E}[\cdot | X_{n} = x]$ and write Δ_{x} for the component of $\Delta := X_{n+1} - X_{n}$ in direction *x*:

$$\Delta_{x} = \Delta \cdot \hat{x} = \frac{\Delta \cdot x}{\|x\|}$$

Symmetry of sphere: if *u* is uniform on \mathbb{S}_{d-1} then $\mathbb{E}[u] = 0$ and $\mathbb{E}[uu^{\top}] = \frac{1}{d}I$. Therefore, by construction,

$$\mathbb{E}_{X}[\Delta] = 0, \quad \mathbb{E}_{X}[\Delta\Delta^{\top}] = \frac{1}{d}Q(\hat{x})D^{2}Q^{\top}(\hat{x}).$$

Hence,

$$\mathbb{E}_x[\Delta_x]=0, \quad \mathbb{E}_x[\Delta_x^2]=rac{a^2}{d}, \quad \mathbb{E}_x[\|\Delta\|^2]=rac{a^2+(d-1)b^2}{d}.$$

Radial component of X_n

We analyse (X_n) by considering $R_n := ||X_n||$.

By symmetry, R_n is also Markov (R_n is a non-homogeneous random walk on \mathbb{R}_+).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Radial component of X_n

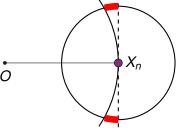
We analyse (X_n) by considering $R_n := ||X_n||$.

By symmetry, R_n is also Markov (R_n is a non-homogeneous random walk on \mathbb{R}_+).

Crucially, it has asymptotically zero drift:

$$\mathbb{E}[R_{n+1}-R_n \mid R_n=r] \sim c/r,$$

where positive constant *c* depends on model parameters and ambient dimension.



Radial component of X_n

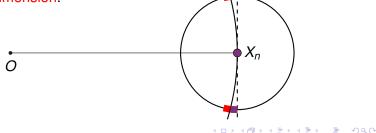
We analyse (X_n) by considering $R_n := ||X_n||$.

By symmetry, R_n is also Markov (R_n is a non-homogeneous random walk on \mathbb{R}_+).

Crucially, it has asymptotically zero drift:

$$\mathbb{E}[R_{n+1}-R_n \mid R_n=r] \sim c/r,$$

where positive constant *c* depends on model parameters and ambient dimension.



Lamperti's classification

Define $\mu_k(r) := \mathbb{E}[(R_{n+1} - R_n)^k | R_n = r].$

In the early 1960s, John Lamperti studied in detail how the asymptotics of a stochastic process on \mathbb{R}_+ are determined by the first two moment functions of its increments, μ_1 and μ_2 .

Theorem (Lamperti, 1960)

Let (R_n) be a Markov chain on \mathbb{R}_+ . Under mild conditions:

- If 2rμ₁(r) μ₂(r) > 0 for all large enough r, then R_n is transient,
- If 2rμ₁(r) μ₂(r) < 0 for all large enough r, then R_n is recurrent.

Recurrence/transience of elliptical random walk

$$R_{n+1} - R_n = ||x + \Delta|| - ||x||$$

= [... expand using Taylor's theorem ...]
= $\Delta_x + \frac{||\Delta||^2 - \Delta_x^2}{2||x||} + O(||x||^{-2}).$
So,
 $\mu_1(r) = \frac{(d-1)b^2}{d} \frac{1}{2r} + O(r^{-2}), \quad \mu_2(r) = \frac{a^2}{d} + O(r^{-1}).$

Theorem (GMMW 2015)

Given $X_n = x$.

Let (X_n) be an elliptical random walk in \mathbb{R}^d , with parameters a and b.

- If $(d-1)b^2 a^2 > 0$ then (X_n) is transient.
- If $(d-1)b^2 a^2 < 0$ then (X_n) is recurrent.

Recurrence/transience of elliptical random walk

$$R_{n+1} - R_n = ||x + \Delta|| - ||x||$$

= [... expand using Taylor's theorem ...]
= $\Delta_x + \frac{||\Delta||^2 - \Delta_x^2}{2||x||} + O(||x||^{-2}).$
So,
 $\mu_1(r) = \frac{(d-1)b^2}{d} \frac{1}{2r} + O(r^{-2}), \quad \mu_2(r) = \frac{a^2}{d} + O(r^{-1}).$

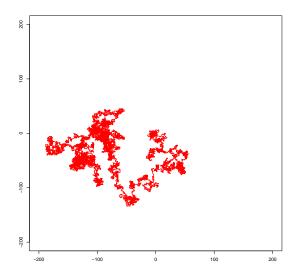
Theorem (GMMW 2015)

Given $X_n = x$.

Let (X_n) be an elliptical random walk in \mathbb{R}^d , with parameters a and b.

- If $(d 1)b^2 a^2 > 0$ then (X_n) is transient.
- If $(d-1)b^2 a^2 \le 0$ then (X_n) is recurrent.

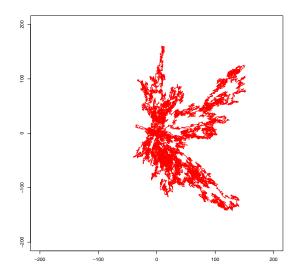
a = 1, *b* = 1



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Simulations

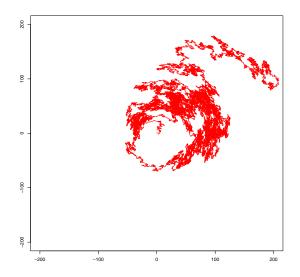
a = 2, *b* = 1



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

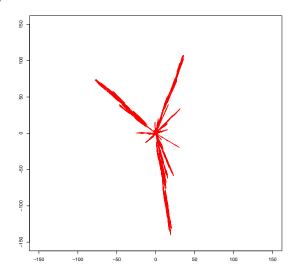
Simulations

a = 1, *b* = 2



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

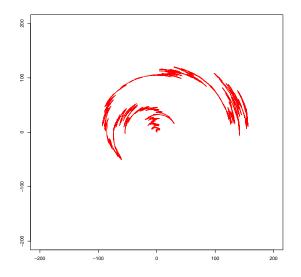
Simulations a = 1, b = 0.05



◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Simulations

a = 0.05, *b* = 1



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

 In any dimension *d* ≥ 2, we can produce a zero-drift, non-homogeneous random walk with bounded jumps that is either transient or recurrent, as desired.

(ロ) (同) (三) (三) (三) (○) (○)

- In any dimension *d* ≥ 2, we can produce a zero-drift, non-homogeneous random walk with bounded jumps that is either transient or recurrent, as desired.
- The key property is that the increment covariance varies with position.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- In any dimension *d* ≥ 2, we can produce a zero-drift, non-homogeneous random walk with bounded jumps that is either transient or recurrent, as desired.
- The key property is that the increment covariance varies with position.
- If we impose the condition that the increment covariance is fixed throughout space, then we regain the conclusion of the Chung–Fuchs theorem (recurrence if and only if d ≤ 2).

(ロ) (同) (三) (三) (三) (○) (○)

- In any dimension *d* ≥ 2, we can produce a zero-drift, non-homogeneous random walk with bounded jumps that is either transient or recurrent, as desired.
- The key property is that the increment covariance varies with position.
- If we impose the condition that the increment covariance is fixed throughout space, then we regain the conclusion of the Chung–Fuchs theorem (recurrence if and only if d ≤ 2).
- In the case of a fixed increment covariance, to probe more precisely the recurrence/transience phase transition it is natural to study walks with asymptotically zero drift.

Outline

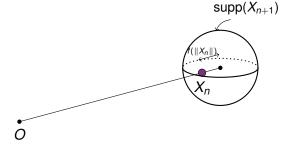
1 From classical to nonhomogeneous random walk

2 Elliptical random walk

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

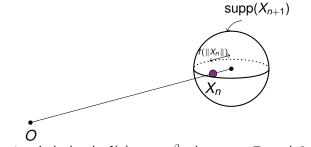
Centrally biased random walk

- Again, we illustrate general results with a concrete family of examples, the so-called centrally biased random walks.
- Again modify the Pearson–Rayleigh random walk, by shifting the centre of the sphere on which the jumps from *x* are supported by an amount *f*(||*x*||) away from the origin, where *f*(*r*) → 0 as *r* → ∞.



(日) (日) (日) (日) (日) (日) (日)

Centrally biased random walk



- A natural choice is $f(r) = \rho r^{-\beta}$ where $\rho \in \mathbb{R}$ and $\beta > 0$.
- Then the random walk X_n has mean drift

$$\mu(\mathbf{x}) = \mathbb{E}[\Delta \mid \mathbf{X}_n = \mathbf{x}] = \rho \|\mathbf{x}\|^{-\beta} \hat{\mathbf{x}},$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

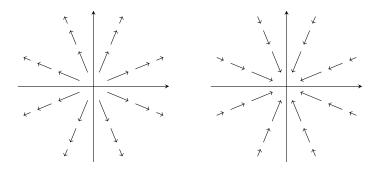
where \hat{x} is the unit vector in direction x.

Centrally biased random walk

- A natural choice is $f(r) = \rho r^{-\beta}$ where $\rho \in \mathbb{R}$ and $\beta > 0$.
- Then the random walk X_n has mean drift

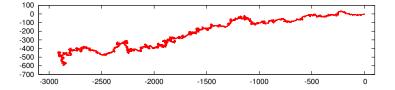
$$\mu(\mathbf{x}) = \mathbb{E}[\Delta \mid \mathbf{X}_n = \mathbf{x}] = \rho \|\mathbf{x}\|^{-\beta} \hat{\mathbf{x}},$$

where \hat{x} is the unit vector in direction *x*.



・ ロ ト ・ 雪 ト ・ 目 ト ・

Centrally biased random walk simulation



Here is a simulation of 10^5 steps of a centrally biased random walk with $\rho = 1$ and $\beta = 1/2$.

・ コット (雪) (小田) (コット 日)

Centrally biased walk and Lamperti's problem

- Again we consider the Lyapunov function $R_n = ||X_n||$.
- This time

$$\mu_1(r) = \rho(1 + o(1))r^{-\beta} + \frac{d-1}{2d}(1 + o(1))r^{-1};$$

$$\mu_2(r) = \frac{1}{d}(1 + o(1)).$$

 The critical case from the point of view of recurrence/transience is when β = 1. Then

$$2r\mu_1(r)-\mu_2(r) \rightarrow 2
ho+rac{d-1}{d}-rac{1}{d},$$

which is positive (and hence the walk is transient) if $\rho > \frac{2-d}{2d}$.

So, for example, if d = 2 the walk is transient for any ρ > 0.

Angular asymptotics: Critical case

Theorem (MMW 2010) Consider a centrally biased random walk with $\mu(x) = O(||x||^{-1})$. Then the walk has no limiting direction, i.e.,

$$\mathbb{P}[\lim_{n\to\infty}\hat{X}_n \text{ exists}]=0.$$

In this case the projection of the walk onto the sphere wanders without converging, and under mild conditions visits every neighbourhood on the sphere.

イロト 不良 とくほ とくほう 二日

Angular asymptotics: Supercritical case

If $\rho > 0$ and $\beta \in (0, 1)$, the walk is transient, and the rate of escape is super-diffusive but sub-ballistic, as shown by the following result.

Theorem (MMW 2009, MW 2009)

Suppose $\rho > 0$, $\beta \in (0, 1)$. Then X_n is transient with a limiting direction, i.e., $\hat{X}_n \rightarrow u$ a.s. for some (random) unit vector u. Moreover there is a law of large numbers

$$n^{-\frac{1}{1+\beta}} \|X_n\| \to \lambda(\rho, \beta)$$
 (constant), a.s.

In d = 1, there is an accompanying central limit theorem [MW 2009] which says that

$$\frac{X_n - \lambda(\rho, \beta) n^{\frac{1}{1+\beta}}}{\sqrt{n}} \to \text{ normal.}$$

くしゃ 人間 そう イリット ビー うらう

Further properties

- Centrally biased random walks in the critical case (β = 1) can be viewed as prototypical near-critical stochastic systems.
- They can be positive-recurrent, null-recurrent, or transient.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Further properties

- Centrally biased random walks in the critical case (β = 1) can be viewed as prototypical near-critical stochastic systems.
- They can be positive-recurrent, null-recurrent, or transient.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

But even if transient, they are diffusive,...

Further properties

- Centrally biased random walks in the critical case (β = 1) can be viewed as prototypical near-critical stochastic systems.
- They can be positive-recurrent, null-recurrent, or transient.

(ロ) (同) (三) (三) (三) (○) (○)

- But even if transient, they are diffusive,...
- and even if positive-recurrent, they do not possess geometric ergodicity: return times and stationary distributions have heavy tails.

References

- B. CARAZZA, The history of the random walk problem. *Rivista del Nuovo Cimento* (1977).
- N. GEORGIOU, M.V. MENSHIKOV, A. MIJATOVIĆ, AND A.R. WADE, Anomalous recurrence properties of many-dimensional zero-drift random walks, *Adv. in Appl. Probab.* (2016).
- J. LAMPERTI, Criteria for the recurrence or transience of stochastic processes I. J. Math. Anal. Appl. (1960).
- J. LAMPERTI, A new class of probability limit theorems. *J. Math. Mech.* (1962).
- I.M. MACPHEE, M.V. MENSHIKOV, AND A.R. WADE, Angular asymptotics for multi-dimensional non-homogeneous random walks with asymptotically zero drifts, *Markov Processes Relat. Fields* (2010).
- I.M. MACPHEE, M.V. MENSHIKOV, AND A.R. WADE, Moments of exit times from wedges for non-homogeneous random walks with asymptotically zero drifts. To appear in *J. Theoret. Probab.* (2012).
- M.V. MENSHIKOV AND A.R. WADE, Rate of escape and central limit theorem for the supercritical Lamperti problem, *Stochastic Process. Appl.* (2010).