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Introduction

Fix d > 2 (ambient dimension) and k > d — 1 an integer (the
‘memory’).

We study the process

X = (Xo,X1,X2, .. ) in Rd,
where, roughly speaking,
given X, ..., Xp, the next
position X, 1 is uniform on the
unit ball centred at X, but
conditioned so that the line
segment from X, to X, does
not intersect the convex hull of
{0, anka ank+1 yenn ,Xn} at

any point other than Xj,. )
10 steps withd = 2, k = 2.



Introduction

Mathematical antecedent: The case ‘k = oo’ is a variation on a
model of ANGEL et al. (2003) which avoids the convex hull of its
entire previous trajectory.

10* steps of the 'k = oo’ walk in d = 2.



Motivation

For the ‘infinite memory’ model of ANGEL et al. (2003):

The frontiersman: “A frontier rancher who is walking about and
at each step increases his ranch by dragging with him the fence
that defines it, so that the ranch at any time is the convex hull of
the path traced until that time.”

Extremal investor: Investment decisions driven by previous
maximum and minimum fund values.



Motivation

More generally, our process is a self-interacting random walk
where the self-interaction is mediated by some occupation
statistic of the previous trajectory.

In general, such self-interaction may be

e |ocal, such as in reinforced or excited random walks, where
the walker’s motion is biased by its occupation measure in
the immediate vicinity, or

e global, such as for processes whose self-interaction is
mediated via some global functional of the past trajectory,
such as its centre of mass or convex hull.

In either case, the self-interaction can be attractive or repulsive.

There is an important distinction between static models, such
as self-avoiding walk, and dynamic models that are genuine
stochastic processes. Our model is of the latter type.



Motivation

Self-interacting processes are typically non-Markovian, and
arise naturally in systems where there is learning, resource
depletion, or physical interaction.

Two examples that could fit with our model are

® a roaming animal performing a random walk may tend to
avoid previously visited regions in the hunt for new
resources [S];

e our trajectory shares properties with linear chain polymer
molecules in the extended phase [B].

[S] PE. Smouse et al., Phil. Trans. Roy. Soc. B 365 (2010)
2201-2211.

[B] M.N. Barber & B.W. Nimham, Random and Restricted Walks:
Theory and Applications. Gordon and Breach, New York, 1970.



Main phenomena

The ‘k = oo’ model is conjectured to be ballistic.
This means it is expected to have

e a positive limiting speed, and

¢ a limiting direction.

Formally, it is believed that, a.s., for a constant v ., > 0 and a
random ¢ € S9-71,

lim n_1 ||XI7|| = Vd o0 and lim Xn = Ea
n—oo ’ n—oo

where X := x/||x||.

For the ‘k = oo’ model it is known (ZERNER, 2005) only that
liminfp_oo || Xn|| > ¢ > 0.

We establish ballisticity for the finite memory model.



Simulations

The walk with d = 2, k = 1 for 50 (left) and 1000 steps (right).
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Main results for finite memory

Recall that k > d — 1. The following is our ballisticity result.

Theorem
There exist a positive constant vy x and a random unit
vector ¢ such that

lim n~' X, = vyxl, as.

n—oo

.

The constants vy x seem hard to compute in general, but:

Theorem
Ifd=2andk =1, then

8
V21 =g 3~ 0.09006327.




Open problems

Simulations suggest the following:

Conjecture
We have Va k < Vd k+1-

This would imply that limk_,, V4 k exists. It is tempting to
believe:

Conjecture

We have limy_, . Vg k = Vg0, Where vy o is the
(conjectural) speed of the 'k = oo’ model.

Simulations are reasonably consistent with this, but not entirely
convincing.
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Some geometrical facts

Let F = o(Xo, ..., Xp).

e Given Fj,, we have that the support of X, 1 has volume
bounded between v,/2 and vy, uniformly over histories of
the process, where vy is the volume of the unit radius ball.

e Itis not hard to show that E [(Xp 1 — Xn) - Xy | Fn] > 0, a.s.

e Qver one step, one cannot do better than this, but with a bit
more work one can show that, for some m:= m(d, k) € N
and ¢ :=c(d, k) > 0, E[|| Xntmll — | Xnll | Fn] > ¢, a.s.

e |t follows from this and the one-sided Azuma—Hoeffding
inequality that, for some p := p(d, k) > 0,
liminfp_eo N " | Xnll > p, a.s.
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Renewal structure

The first step in establishing ballisticity is to identifty a renewal
structure. Fix § € (0,1/8) from now on.

For x € RY define M(x) := [1¥, B(x + 4%;8) C (RI)k.

Say X has good geometry at time n, and that G, occurs, if
(Xn—ks, - - -, Xn) is such that the support of (Xpi1,..., Xnik)
contains M(Xp).

Xn—4

A configuration with good geometry ford =2 and k = 4.



Renewal structure

Xn—4

A configuration with good geometry ford = 2 and k = 4.

Lemma
There exists o = o(d, k,d) > 0 such that for all Borel
B C (RY)X, on the event G,

B
M(Xn)|

P((Xpsts-. . Xnik) € B | Fn) > a 1{8 C N(X,)}).



Renewal structure

In other words, if the configuration has good geometry, we can
extract from the law of (Xp11, ..., Xh1k) @ component that is
uniform on M(X,).

Thus we can introduce an i.i.d. sequence of Bernoulli-a random
variables, and construct the process in blocks of k steps, as
follows: At time mk,
® if Gmk does not occur, just construct (Xmk41, - - - » X(mr1)k)
as normal;

e if G, does occur, and the Bernoulli-a comes up heads,
declare that a renewal has occurred at time mk, and
construct (Ximk+1, - - - » X(m+1)x) to be uniform on NM(Xpx);

e if the Bernoulli-a comes up tails, use the remaining part of
the law to get the correct increment distribution.



Renewal structure
These renewals occur rather frequently:
Lemma
With o > 0 the same constant as before, P (Gn.« | Fn) > «, a.s.
It follows that the inter-renewal times have a uniform
exponential tail bound.
The renewal structure makes plain that

¢ the process between renewals has strictly positive radial
drift; and

¢ the transverse fluctuations are symmetric.
This is already enough to establish a limiting direction.

Problem: the segments of the process between renewal times
are not homogeneous, due to the special role played by the
origin in the construction of the process, and so the radial drift
is not constant. So we don’t immediately get the limiting speed
from this construction.



Outline

@ Ballisticity I1: Coupling



Homogeneous process

Let 71, ™, ... denote the renewal times as constructed above.
Our limiting speed will follow from this result:

Proposition
There are positive constants A = \(d, k,0) and u = u(d, k, )
such that, for all v € (0,1),

® Elrpy1 —7mn | Frpp1]l = A+ 0(n77);

e E[X, ., — Xop | Frop1] = uXs, + 0(n7).

n+1

We get this result by building a spatially homogeneous version

of the process for which the above results hold exactly (with no
o(n~7) term) and then use a coupling over the interval between
renewal times.



Homogeneous process

Fix a unit vector ¢. We define the ¢-process just like the normal
process, but replace the origin by a point at infinity in the
direction —¢.

Here is an example with d = 2 and k = 4:

| Jo
3
~

If ¢ = X,, (as in the picture) then the transition law of the
(-process is the same as the original process.



Homogeneous process

If ¢ = X, (as in the picture) then the transition law of the
£-process is the same as the original process.

Idea: At time 7,,, set £ = X, and run both processes until the
next renewal on the same probability space, with increments
coupled in the maximal way.

Since we know renewgls are frequent, and we have linear
growth of the radius, X will not deviate much from ¢ over the
entire time. So coupling has a good chance of success.

We need to explain what a renewal is for the ¢-process, and
why it is homogeneous.



Homogeneous process
For x € RY define M(x) := [T, B(x + 1¢;6) C (RI)k.

Say X has good geometry at time n, and that G4 occurs, if
(Xt _y. ..., Xp) is such that the support of (X{;,..., X ;)
contains M*(X}).

14

---- —_—

. O O O O

0O

Note: for original process the definition of I had X in place of /.

The law of (X%, m > 7,,) depends on X;, only through X, = ¢.
Moreover, the law of the process is invariant under rotations
that leave / fixed.



Homogeneous process and coupling

With the obvious notation, we get:

Proposition
For positive constants A = \(d, k,d) and u = u(d, k, 9),
® Elrpyy —mn | Frql =N

© BIX, =Xy | Fl ]l =uX),.

Tn

The final step in the proof is the coupling:

Proposition
Starting with ¢ = )A(T,, we can build on one probability space
copies of the processes X and X¢ such that their paths coincide
up to time T4 = 71, with probability at least
1 Clog?n
n
Details are technical, but exploit that X~ throughout.
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Unit memory

From now ontake d =2 and k = 1.

Denote by 6, € [0, 7] the magnitude of the interior angle of the
convex hull of {0, X,,_1, X} at Xj:

0
°

On Xn



Unit memory

Theorem

Ifd=2andk =1, then
lim LB [ X = i ~ 0.09006327.
n—oo N

Combined with our general result that n=1(| X,|| — 21, a.s., this
gives the value of v» 4.

The following relates local drift to global speed.

Lemma
Let &y, &1, ... be a process onRY with &y = 0 and

l€nt1 — &nll < B, a.s., for some constant B < co. Suppose that
|€n]] = o0, a.s. Then
n—1

lim. ]E||£n|| - ZE[ Emi1 — Em) - Enl| =



Proof.
Note first that for any x, y with ||y| < B,

[Ix +yll = IIxIl = % -y < C(1+[|x]) "

n—1 n—1 n—1
Elénll = D E[l€m+ Amll = [lém] = D Elém- Al + Y Edm,
m=0 m=0

m=0

where |Cm| < C(1 + ||€m]))~! — 0, a.s. O



Unit memory

A calculation shows that the local drift of the process is:
Lemma

¢ 2sin 9[7

E [(Xn—H - Xn) ’ Xn] =K [671’—3(%} :

Idea: We show that 8, converges in distribution, so that the
limiting speed v» 1 is given by



Unit memory

Note that 8, is not Markov, but some geometry shows that:

Lemma
9n+1 = |(27T — Qn)Un+1 - 7T| — Qpta, where Uy, Us, ... are
ii.d. U[0,1] and ap — 0 a.s.

Xn+1




Unit memory

Lemma
As n — oo, O -L5 0 where 0 € [0, 7] has the distribution
uniquely determined by the fixed-point equation

02 |(2r—0)U—n|, 0 R, (1)

where U is U|0, 1] and independent of 6. Moreover, the random
variable 0 has probability density function f given by

2
f(t) = ﬁ(Zﬂ' —t), fort e [0,n].

It follows that

2sinf 4 T 8
Vo1 =E [677—39] = 97T2/0 snntdt—ﬁ.




Unit memory

Proof.

Let T(u,x) :=|(27 — x)u — «|. Then Op11 = T(0n, Uni1) — apia-
Define a Markov operator Q on [0, 7] by Q(x, A) :=P(T(x, U) € A).
Then the fixed-point equation (1) reads E Q(6, A) = P (6 € A) for all A.
So solutions to (1) are the invariant measures of Q.

But Q satisfies a Doeblin condition, so there is a unique invariant
measure p and sup, p(vQ™, 1) — 0, where sup,, is over all probability
measures v on [0, 7r]. (Here p is a suitable metric on distributions.)

Let v, denote the law of 8. Then sup, p(vxQ™, 1) — 0 as M — oc.
But also, since | T(x,u) — T(y,u)| < |x — y| and a; — 0 we get

supm P(Vksm, vk QM) — 0 as k — oc.

Combining these gives vk m — u.

Then one can check that the density f solves the fixed-point

equation (1). O



Final remarks

The renewal structure depends crucially on the finite memory.
Explicit computation of v, x seems hard beyond the case v 5.
One expects a central limit theorem for n=1/2(X,, — vy xnXp).

There is an obvious coupling between the process with
memory k and the process with memory k + 1, but it is not
clear whether it is useful.

Including the origin in the convex hull to exclude is crucial;
otherwise the process is diffusive (cf. the correlated random
walk).

Thank you!
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