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Introduction

Consider the
nearest-neighbour random
walk on Z2 represented by the
picture.

Is this walk transient or
recurrent?

Consider the embedded
process obtained by observing
the walk on visits to the
horizontal axis.

This is an example of the oscillating random walk studied by
Kemperman (1974).
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Introduction
Here is a simulated trajectory of the random walk on Z2.
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Here is another
nearest-neighbour random
walk on Z2, with a different
rule for transitions on the
horizontal axis.

This walk was studied by
Campanino & Petritis (2003).
Is it transient or recurrent?

Consider the embedded
process.

This random walk on Z is homogeneous and symmetric; see
Shepp (1962).
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One more example, with a
third rule for transitions on the
horizontal axis.

Is this walk transient or
recurrent?

Again consider the embedded
process.

This is another example of the oscillating random walk; this one
was studied by Rogozin & Foss (1978).
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Oscillating random walk

Consider a process Zn on R which takes jumps
• according to a density w+ from the positive half-line; and
• according to a density w− from the negative half-line.

I.e., Zn is a time-homogeneous Markov chain on R with
transition kernel given by

P [Zn+1 ∈ B | Zn = x ] =

{∫
B w+(z − x)dz if x ≥ 0,∫
B w−(z − x)dz if x < 0.

We consider certain heavy-tailed jump densities.

Write v ∈ Dα to mean

v(y) =

{
c(y)y−1−α if y > 0,
0 if y ≤ 0,

where c(y)→ c a positive constant.
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Oscillating random walk: Example 1
For α ∈ (0,∞), suppose v ∈ Dα and w+(y) = w−(y) = 1

2v(|y |).

w+(y) = 1
2v(|y |)

w−(y) = 1
2v(|y |)

αα

αα

Here Zn is a homogeneous random walk with i.i.d. and
symmetric jumps.

Theorem (Shepp 1962)
The random walk is transient if α < 1 and recurrent if
α > 1.

Under a slightly stronger assumption on c(y), the critical case
α = 1 is recurrent.
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Oscillating random walk: Example 1

Theorem (Shepp 1962)
The random walk is transient if α < 1 and recurrent if
α > 1.

P [jump < −r ] =
P [jump > +r ] ≈ r−1/2

P [jump < −r ] =
P [jump > +r ] ≈ r−1/2

The embedded random walk
in this example is Shepp’s
symmetric walk with α = 1/2.
So this random walk is
(comfortably) transient.
This result was obtained by
other methods by Campanino
& Petritis (2003).



Oscillating random walk: Example 2
For α, β ∈ (0,∞), suppose v+ ∈ Dα, v− ∈ Dβ, and take
w+(y) = 1

2v+(|y |) and w−(y) = 1
2v−(|y |).

w+(y) = 1
2v+(|y |)
αβ

αβ
w−(y) = 1

2v−(|y |)

Generalizes the symmetric random walk to a two-sided
oscillating random walk in the vein of Kemperman (1974).

Theorem (Kemperman 1974, Rogozin & Foss 1978,
Sandrić 2014)
The random walk is transient if α+ β < 2 and recurrent if
α+ β > 2.
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Oscillating random walk: Example 3

Theorem (Kemperman 1974)
The random walk is transient if α+ β < 1 and recurrent if
α+ β > 1.

P [jump < −r ] ≈ r−1/2

P [jump > +r ] ≈ r−1/2

The embedded random walk
in this example is the
one-sided oscillating random
walk with α = β = 1/2.
This is exactly the critical
case, and needs some more
delicate analysis.
We conjecture that this walk is
recurrent.
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Theorem (Rogozin & Foss 1978)
The random walk is transient if α+ 2β < 2 and recurrent
if α+ 2β > 2.
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Oscillating random walk: Example 4

Theorem (Rogozin & Foss 1978)
The random walk is transient if α+ 2β < 2 and recurrent
if α+ 2β > 2.

P [jump < −r ] =
P [jump > +r ] ≈ r−1/2

P [jump > +r ] ≈ r−1/2

The embedded random walk
in this example is the mixed
oscillating random walk with
α = β = 1/2.

So α+ 2β = 3/2 < 2 and this
random walk is transient.
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Complexes of half-lines

Now consider (Xn, ξn) a time-homogeneous Markov process on
R+ × S, where S is a finite non-empty set.

We view R+ ×S as a complex of half-lines R+ × {k} connected
at a central origin O = {0} × S; at time n, coordinate ξn
describes which branch the process is on, and Xn describes the
distance along the branch at which the process sits.

The transition law of the process will be described by
• an irreducible stochastic matrix P = (p(i , j); i , j ∈ S);
• a collection (wi ; i ∈ S) of probability density functions.
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Complexes of half-lines
The transition rule is as follows. Given
(Xn, ξn) = (x , i) ∈ R+ × S, generate (independently) a spatial
increment ϕn+1 from wi and a random ηn+1 ∈ S according to
p(i , ·). Then
• if x + ϕn+1 ≥ 0, set (Xn+1, ξn+1) = (x + ϕn+1, i); else
• if x + ϕn+1 < 0, set (Xn+1, ξn+1) = (|x + ϕn+1|, ηn+1).

In words, take a wξn -distributed step. If this step would take the
walk over the origin, switch the walk onto another branch
according to the Markov routing matrix P.
The transition kernel of the process is given for (x , i) ∈ R+ × S
by

P [(Xn+1, ξn+1) ∈ B × {j} | (Xn, ξn) = (x , i)]

= p(i , j)
∫

B
wi(−z − x)dz + 1{i = j}

∫
B

wi(z − x)dz.
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Complexes of half-lines

We assume that the densities wi are either one-sided or
symmetric: partition S as Sone ∪ Ssym.

Suppose that for each k ∈ S there is an exponent αk ∈ (0,∞)
and a density function vk ∈ Dαk such that

wk (y) =

{
vk (−y) if k ∈ Sone,
1
2vk (|y |) if k ∈ Ssym.

In the case where S has two elements, mapping R+ × S
naturally into R we recover the oscillating random walk.
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Here is an example with
S = Sone = {1,2,3}.

Question: how does
recurrence and transience of
this walk depend on α1, α2, α3
and P?
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Complexes of half-lines: Theorem

Let (µk ; k ∈ S) denote the (unique) stationary distribution
associated with P.

For k ∈ S define χk =

{
1
2 if k ∈ Ssym,

1 if k ∈ Sone.

Theorem
(a) Suppose that maxk χkαk ≥ 1. Then the walk is
recurrent.
(b) Suppose that maxk χkαk < 1.
• If

∑
k µk cot(χkπαk ) < 0, then the walk is recurrent.

• If
∑

k µk cot(χkπαk ) > 0, then the walk is transient.

In the critical case
∑

k µk cot(χkπαk ) = 0 we have recurrence
under slightly stronger conditions.
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Complexes of half-lines: Theorem

This result includes as special cases the results on oscillating
random walk described earlier.
For example, in the two-sided oscillating random walk,
µ = (1/2,1/2) and∑

k

µk cot(χkπαk ) =
1
2

cot(πα/2) +
1
2

cot(πβ/2)

=
sin(π(α+ β)/2)

2 sin(πα/2) sin(πβ/2)
,

the sign of which depends on α+ β for α, β ∈ (0,2).

While in these special cases the critical surface in αk is linear,
in the general setting our cotangent criterion shows that the
critical surface is in general non-linear.
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random walk described earlier.
For example, in the two-sided oscillating random walk,
µ = (1/2,1/2) and∑

k

µk cot(χkπαk ) =
1
2

cot(πα/2) +
1
2

cot(πβ/2)

=
sin(π(α+ β)/2)

2 sin(πα/2) sin(πβ/2)
,

the sign of which depends on α+ β for α, β ∈ (0,2).
While in these special cases the critical surface in αk is linear,
in the general setting our cotangent criterion shows that the
critical surface is in general non-linear.



Complexes of half-lines: Example

0.6

0.4
0.4

Suppose

P =

 0 1/2 1/2
1/3 1/3 1/3
1 0 0

 .

Then µ = 1
10(4,3,3).

Suppose
(α1, α2, α3) = (0.6,0.4,0.4).
Then∑

k

µk cot(χkπαk ) = 0.06,

so the random walk is
transient.
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0.4
0.4

Suppose

P =

 0 1/2 1/2
1/3 1/3 1/3
1 0 0

 .

Then µ = 1
10(4,3,3).

Suppose
(α1, α2, α3) = (0.7,0.4,0.4).

Then∑
k

µk cot(χkπαk ) = −0.10,

so the random walk is
recurrent.
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Ideas of the proofs

We use a Lyapunov function f (x , i) = λixν where λi ∈ R are
carefully chosen constants.

We show that for suitable choices of the λi f (Xn, ξn) satisfies a
local supermartingale condition

, which if ν > 0 establishes
recurrence and if ν < 0 establishes transience.

To obtain our sharp phase transition one takes ν → 0 and
λ→ 1; the choice of λi depends on the µi and the αi in a way
captured by the cotangent criterion.
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local supermartingale condition, which if ν > 0 establishes
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To obtain our sharp phase transition one takes ν → 0 and
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Why does cot appear?
When computing the expected increment of f (Xn, ξn), one ends
up with several integrals, such as∫ ∞

x
(y − x)νy−1−αdy = xν−α

∫ ∞
1

(u − 1)νu−1−αdu.

By Taylor’s theorem, as ν → 0,∫ ∞
1

(u − 1)νu−1−αdu =
1
α
+ ν

∫ ∞
1

log(u − 1)u−1−αdu + o(ν).

Here ∫ ∞
1

log(u − 1)u−1−αdu = −1
α
(γ + ψ(α)),

where γ is Euler’s constant and ψ is the digamma function.
Together with similar expressions from other terms, the
cotangent arises from the digamma reflection formula

ψ(1− z)− ψ(z) = π cotπz.
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