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Introduction

Construct a sequence of random graphs Gj, Go, . .. with

Gn = (V, Ep), where V,, = {0,1,...,n}.

Vertices will be associated with sites located in S c RY, for S
convex, compact, and of positive measure.

Let Xp, X1, Xo, ... be i.i.d. random variables on S with a
common density f, bounded away from 0 and oc.

Vertex i is associated with site Xj € S.

Vertices arrive one at a time. Each new vertex after the first is
joined by an edge to an existing vertex according to a
probabilistic rule that mixes preferential attachment by degree
and spatial attachment by proximity.

The model originates with MANNA & SEN (2002), FLAXMAN et al.
(2006), and JORDAN (2010).



Introduction

Start with Gy = ({0, 1}, {(1,0)}): a single edge from 1 to 0.
Given G, n > 1, and {Xo, ..., Xy}, construct G, 1 as follows.

Vertex n+ 1 arrives at site X, 1 € S.

An edge is added from vertex n+ 1 to a random vertex among
{0,1,...,n}, where vertex k is chosen with probability
proportional to

deg(K)F(p(Xnt1, Xk))-
Here
® deg,(k) is the (total) degree of vertex k in Gp;
e pis the Euclidean distance on R?;
® F:(0,00) — (0,00) is an attractiveness function.



Simulations
Typically F(r) 1 oo as r | 0. The rate at which F blows up at 0
regulates the influence of the geometry.

Example: Consider
S =1[0,1]° and

f = 1g; uniform
points on the unit
square.
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Simulation shown
for F(r) =r—1,
n = 100.



Simulations
Typically F(r) 1 oo as r | 0. The rate at which F blows up at 0
regulates the influence of the geometry.

Example: Consider
S =10,1]? and

f = 1g; uniform
points on the unit
square.

Simulation shown
for F(r) =r—1,
n = 1000.
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Simulations
Typically F(r) 1 oo as r | 0. The rate at which F blows up at 0
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Simulations
Typically F(r) 1 oo as r | 0. The rate at which F blows up at 0
regulates the influence of the geometry.

Example: Consider
S =10,1]? and

f = 1g; uniform
points on the unit
square.

Simulation shown
for F(r) = r=4,
n = 1000.




Simulations
Typically F(r) 1 oo as r | 0. The rate at which F blows up at 0
regulates the influence of the geometry.

Example: Consider

S =10,1]? and

f = 1g; uniform

points on the unit

square. 7

Simulation shown
for F(r) = r=19,
n = 1000.




Power law degrees

We are interested in the degree distribution, for example

(k) = —— 3" 1{deg,(7) > K},
0

n+1i_

the proportion of vertices in G, whose degree is at least k.

For F relatively flat, we expect preferential attachment to
dominate and power-law degrees.

Formalized by JORDAN (2010). Assume (S, f) homogeneous in
the sense that meB(X;,) f(y)dy depends only on r:
Theorem (Jordan)

If s F(p(x,y))f(y)dy < oo then, for any k,
limp_ oo 7Tn(k) )\BA(k) in L2 where )\BA(k) k2.
For example, this applies for F(r) = r=%, s € (0, d).



Phase transitions

We are interested in other regimes.

Our main results are:

e If F blows up fast enough, 7, has exponential tails. Here
‘fast enough’ is faster than any polynomial.

® There is an intermediate regime in which =, has stretched
exponential tails.

In the first case, we show that the geometric component is so
dominant that G, is well approximated by the on-line
nearest-neighbour graph (ONG), in which each new vertex is
joined to its nearest neighbour among the existing vertices.



On-line nearest-neighbour graph

ONG studied by MANNA & SEN

(2002) and PENROSE (2005). A T A A
P\ 2 % A\
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Degree distribution for ONG in ' P10 A

the case of S = [0, 1]? and K, - \

f = 1 studied by BERGER et { o

al. (2007), who showed, for RSN A

some constants A, A, C, C,

Ae Ck < Iinm inwa,?NG(k) < lim SUPEﬂgNG(k) < Ae™ .
—00

n—oo

We extend this.



On-line nearest-neighbour graph

Theorem
For any d and f, for any K,

. ONG as. . ONG _
Jim 77 (k) =" lim By (k) = Aona (),
where \ong depends on d but not on f and satisfies
exponential bounds as a function of k.

Existence of the limit in probability follows from stabilization, e.g.
PENROSE (2005,07); then use a concentration argument.

Conjecture

We expect that limk_,o, (—k =" log Aong(K)) = p(d) exists in
(0, 1] for each d, and we conjecture that limg_, . u(d) = log 2,
the exponent in the simpler (non-spatial) uniform attachment
model.



Exponential tail regime

Back to G,. Take F = F, given by

Fy(r) := exp {(log(1/r))"} .

For v > 1, this blows up faster than any r—Sas r | 0.

Theorem

Let F = F,,v > 3/2. Then a.s. in Gy, the proportion of vertices
joined to a vertex other than their on-line nearest neighbour is
o(1), and, for any k,

1

lim mn(k) £ lim Emn(k) = Aong(K).

n—oo n—oo

Conjecture
The conclusion holds for all v > 1.



Intermediate regime

Take F(r) = r—° where now s > d. (Recall s < dis the
power-law case studied by Jordan.)

Theorem
Let F(r)=r=%fors > d. Then forany 6 c (0, 5= d) there exists
a constant C < oo such that, for any k,

limsup mn(k) < Cexp{—k’}, a.s.

n—oo

As s — oo, this gives a bound of almost e—Vk,

Question: is this sharp?



Intermediate regime

Outline of the proof:

e The denominator in the probability of the new edge being
joined to a given vertex can be estimated in terms of a
quantity of the form n=s/4 3" p(X;, x)~°, which is
dominated by a random variable in the domain of attraction
of a stable law of index d/s € (0, 1).

¢ Hence we get an estimate for the probability of the new
edge being joined to a given vertex in terms of the current
degrees and a random quantity we can understand.

¢ Actually, we need an estimate conditional on the locations
of the existing vertices, but this functional has nice
concentration properties.

* We use these estimates and an inductive stochastic
approximation argument to obtain the result.
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