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The model

Continuous-time model introduced by KURKOVA AND

MENSHIKOV (1997); earlier work on related models includes
COFFMAN AND GILBERT (1987) and FOSS AND LAST (1996).



The model

arrival rate λ at each site

x
service rate µ

• There is a queue at each site of Z; all empty at time 0.

• Independent Poisson arrivals at rate λ at each queue.
• A single server, who starts at 0 ∈ Z.
• The server serves the current queue until empty, then the

server picks the largest neighbouring queue and moves
there (randomly break ties), taking time = 1 unit to move.

• The service rate when the server is at a queue is µ.
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The model
Let S(t) = position of server at time t .

Question: How does S(t) behave as t →∞?

Starting point: Under service, a queue is an M/M/1 queue, i.e.,
a continuous-time random walk on Z+, with positive jumps at
rate λ and (from positive sites) negative jumps at rate µ.
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Subcritical case: µ < λ

• If µ < λ, the queue under service is transient.

• So, uniformly over non-empty queues, there is positive
probability that service is never completed.

• So the server empties (at most) finitely many queues, and
then gets stuck.

Proposition (KM97)
If µ < λ, then S(t) converges to a finite limit in Z, a.s.
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Supercritical case: µ > λ

• If µ > λ, the queue under service is positive recurrent, so
will certainly empty.

• Moreover, the negative drift ensures that the queue
empties in linear time, i.e., a queue of length ` takes time
about c` to empty.

Consider the server’s first arrival at x > 0 at time t . As neither x
nor x + 1 have been previously visited, the picture is:

≈ 0
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Supercritical case: µ > λ

≈ 0

λt λt

x − 1 x x + 1
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cλt

λt

cλt

x − 1 x x + 1

x
• Takes time ∼ ct to serve the queue at x .
• In that time ∼ cλt new customers arrive at x ± 1.

• Fluctuations in this picture are O(
√

t).
• With very high probability, the server moves to x + 1 next.

Subtlety: At time t queue at x has never been visitied, but has been
inspected. Small effect. . .
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Supercritical case: µ > λ

This is the intuition behind:

Theorem (KM97)
If µ > λ, then

P
(

lim
t→∞

S(t) = +∞
)

= P
(

lim
t→∞

S(t) = −∞
)

=
1
2
.

That is, the server is ‘transient’. Moreover, the rate of escape:

Theorem (KM97)
If µ > λ, then there is a constant ρ = ρ(µ, λ) ∈ (0,∞)
such that

P
(

lim
t→∞

|S(t)|
log t

= ρ
)

= 1.
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Critical case: µ = λ

The critical case µ = λ was left largely open; KM97 did show
that the server never gets stuck in a finite region:

lim sup
t→∞

|S(t)| = +∞, a.s.

New intuition:

• The queue under service now has zero drift and is null
recurrent.

• So again the queue always empties, but now the time to
empty a queue of length ` is of order `2.

Let’s try to repeat our argument from the supercritical case.
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Critical case: µ = λ
Again consider first arrival at site x > 0 at time t .

≈ 0
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x
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λt

t2

x − 1 x x + 1

x
• Takes time ≈ t2 to serve the queue at x .
• In that time ≈ t2 new customers arrive at x ± 1.

• Fluctuations in the arrivals are O(t), the same order as the
rightwards bias.

• Suggests P (changes direction) > ε > 0?

So in this case the behaviour is more complicated.
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Critical case: results
We show that the server is ‘recurrent’:

Theorem 1 (CW)
If µ = λ, then a.s., for every x ∈ R,

{t ≥ 0 : S(t) = x} is unbounded.

Moreover, we have an iterated logarithm law for the position:

Theorem 2 (CW)
If µ = λ, then, a.s.,

lim sup
t→∞

S(t)√
log log t log log log log t

=

√
6

log 2
,

lim inf
t→∞

S(t)√
log log t log log log log t

= −

√
6

log 2
.
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Ingredients in the proofs

We will outline the main ideas in the proofs.

• The times between emptying successive queues show
doubly-exponential growth.

• The probability of turning around converges to 1/4.
• A martingale argument.

For convenience, take λ = µ = 1 from now on.



Ingredients in the proofs

We will outline the main ideas in the proofs.

• The times between emptying successive queues show
doubly-exponential growth.

• The probability of turning around converges to 1/4.

• A martingale argument.

For convenience, take λ = µ = 1 from now on.



Ingredients in the proofs

We will outline the main ideas in the proofs.

• The times between emptying successive queues show
doubly-exponential growth.

• The probability of turning around converges to 1/4.
• A martingale argument.

For convenience, take λ = µ = 1 from now on.



Ingredients in the proofs

We will outline the main ideas in the proofs.

• The times between emptying successive queues show
doubly-exponential growth.

• The probability of turning around converges to 1/4.
• A martingale argument.

For convenience, take λ = µ = 1 from now on.



The critical M/M/1 queue

Let ζ(k) be the time to serve a queue starting with k ∈ N initial
customers.

In other words, ζ(k) is the time to hit 0 of a continuous-time
simple random walk started from k , with rate 1 of stepping to
the left and rate 1 of stepping to the right.
Since the random walk⇒ Brownian motion:

Lemma 3
As k →∞,

2
k2 ζ(k)

d−→ S,

where FS(u) := P (S ≤ u) = 2Φ(u−1/2), where
Φ(z) = P (Z > z) for Z ∼ N (0,1).
Note P (S > u) ∼ cu−1/2 and S is 1/2-stable; sometimes
known as Lévy distribution.
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Time-scale estimates

Let τn = time to service the nth queue served.
And let Tn = τ1 + · · ·+ τn.

Lemma 4
As n→∞,

τn

τ2
n−1

d−→ 1
2

S.

Sketch proof.
Let Qn−1 be the number of customers at the queue to be
served at the start of the nth service.
Then τn = ζ(Qn−1) and Qn−1 ≈ λτn−1 (at least. . . ).
By Lemma 3,

ζ(τn−1)

τ2
n−1

d−→ 1
2

S. �



Time-scale estimates

Lemma 5
For any α ∈ (0,2) and β > 2, a.s.,

eα
n
< τn < eβ

n
for all but finitely many n.

Sketch proof.
Up to (random) multiplicative factors, τn ≈ τ2

n−1. So if τ1 ≈ e2,
we have τ2 ≈ e4, τ3 ≈ e8, . . . , τn ≈ e2n

. �

This is the doubly-exponential growth of the service times.

In particular, Tn ≈ τn.

Corollary 6
If Nt = number of queues emptied by time t,

lim
t→∞

Nt

log log t
=

1
log 2

, a.s.
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Turning probability

Let Xn = location of nth served queue. Let ηn = Xn − Xn−1.

Let qn = P (ηn+1 6= ηn | Fn−1).
Here Fn = everything up to the end of the nth service.
Note that

ηn =

{
+1 if Qn−1(Xn−1 + 1) > Qn−1(Xn−1 − 1)

−1 if Qn−1(Xn−1 + 1) < Qn−1(Xn−1 − 1)

where Qn(x) = length of queue at x on completion of nth
service.
In particular, both ηn and Xn are Fn−1-measurable.

Lemma 7
qn → 1/4, a.s.
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Turning probability

Lemma 7
qn → 1/4, a.s.
Sketch proof.
Suppose the nth queue has just been emptied; the service time
was τn.

At this time, the previous queue has about Po(τn) customers,
while the other neighbouring queue has about Po(τn−1 + τn)
(ignoring the much smaller number of prior customers).
So

P (ηn+1 6= ηn) ≈ P (Po(τn) > Po(τn−1 + τn)).

By the CLT, and using the fact that τn � τn−1,

P (ηn+1 6= ηn) ≈ P (τn + Zτ1/2
n > τn−1 + τn + Z ′τ1/2

n ),

where Z ,Z ′ are independent N (0,1).
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Turning probability

We have shown that

P (ηn+1 6= ηn) ≈ P (τn + Zτ1/2
n > τn−1 + τn + Z ′τ1/2

n ),

where Z ,Z ′ are independent N (0,1).

Hence

P (ηn+1 6= ηn) ≈ P

(
Z − Z ′ >

τn−1

τ
1/2
n

)
≈ P

(√
2Z >

(1
2S
)−1/2

)
,

by Lemma 4.
By the particular compatibility of the distribution of S (Lemma 3)
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Final ingredient: martingale

Claim: Yn = Xn + 21{ηn = +1} is almost a martingale.

Why? Let f (x , i) = x + 21{i = 1}. Then

f (x + i , i)− f (x , i) = i
f (x − i ,−i)− f (x , i) = −3i

so

E (Yn+1 − Yn | Fn−1) = ηn(1− qn)− 3ηnqn

= ηn(1− 4qn)

≈ 0.

The main technical work is getting rates of convergence
everywhere to quanitfy this.
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Theorem 1 now follows from the fact that for a martingale Mn
with bounded increments,

lim inf
n→∞

Mn = −∞ and lim sup
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Mn = +∞.

Theorem 2 follows from STOUT’s martingale LIL and
Corollary 6.
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