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Abstract. We consider a single server queueing system with stations in all
integer points of the real line. The customers arrival streams at the different
stations are independent Poisson processes. The service times of customers
are mutually i and exponentially distri The server serves each
station exhaustively, i.e. till the station is empty. The next station to be served,
is selected using the greedy algorithm: the server goes to the neighbouring
station with the maximum number of customers. We study the trajectories of
the server and his asymptotic position, as time tends to infinity.
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There is a queue at each site of Z; all empty at time 0.
Independent Poisson arrivals at rate \ at each queue.

A single server, who starts at 0 € Z.

The server serves the current queue until empty, then the
server picks the largest neighbouring queue and moves
there (randomly break ties), taking time = 1 unit to move.

The service rate when the server is at a queue is p.
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The model
Let S(t) = position of server at time t.
Question: How does S(t) behave as t — c0?

Starting point: Under service, a queue is an M/M/1 queue, i.e.,
a continuous-time random walk on Z,., with positive jumps at
rate A and (from positive sites) negative jumps at rate p.

A

Te—T—>




Subcritical case: u < A

e If u < A, the queue under service is transient.



Subcritical case: u < A

e If u < A, the queue under service is transient.

e So, uniformly over non-empty queues, there is positive
probability that service is never completed.



Subcritical case: u < A

e If u < A, the queue under service is transient.

e So, uniformly over non-empty queues, there is positive
probability that service is never completed.

e So the server empties (at most) finitely many queues, and
then gets stuck.

Proposition (KM97)
If n < X, then S(t) converges to a finite limit in Z, a.s.
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e If u > A, the queue under service is positive recurrent, so
will certainly empty.

e Moreover, the negative drift ensures that the queue
empties in linear time, i.e., a queue of length /¢ takes time
about ¢/ to empty.

Consider the server’s first arrival at x > 0 at time t. As neither x
nor x + 1 have been previously visited, the picture is:

At || At
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Takes time ~ ct to serve the queue at x.

In that time ~ cAt new customers arrive at x + 1.
Fluctuations in this picture are O(v/t).

With very high probability, the server moves to x + 1 next.

Subtlety: At time t queue at x has never been visitied, but has been
inspected. Small effect. . .
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Supercritical case: u > A

This is the intuition behind:

Theorem (KM97)
If u> X\, then

P (im0 = +o5) =P (Jim (0= =) = 3

That is, the server is ‘transient’. Moreover, the rate of escape:

Theorem (KM97)

If n > X, then there is a constant p = p(u, \) € (0, 00)
such that 1S(1))|
lim

P(taooW:p) =1.
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Critical case: u = A

The critical case u = X\ was left largely open; KM97 did show
that the server never gets stuck in a finite region:

limsup |S(t)] = 40, a.s.

t—o0
New intuition:

e The queue under service now has zero drift and is null
recurrent.

e So again the queue always empties, but now the time to
empty a queue of length ¢ is of order ¢2.

Let’s try to repeat our argument from the supercritical case.
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Again consider first arrival at site x > 0 at time t.
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« Takes time ~ t2 to serve the queue at x.
o In that time ~ t2 new customers arrive at x + 1.

e Fluctuations in the arrivals are O(t), the same order as the
rightwards bias.

e Suggests P (changes direction) > ¢ > 0?

So in this case the behaviour is more complicated.
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Critical case: results
We show that the server is ‘recurrent’:

Theorem 1 (CW)
If u = X, then a.s., for every x € R,

{t >0: S(t) = x} is unbounded.

Moreover, we have an iterated logarithm law for the position:

Theorem 2 (CW)
If uw = X, then, a.s.,

S(t) 6
limsup

t—oo +/loglog tlogloglog Iogt log 2
liminf () °

t—oo /loglog tloglogloglog t  \log2
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Ingredients in the proofs

We will outline the main ideas in the proofs.
¢ The times between emptying successive queues show
doubly-exponential growth.
e The probability of turning around converges to 1/4.
e A martingale argument.

For convenience, take A = ;= 1 from now on.
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The critical M/M/1 queue

Let {(k) be the time to serve a queue starting with k € N initial
customers.

In other words, ((k) is the time to hit 0 of a continuous-time
simple random walk started from k, with rate 1 of stepping to
the left and rate 1 of stepping to the right.

Since the random walk = Brownian motion:
Lemma 3
As k — oo,

(k) -5 s,

where Fg(u) := P (S < u) = 2d(u~"/?), where

®(z) =P (Z > z) for Z ~ N(0,1).

Note P (S > u) ~ cu~'/2 and S'is 1/2-stable; sometimes
known as Lévy distribution.



Time-scale estimates

Let 7, = time to service the nth queue served.
And Iet Tn:T1 +"'+7'n.

Lemma 4
As n— oo,

Sketch proof.

Let Q,_1 be the number of customers at the queue to be
served at the start of the nth service.

Then 7, = {(Qp—1) and Q1 ~ A1p_1 (at least...).

By Lemma 3,

1) 0,15

Th_1

N
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Time-scale estimates

Lemma 5
Forany o € (0,2) and g > 2, a.s.,

e < 1, < € for all but finitely many n.

Sketch proof.

Up to (random) multiplicative factors, m, ~ 7,2,_1. So if 1 ~ €2,
we have » ~e*, m~ed, ..., m~e?. O

This is the doubly-exponential growth of the service times.

In particular, T, = 7.

Corollary 6

If Ny = number of queues emptied by time t,

im M~ 1,
t—oo loglogt  log?2’

.S.
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Lemma 7
gn — 1/4, a.s.

Sketch proof.
Suppose the nth queue has just been emptied; the service time
was 7.

At this time, the previous queue has about Po(r,;) customers,
while the other neighbouring queue has about Po(r,_1 + 75)
(ignoring the much smaller number of prior customers).

So
P (nnt1 # nn) = P (Po(7n) > Po(7p—1 + 7n)).

By the CLT, and using the fact that 7, > 7,_1,
P (nn+1 # nn) = P(mh + ZTI17/2 >Tpn1+7n+ Z/Trl/z)v

where Z, Z' are independent A/(0, 1).
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Turning probability

We have shown that
P (N1 # mn) = P (tn+ 2702 > 701 + 10 + Z'12),

where Z, Z' are independent (0, 1).

Hence
/ Tn—1
P(nn1 #nn) = P (Z_Z > 1/2)
Tn
~P (V2Z > (35)%),
by Lemma 4.

By the particular compatibility of the distribution of S (Lemma 3)
with the normal distribution, this last probability is 1/4! O
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Final ingredient: martingale

Claim: Y, = X, + 21{n, = +1} is almost a martingale.

The main technical work is getting rates of convergence
everywhere to quanitfy this.

Theorem 1 now follows from the fact that for a martingale M,
with bounded increments,

liminf M, = —oo and limsup M, = +o0.
n—ro0 n—oo

Theorem 2 follows from STOUT’s martingale LIL and
Corollary 6.
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