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Introduction

On each of n unsteady steps, a drunken gardener drops a
seed. Once the flowers have bloomed, what is the minimum
length of fencing needed to enclose the garden? What is its
area?
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Introduction

Let Z1,Z2, . . . be independent, identically distributed random
vectors in R2.

The Zk will be the increments of the planar random walk Sn,
n ≥ 0, started at the origin in R2, defined by

S0 = 0, and Sn =
n∑

k=1

Zk for n ≥ 1.

We are interested in the convex hull hull(S0, . . . ,Sn), i.e., the
smallest convex set that contains {S0, . . . ,Sn}.

In particular, the n→∞ limit behaviour of the random variables

• Ln = the perimeter length of hull(S0, . . . ,Sn);
• An = the area of hull(S0, . . . ,Sn).
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Introduction

Standing assumption: E (‖Z1‖2) <∞ (sometimes more).

For the mean drift vector of the walk we write µ = EZ1.

There is going to be a clear distinction between the zero drift
case (µ = 0) and the non-zero drift case (‖µ‖ > 0).

For example, if

rn := inf{‖x‖ : x ∈ R2 \ hull(S0, . . . ,Sn)},

then, under mild conditions:
• the zero-drift walk visits all angles at arbitrary distances, so

rn →∞, i.e., the convex hull tends to the whole of R2;
• the walk with non-zero drift is transient in a limiting

direction, so limn→∞ rn <∞.
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Introduction
Some heuristics allow us to guess the typical scalings with n of
our quantities of interest:

µ = 0 µ 6= 0
Ln n1/2 n
An n n3/2

We then seek distributional limit theorems. That is, for quantity
Qn is there a distributional limit for

n−αQn or n−β (Qn − EQn) ?

Given some self-averaging, we might seek laws of large
numbers:

n−γQn −→ non-zero constant, a.s.

It turns out that each of the four cases in the table do satisfy a
distributional limit theorem: one limit distribution is Gaussian;
the other three are not.
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Some history

Spitzer & Widom (1961) and Baxter (1961) showed that

ELn = 2
n∑

k=1

1
k
E ‖Sk‖.

So, under mild conditions:
• the zero-drift case has ELn �

√
n;

• the case with drift has ELn � n.

Snyder & Steele (1993) showed that
1
n
Var (Ln) ≤ π2

2

(
E ‖Z1‖2 − ‖µ‖2

)
. (1)

Snyder & Steele deduced from (1) the strong law

lim
n→∞

n−1Ln = 2‖µ‖, a.s.
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Some questions

The work of Snyder & Steele raised some natural questions.

• Is n the correct order for Var (Ln)?
• Is there a distributional limit theorem for Ln?
• If so, is the limit distribution normal?

The answers to these questions turn out be be essentially
• yes, yes, no in the zero drift case, and
• yes, yes, yes in the non-zero drift case,

excluding some degenerate cases.

First, we introduce an important tool from convex geometry:
Cauchy’s formula.
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Cauchy’s formula
Let eθ = (cos θ, sin θ), unit vector in direction θ. Set

Mn(θ) = max
0≤k≤n

(Sk · eθ), mn(θ) = min
0≤k≤n

(Sk · eθ).

Cauchy’s perimeter formula from convex geometry:

Ln =

∫ π

0
(Mn(θ)−mn(θ)) dθ.

θ

Mn(θ)



Cauchy’s formula

Ln =

∫ π

0
(Mn(θ)−mn(θ)) dθ.

A first consequence: classical fluctuation theory for random
walk on R gives

EMn(θ) =
n∑

k=1

k−1E [(Sk · eθ)+],

a formula attributed variously to Kac, Hunt, Dyson, and Chung,
and which can be proved combinatorially, or analytically as a
consequence of the Spitzer–Baxter–Pollaczek fluctuation
theory identities. Then

ELn =
n∑

k=1

k−1E
∫ 2π

0
|Sk · eθ|dθ = 2

n∑
k=1

k−1E ‖Sk‖,

which is the Spitzer–Widom formula.
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The zero drift case

Suppose µ = 0. The random
walk has Brownian motion as
its scaling limit.

So one would expect that the
convex hull of the random walk
is described in the limit by the
convex hull of Brownian
motion. The latter was studied
by Lévy; more recently by El
Bachir (1983) and others.

We need to know a little about
convex hulls of continuous
paths, and need to set things
up on the right space(s).

●



Paths and hulls

Consider continuous f : [0,T ]→ Rd with f (0) = 0; say f ∈ C0
d .

(T is not very important—enough to take T ≡ 1.)

With the supremum norm ρ∞(f ,g) = supx ‖f (x)− g(x)‖ we get
a metric space (C0

d , ρ∞).

The path segment (≡ interval image) f [0, t ] = {f (s) : s ∈ [0, t ]}
is compact.

=⇒ hull f [0, t ] is compact (by a theorem of Carathéodory).

That is, hull f [0, t ] is an element of the metric space (K0
d , ρH) of

compact convex subsets of Rd containing 0, with the Hausdorff
metric.
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Paths and hulls

Metric space (K0
d , ρH) of compact convex subsets of Rd

containing 0, with the Hausdorff metric.

Given K ∈ K0
d and r > 0, let K r := {x ∈ Rd : ρ(x ,K ) ≤ r}.

For A,B ∈ K0
d ,

ρH(A,B) ≤ r ⇔ A ⊆ Br and B ⊆ Ar .

Lemma 1
For each t, the map f 7→ hull f [0, t ] is a continuous
function from (C0

d , ρ∞) to (K0
d , ρH).



Scaling limit
Given random walk Sn =

∑n
k=1 Zk on Rd , define

Xn(t) := n−1/2 (Sbntc + (nt − bntc)Zbntc+1
)
.

So for each n, Xn ∈ C0
d . Let bt , t ≥ 0 denote standard Brownian

motion on Rd .

Donsker’s Theorem
Suppose E (‖Z1‖2) <∞, µ = 0, and E (Z1Z>1 ) = I. Then
Xn ⇒ b in the sense of weak convergence on (C0

d , ρ∞).

Note hull Xn[0,1] = n−1/2 hull(S0, . . . ,Sn). Then with Lemma 1
and the continuous mapping theorem, we get:

Theorem 2
Under the same conditions,
n−1/2 hull(S0, . . . ,Sn)⇒ hull b[0,1]
in the sense of weak convergence on (K0

d , ρH).
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Functionals

Now take d = 2.

The neatest way to define area A and perimeter length L of a
set K ∈ K0

2 is:

A(K ) := |K |, and L(K ) := lim
r↓0

(
|K r | − |K |

r

)
,

where | · | is Lebesgue measure; the limit exists by the Steiner
formula of integral geometry.

In particular,

L(K ) =

{
H1(∂K ) if int(K ) 6= ∅

2H1(∂K ) if int(K ) = ∅

where H1 is one-dimensional Hausdorff measure.



Functionals

Lemma 3
The maps K 7→ A(K ) and K 7→ L(K ) are continuous
functions from (K0

2, ρH) to (R+, ρ).

Note L(hull Xn[0,1]) = L(n−1/2 hull(S0, . . . ,Sn)) = n−1/2Ln;

A(hull Xn[0,1]) = A(n−1/2 hull(S0, . . . ,Sn)) = n−1An.

Theorem 4
Suppose E (‖Z1‖2) <∞, µ = 0, and E (Z1Z>1 ) = I. Then

n−1/2Ln
d−→ `1, and n−1An

d−→ a1,

where `1 = L(hull b[0,1]) and a1 = A(hull b[0,1]) are the
perimeter length and area, respectively, of the convex
hull of planar Brownian motion run for unit time.
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Functionals

Some comments.
• The variables `1 and a1 are positive and non-degenerate,

and so non-Gaussian.

• A formula of Letac and Takács (1978–80) says E `1 =
√

8π,
while El Bachir (1983) showed Ea1 = π/2, so (with a little
extra work) we get in the zero-drift case that

n−1/2ELn →
√

8π, and n−1EAn →
π

2
.

• Under mild conditions, we also have that

n−1Var Ln → Var `1, and n−2Var An → Var a1.

• We can show Var `1 > 0 and Var a1 > 0.
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Functionals

• We can show Var `1 > 0 and Var a1 > 0.

• We’d like an exact formula for these variances.
Goldman (1996) manages to do an explicit computation for
the planar Brownian bridge, but it is tricky.
Using Cauchy’s formula and a formula of Rogers & Shepp
(2006) on the correlation of the maxima of correlated
one-dimensional Brownian motions, one can show

E [`21] = 4π
∫ π/2

−π/2
dθ
∫ ∞

0
du cos θ

cosh(uθ)

sinh(uπ/2)
tanh

(
(2θ + π)u

4

)
,

which gives Var `1 ≈ 1.0350.
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Scaling limit in the case with drift

To get a non-degenerate scaling limit, we now must scale
space by factor 1/n in the direction of the drift and by factor
1/
√

n in the orthogonal direction.

Specifically, let ψµn (x) =

 x · µ̂
n‖µ‖

,
x · µ̂⊥√

nσ2
µ⊥

 ;

Here σ2
µ⊥ = E

[
(Z · µ̂⊥)2 ].

Let b̃ denote the process on R2 given by b̃(t) = (t ,w(t)), where
w is standard Brownian motion on R.

The analogue of Donsker’s theorem is as follows.

Suppose E (‖Z1‖2) <∞, µ 6= 0, and σ2
µ⊥ > 0. Then

ψµn (Xn)⇒ b̃ weakly on (C0
2 , ρ∞).
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Scaling limit in the case with drift

µ

ψµn

♥❦✖❦

♣
♥

✶

✶

✛✷�❄

❂
♣
✁

The affine map ψµn preserves the convex hull, so:

Theorem 5
Suppose E (‖Z1‖2) <∞, µ 6= 0, and σ2

µ⊥ > 0. Then
ψµn (hull(S0, . . . ,Sn))⇒ hull b̃[0,1] weakly on (K0

2, ρH).



Scaling limit in the case with drift
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Suppose E (‖Z1‖2) <∞, µ 6= 0, and σ2

µ⊥ > 0. Then
ψµn (hull(S0, . . . ,Sn))⇒ hull b̃[0,1] weakly on (K0

2, ρH).

Now note A(ψµn (hull(S0, . . . ,Sn))) = n−3/2‖µ‖−1(σ2
µ⊥)−1/2An.

Theorem 6
Suppose E (‖Z1‖2) <∞, µ 6= 0, and σ2

µ⊥ > 0. Then

n−3/2‖µ‖−1(σ2
µ⊥)−1/2An

d−→ ã1,

where ã1 = A(hull b̃[0,1]).
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2, ρH).
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Scaling limit in the case with drift

Some comments.
• The variable ã1 is positive and non-degenerate, and so

non-Gaussian.

• We can show that E ã1 = 1
3

√
2π, using an analogue of the

Spitzer–Widom formula for areas due to Barndorff-Nielsen
& Baxter (1963).

• Under mild conditions, we also have that

n−3Var An → ‖µ‖2σ2
µ⊥Var ã1.

• We can show Var ã1 > 0.
• This scaling limit strategy is no use for the perimeter length

Ln in the case µ 6= 0, because ψµn does not act in a
sensible way on lengths. . .
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Perimeter length in the non-zero drift case

Theorem 7
Suppose E (‖Z1‖2) <∞ and µ 6= 0. Then

lim
n→∞

1
n
Var (Ln) = 4σ2

µ, where σ2
µ := E [((Z1 − µ) · µ̂)2].

Theorem 8
Suppose E (‖Z1‖2) <∞, µ 6= 0, and σ2

µ > 0. Then

Ln − ELn√
Var Ln

d−→ N (0,1), and
Ln − ELn√

4nσ2
µ

d−→ N (0,1).
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Remarks

(i) A little algebra shows 4σ2
µ ≤ 4(E ‖Z1‖2 − ‖µ‖2).

Compare to the Snyder–Steele upper bound
n−1Var (Ln) ≤ π2

2 (E ‖Z1‖2 − ‖µ‖2).

I.e., the constant in the Snyder–Steele upper bound is not
sharp (4 < π2/2).

(ii) σ2
µ = 0 if and only if Z1 − µ is a.s. orthogonal to µ.

This is the case, for instance, if Z1 takes values (1,1) or
(1,−1), each with probability 1/2.

In this case Theorem 7 says that Var (Ln) = o(n).
The Snyder–Steele bound says only that Var (Ln) ≤ π2n/2.
Simulations suggest that actually Var (Ln) = O(log n).
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Degenerate example

Z1 takes values (1,1) or (1,−1), each with probability 1/2.

This 2-dimensional walk can be viewed as a space-time
diagram of a 1-dimensional simple symmetric random walk:

Interesting combinatorics here, related to the
Bohnenblust–Spitzer algorithm; see Steele (2002).

Behaviour of Ln for this case is an open problem.



Proof idea: Martingale differences

Let Fn = σ(Z1, . . . ,Zn). Define Dn,i = E [Ln − L(i)
n | Fi ].

Lemma 9
(i) Ln − ELn =

∑n
i=1 Dn,i .

(ii) Var (Ln) =
∑n

i=1 E (D2
n,i).

Sketch proof.
As Z ′i is independent of Fi , E [L(i)

n | Fi ] = E [L(i)
n | Fi−1] = E [Ln | Fi−1].

So Dn,i = E [Ln | Fi ]− E [Ln | Fi−1]; a standard construction of a
martingale difference sequence.

n∑
i=1

Dn,i = E [Ln | Fn]− E [Ln | F0] = Ln − ELn.

Now use orthogonality of martingale differences.



Aside: Upper bounds

Lemma 9 with the conditional Jensen inequality gives:

Var (Ln) ≤
n∑

i=1

E [(Ln − L(i)
n )2].

A related result, a version due to Steele of the Efron–Stein
inequality, says

Var (Ln) ≤ 1
2

n∑
i=1

E [(Ln − L(i)
n )2].

It is this latter result that Snyder & Steele used to obtain their
upper bound.



Cauchy formula revisited

We need to study Dn,i = E [Ln − L(i)
n | Fi ].

We have the Cauchy formula for Ln, and similarly for L(i)
n , so that

Ln − L(i)
n =

∫ π

0
∆n,i(θ)dθ,

where

∆n,i(θ) =
(

Mn(θ)−M(i)
n (θ)

)
−
(

mn(θ)−m(i)
n (θ)

)
,

where, similarly to before,

M(i)
n (θ) = max

0≤k≤n
(S(i)

k · eθ), m(i)
n (θ) = min

0≤k≤n
(S(i)

k · eθ).



Proof idea: Control of extrema

We want to understand the relationship between Mn(θ), mn(θ)

and M(i)
n (θ), m(i)

n (θ) (resampled versions).

WLOG suppose EZ1 = µeπ/2 = (0, µ), where µ > 0.

Then for each fixed θ, Sn · eθ is a one-dimensional random walk.

Indeed, Sn · eθ =
∑n

k=1 Zk · eθ, with mean increment
E [Z1 · eθ] = E [Z1] · eθ = µ sin θ, which is positive for θ ∈ (0, π).

So, with high probability, the max Mn(θ) will be achieved nearby
step n while the min mn(θ) will be achieved nearby step 0.

To formalize this needs the strong law of large numbers, plus
some care (need some uniformity in θ).



Proof idea: Control of extrema

Lemma 10
With high probability, ∆n,i(θ) ≈ (Zi − Z ′i ) · eθ for (almost)
all i .

Sketch proof.
With high probability, the max Mn(θ) will be achieved nearby step n
while the min mn(θ) will be achieved nearby step 0.

Similarly for M(i)
n (θ) and m(i)

n (θ)

Resampling increment i shifts the whole subsequent trajectory in R2

by Z ′i − Zi .
It follows that for i neither too close to 0 nor too close to n, for each θ,
on resampling the maxima Mn(θ) and M(i)

n (θ) are achieved at the
same index. Similarly for the minima.

So mn(θ) = m(i)
n (θ), and

M(i)
n (θ) = Mn(θ) + (Z ′i − Zi ) · eθ.

See the picture!
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Proof idea: Control of extrema
So mn(θ) = m(i)

n (θ), and

M(i)
n (θ) = Mn(θ) + (Z ′i − Zi) · eθ.

See the picture!



Finishing the proofs

Up to technical details, we sketched the fact that

Dn,i = E [Ln − L(i)
n | Fi ] ≈

∫ π

0
E [(Zi − Z ′i ) · eθ | Fi ]dθ.

Here Zi is Fi -measurable and Z ′i is independent of Fi , so

E [(Zi − Z ′i ) · eθ | Fi ] = (Zi − µ) · eθ.

Doing the integral gives

Dn,i = E [Ln − L(i)
n | Fi ] ≈ 2(Zi − µ) · µ̂.



Finishing the proofs

Formalizing the analysis we get:

Theorem 11
Suppose E (‖Z1‖2) <∞ and µ 6= 0. Then

n−1/2

∣∣∣∣∣Ln − ELn − 2
n∑

i=1

(Zi − µ) · µ̂

∣∣∣∣∣→ 0, in L2.

So, perhaps surprisingly, Ln − ELn is well-approximated by a
sum of i.i.d. random variables.

Theorems 7 and 8 now follow from Theorem 11 easily enough.
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Concluding remarks
The assumption that the Zi are identically distributed is not
essential to the main argument.

For example, let Gn = 1
n+1

∑n
i=0 Si =

∑n
i=1

n+1−i
n+1 Zi .

G0,G1, . . . is the centre-of-mass process associated with
S0,S1, . . ..

By convexity, hull(G0, . . . ,Gn) ⊆ hull(S0, . . . ,Sn).

If LG
n is the perimeter length of hull(G0, . . . ,Gn), then the

statement of Theorem 11 applies to LG
n in place of Ln with

n+1−i
n+1 Zi in place of Zi .

In particular, the analogue of Theorem 7 says that

lim
n→∞

1
n
Var (LG

n) = 4σ2
µ/3,

where σ2
µ is the same as before.



Concluding remarks

A picture:
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