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Introduction

On each of n unsteady steps, a drunken gardener drops a seed. Once the
flowers have bloomed, what is the area of the garden enclosed by the
minimal-length fence?
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Introduction
Let Z,Z1,2,,... € R (d > 2) be independent and identically
distributed.

The Z, will be the increments of the random walk S,,, n > 0, started at
the origin 0 in RY, defined by

So=0, and 5,,:2:2,< for n > 1.
k=1

We are interested in the convex hull
Hp, = hull{Sy,...,S,},
i.e., the smallest convex set that contains {Sy,. .., Ss}.

In particular, the n — oo limit behaviour of the random variables

® V,y(H,) = the volume of H,;
® D(H,) = the diameter of H,;

® other intrinsic volumes.




Outline

@ Laws of large numbers and distributional limits



Drift: zero vs. non-zero

Standing assumption: E ||Z]| € (0, c0).

[ For the mean drift vector of the walk we write p =E Z.

There is going to be a clear distinction between the zero drift case
(1 = 0) and the non-zero drift case (u # 0).

For a qualitative result, observe that Ho, := Up>oH, exists (by
monotonicity) and P(Ho, = R?) € {0,1} (by Hewitt-Savage zero—one
law).

Theorem (L6pez HERNANDEZ, W., 2021).
We have P(Hoo = RY) =1 if i = 0 and P(Hoo = RY) =0 if
p# 0.




Law of large numbers

View H, as a sequence in the metric space of convex, compact subsets of
RY containing 0, with Hausdorff metric. Let ¢, := hull{0, z1}, the line
segment from 0 to .

A consequence of the strong law of large numbers plus continuity:

Proposition (cf. Lo, MCREDMOND, WALLACE, 2018).
Asn— oo, nTYH, — £, as.

In non-zero drift case, this tells us the first-order asymptotic shape of
convex hull, and (by continuity) implies that, e.g.,

lim n™'D(H,) = ||p|l, and lim n=9Vy(H,) =0, as.
n—oo n—oo



Zero-drift case

When p = 0, the strong laws says only n=1H, — {0}, as.
New standing assumption: E(||Z||?) € (0, o).
Let ¥ :=E(ZZ") denote the increment covariance matrix.

A consequence of Donsker's theorem plus continuity:

Proposition (cf. W., Xu, 2015; Lo, MCREDMOND, WALLACE, 2018).
Suppose that ;1 = 0. For b: [0,1] — R? the trajectory of a
standard Brownian motion, n=Y/23{, %+ $1/2 hull b[0, 1].

A consequence is that (for £ = identity, say)
n~2D(H,) - diam b[0, 1], and n~92Vy(H,) -5 Vy(hull b[0, 1]).
For d = 2, the expected area of the Brownian convex hull is

E V> (hull [0, 1]) = /2 (EL BACHIR, 1983). We don't know the expected
diameter (cf. MCREDMOND, XU, 2017).



Scaling limit in the case with drift

How to go beyond law of large numbers when 1 # 07 To get a
non-degenerate scaling limit, we now must scale space by factor 1/n in
the direction of the drift and by factor 1/4/n in the orthogonal directions.

Take d = 2 so we can draw a picture.
X-fiox-fy
) 1
n 2
0l Jaoz.

Here 02 =E[(Z-p1)*].

/»LL:

Then, let ¢H(x) =

Let b denote the process on R? given by b(t) = (t, w(t)), where w is
standard Brownian motion on R.

The analogue of Donsker’s theorem says that ¢} (X,,) converges weakly
to b as n — oo; proof combines the functional LLN and CLT (cf. W. &
Xu, 2015).



Scaling limit in the case with drift

The affine map ¢¥ preserves the convex hull, so:

Theorem (W. & Xu, 2015).
If p#0 and 0% >0, then as n — oo, @h(H,) converges weakly
to hull 5[0, 1].




Scaling limit in the case with drift

By continuity and scaling of volumes (one coordinate by the LLN scaling
n, the other d — 1 coordinates by the CLT scaling /n) this leads to
distributional limit for volumes:

Corollary (W. & Xu, 2015; MCREDMOND, 2019).
2
Suppose that ;1 # 0 and o;, > 0. Then, as n — oo,

R0 Y2V, (3hy) 5 Vol 5O, 1)

W. & XU (2015) show that, when d = 2, E V,(hull b0, 1]) = /27

This scaling limit strategy does not work so nicely for diameter or
perimeter length when p # 0, because ¢# does not act in a sensible way
on lengths. This leads to another story (and a different class of limit
phenomena): W. & Xu (2015) for perimeter, MCREDMOND & W.
(2018) for diameter.
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© lterated-logarithm laws



lterated-logarithm laws: Overview

We want to study a.s. behaviour of upper envelope of e.g. Vy(H,): we
seek appropriate versions of the law of the iterated logarithm (LIL) from
classical fluctuation theory.

In the zero-drift case, the answer is an elegant theorem due to
KHOSHNEVISAN (1992), using STRASSEN’S (1964) functional LIL. For
example, when d =2, u =0, and ¥ =/ (identity), Khoshnevisan shows

that area satisfies

i Vo(H,) 1

imsup ————— = =, a.s.

n—soo Nloglogn m
The constant 1/ arises from solving a variational problem (this is typical
for a Strassen-type argument).

The analogue of this result for Brownian motion had already been
obtained in a formidable paper of LEVY (1955), who anticipated to some
extent the functional LIL of STRASSEN (1964).



lterated-logarithm laws: Overview

KHOSHNEVISAN (1992): when d =2, p =0, and X =/,
Vo(Ha) 1

limsup ——— = —, as.
n—soo Nloglogn m

In the non-zero drift case, Khoshnevisan's LIL does not apply. We obtain:

Theorem (CYGAN, SANDRIC, SEBEK, W., 2023).

Ifd=2,p#0,and X =1,
Iimsupi‘é(Hn) = M a.s
n—oo N3/2\/loglogn /6’

Our general result covers all intrinsic volumes and (like Khoshnevisan's)
is founded on Strassen’s functional LIL, modified appropriately to apply
to walks with non-zero drift; in our setting, as in Khoshnevisan's, limiting
constants can often be characterized by variational problems, but in only
a limited number of instances is the solution known.



Strassen's theorem

Let Cy4 denote the set of continuous f : [0,1] — R9, and let C denote
the subset of those f € C§ for which f(0) = 0. Define the
linearly-interpolated random walk trajectory

Yn(t) = SLntJ + (nt - LntJ)Zl_ntj+lv for t € [07 1]

Then Y, € CY for every n € Z.. The KHINCHIN scaling function for the

classical LIL is
2(n) :=+/2nloglogn for n > 3.

The symmetric, non-negative definite matrix ¥ has a unique symmetric,
non-negative definite square-root ¥/2, which acts as a linear
transformation of RY.

Strassen's theorem is a statement about the a.s. limit points of the
sequence Y,//(n) in the metric space C3 (endowed with the supremum
metric).



Strassen's theorem

Theorem (Strassen’s theorem for random walk).
Let d € N and yi = 0. With probability 1, the sequence Y,/¢(n) in CY is
relatively compact, and its set of limit points is ¥/ Uy.

Here

Ug = {a.c. f:£(0) =0, /01 IF'(s)|2ds < 1}

is unit ball in Cameron—Martin space for the Wiener measure, and ' is
componentwise derivative.

In words, the theorem states that, a.s., (a) every subsequence of Y,,/¢(n)
contains a further subsequence that converges, its limit being some

f € £Y/2Uy, and (b) for every f € ¥1/2U,, there is a subsequence of
Yn/¢(n) that converges to f.



Strassen's theorem

Theorem (Strassen’s theorem for random walk).
Let d € N and yi = 0. With probability 1, the sequence Y,/¢(n) in CY is
relatively compact, and its set of limit points is ¥/ Uy.

Here

Ug = {a.c. f:£(0) =0, /01 IF'(s)|2ds < 1}

is unit ball in Cameron—Martin space for the Wiener measure, and ' is
componentwise derivative.

In words, the theorem states that, a.s., (a) every subsequence of Y,,/¢(n)
contains a further subsequence that converges, its limit being some

f € £Y/2Uy, and (b) for every f € ¥1/2U,, there is a subsequence of
Yn/¢(n) that converges to f.

Example: among f € Uy, maximum f(1) = 1 achieved by f(s) = s; so
corollary to Strassen’s theorem is the classical LIL: for ¥ =/,

: Sn
limsup —

=1, as.
n— oo é(n)



Strassen's theorem

Theorem (Strassen’s theorem for random walk).
Let d € N and ;1 = 0. With probability 1, the sequence Y,/¢(n) in CY is
relatively compact, and its set of limit points is ¥/ Uj.

Here

Us = {ac £ (0) =0, /01 I#/(s)]%ds < 1}

is unit ball in Cameron—Martin space for the Wiener measure, and f’ is
componentwise derivative.

In words, the theorem states that, a.s., (a) every subsequence of Y,,/¢(n)
contains a further subsequence that converges, its limit being some

f € £Y/2Uy, and (b) for every f € ¥1/2U,, there is a subsequence of
Yn/¢(n) that converges to f.

Example: also yields the extension that for ¥ =/,

Ilnriloilf £(n)

- 0’ =0, as., ifand only if § € [-1,1].



A Strassen theorem for non-zero drift

Idea: Use different scalings, like in the W. & XU weak convergence
result; this time LLN scaling in drift direction, LIL scaling in the rest.

WLOG, choose coordinates so that the standard orthonormal basis
(e1,...eq) of RY d > 2, has e; in the direction of .

Let 3. denote the matrix obtained from % by omitting the first row and
column (reduced covariance matrix).

For n € N, define 9# : RY — R9, acting on x = (x1,...,Xq), by

; _(ne xa

YH(x1y -y Xd) ( = é(n)""’z(n)) ,

Let /, : [0,1] — Ry denote the function /,(t) = ||x||t, and set
Waux = {g = (1, £/°f) : f € Uy_1}, for d > 2.



A Strassen theorem for non-zero drift

Theorem (CYGAN, SANDRIC, SEBEK, W., 2023).
Suppose that d > 2 and p # 0. With probability 1, the sequence
YE(Yy) in CY is relatively compact, and its set of limit points

is Wd,p.,):-
Proof.
Combine the strong LLN (in functional form) for the first component,
with Strassen’s LIL for the remaining d — 1 components. O
Corollary.

Suppose that d > 2 and 1 # 0. Let G be a real-valued, continuous
function on compact, convex sets. Then
limsup G(¢4(H,)) = sup G(hullg[0,1]), as.

n—o00 gEWy u s

Note: Not necessarily immediate to use, because of the involved nature
of the ¢ map.



Application to volumes

Theorem (CYGAN, SANDRIC, SEBEK, W., 2023).
Suppose that d > 2 and ;1 # 0. Then, a.s.,

V.
lim sup a(*n) = ||pl - y/det X, - Mg,
n—oo +/29-1nd+1(log log n)d—1

where

Ad = fsup Va(hull{(¢, f(t)); t € [0,1]}).

Theorem (CYGAN, SANDRIC, SEBEK, W., 2023).
When d = 2, the constant takes value Ao = /3/6.

Together, these results give the LIL for area of the planar convex hull
stated earlier.



Application to volumes

Proof of first Theorem.
By the scaling property of volumes, for n € N,

Va0 (H,)) = n‘lf‘(’f,;f,)l

Applying the Corollary with G = V4, we get
Vd(Hn)

lim sup = sup Vy(hull g[0,1]).
n—oo /297 1pd+1(loglog n)9=1  gew,, s ( 01

Now g € Wy .5 has g = (I, Zt{zf) for some f € Uy_1, and, by scaling,
if go:=(lg, "),

Va(hull g[0,1]) = 1] - det =% - Vy(hull go[0, 1])

s

= ||l - \/det X, - Va(hull{(, f(£)); t € [0,1]}). O



General intrinsic volumes

For k € {1,...,d}, let Vi(H,) denote the kth intrinsic volume of H,.
(Vg = volume, Vy_1 =~ surface area, etc.)

Theorem (CYGAN, SANDRIC, SEBEK, W., 2023).

Suppose that d > 2 and u #0. Let k € {1,2,...,d}. Then there
exists a constant A\ € (0,00), depending on d, k, and the law
of Z, such that, a.s.,

lim sup Vi(#n)

=A.
n—oo /2k=1nkt1(log log n)k—1

® Case k = d is the LIL for volumes. For other k, V), does not scale so
nicely through %, so the proof is less direct, and the constant less
explicit.

® Proof uses some further ingredients, including a zero—one law.
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@ Solution to a Strassen-type isoperimetric problem



The planar constant: isoperimetric problem

We turn back to:

Theorem (CYGAN, SANDRIC, SEBEK, W., 2023).
When d = 2, the constant in the LIL for area is A = \/3/6.

Recall that A\, was characterized via

Yo = sup Va(hull{(t, f(t)); t € [0,1]}),

where U; was the Strassen ball, i.e., a.c. f : [0,1] — R with £(0) = 0 and
1
r(f) :_/ f'(s)?ds < 1.
0

Denoting by f, f the least concave majorant and greatest convex
minorant, respectively, of f, we can write

1
Va(hull{(t, £(£)); t € [0,1]}) = A(f) := /0 (F(s) — £(5)) ds.



The planar constant: isoperimetric problem

We can express the variational problem to identify A, as

maximize A(f) subject to I'(f) <1,

where 7(0) =0 and

r(f):/0 f'(s)ds; A(f):/0 (f(s) — £(s)) ds.

Theorem (CYGAN, SANDRIC, SEBEK, W., 2023).
The optimal f is f = f* given by

f*(u) =V3u(l—u), for0<u<1,
which has T(f*) = 1 and A(f*) = v/3/6.

.

We sketch the proof.



The planar constant: isoperimetric problem

Three important reductions:

e Suffices to work with bridges, f(0) = f(1) = 0.
Easy: a calculation shows the bridge f given by f(s) := f(s) — sf(1) has
A(f) = A(f) and T(f) < T(f).
® Suffices to work with positive bridges, f(s) > 0 for s € (0,1).
Not so easy: proof uses symmetrization.
® Suffices to work with concave positive bridges.
Easy: replace positive bridge by its concave majorant to decrease I'.

Problem then reduces to
1
maximize / f(s)ds subject to I'(f) <1,
0

and to show that optimal f is f = f* given above.

This is a “Cameron—Martin” or “Strassen” version of the Dido problem of
antiquity to find maximal enclosed area for a curve of given arc length; here arc
length is replaced by Strassen cost I'. Adjacent results by SCHMIDT (1940).



The planar constant: isoperimetric problem

Proposition.

For every bridge f, there is a positive bridge f* (produced by
symmetrization) for which T'(f®) = ['(f) and A(f®) > A(f).

02

02
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@ Concluding remarks



Concluding remarks

® The LIL is closely related to large deviations. For planar random
walks with Gaussian increments, some recent results are given by
AKOPYAN & VYSOTSKY (2021).

® The infinite-variance, multidimensional case (when the random walk
is in the domain of attraction of a d-dimensional stable law),
distributional limit theory recently studied by CYGAN, SANDRIC,
SEBEK (2022). LIL-type behaviour still open.

® As hinted earlier, some functionals fall into a different class of limit
theorems, e.g. perimeter in case p # 0 satisfies a CLT (W., Xu,
2015) and we would expect a LIL there, too, but existing approaches
do not apply.

Thank you!
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