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Introduction

Create an m x n matrix M := M(n, m) over GF[2] by generating
mi.i.d. rows each with n entries of Os and 1s.

Each row has weight (number of 1s) independently distributed
as some random variable W, € {1,2,3,...,n}.

Given its weight, the row is chosen uniformly over all
possibilities in {0, 1}” with that many 1s.



Introduction

Create an m x n matrix M := M(n, m) over GF[2] by generating
mi.i.d. rows each with n entries of Os and 1s.

Each row has weight (number of 1s) independently distributed
as some random variable W, € {1,2,3,...,n}.

Given its weight, the row is chosen uniformly over all
possibilities in {0, 1}” with that many 1s.

A left null vector for M over GF[2] is a row vector a € {0,1}"
such that aM = 0, mod 2, where 0, is the row vector of n zeros.
Trivially, 0., is always a null vector.

A non-trivial null vector corresponds to a non-empty subset of
the row labels {1,..., m} such that the sum over the
corresponding rows has no odd entries.
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Number of null vectors

We are interested in

N(n, m) = number of left null vectors for M(n, m)

in the regime where n — oo, m = m, with m,/n — «, and
Wi, 9, W for some limiting weight distribution W.



Number of null vectors

We are interested in

N(n, m) = number of left null vectors for M(n, m)

in the regime where n — oo, m = m, with m,/n — «, and
Wi, 9, W for some limiting weight distribution W.

Note:
no non-trivial system Mx = ymod2
< N(n,m)=1 < has asolution x € {0,1}"
null vectors

forevery y € {0,1}™

Also related to XORSAT, spin-glass models, Ehrenfest urn,
random walk on hypercube, switch-setting problems, ...



Expected number of null vectors
Let 1,,, denote the vector of m ones, and consider the event

A(n,m) = {1 is null for M(n, m)}
= {all column sums of M(n, m) even}.

Then

m
EN(n,m) = Z E number of null vectors of weight k
k=0

_ é <’:>Jp>(A(n, K)).

We study asymptotics of E (n, an)



Expected number of null vectors
Let 1,,, denote the vector of m ones, and consider the event

A(n,m) = {1 is null for M(n, m)}
= {all column sums of M(n, m) even}.

Then

m
EN(n,m) = Z E number of null vectors of weight k
k=0

_ é <T)]P’(A(n, K)).

We study asymptotics of E (n, an) in terms of

[ p(s) =Es"

the generating function of the limiting weight distribution.



Technical device

We can show that any model in our class W, 4 Wis
sufficiently well-approximated by the binomial model in which

number of odd components in

i i A 1
multinomial (W; -,..., -

W, = WP =

The binomial model is equivalent to:

Generate each row by distributing W units uniformly
and independently among the n positions and then
reducing occupancies mod 2.

Lemma
In the binomial model,




Exact formula

Proof.
Let Y; = sum of column j and, for J C {1,2,...,n},

Si 4 = sum of entries in column j and row subset J.
Then N y
B : B 14+ (=1)%
P (A(n,m)) = P(all Y; even) = E E ( 5 )
=2 ZE { ZfeJ } .

Buty ., Y = ST, Sy (ii.d. summands) so

B(A(n,m) =273 (E[(-1)%])"
J

But Sy, is given by the sum of |J| components of a multinomial
(W; 1., 1) vector reduced mod 2, so (—1)51 4 (—1)% where
Z ~ Bin(w, ).



Asymptotics for P (A(n, an))

Lemma
Suppose that mp/n — o € (0,00) and that either (i) my is even
for all n, or (i) P[W is even] > 0. Then,

Jlim_ n~logP (A(n, my)) = —R,(a),

for a continuous and non-decreasing function R, given by

_ (p(1 —27))"
Fole) = Iogves[(gf)/z] (277(1 - 7)17> '



Asymptotics for P (A(n, an))

Lemma
Suppose that mp/n — o € (0,00) and that either (i) my is even
for all n, or (i) P[W is even] > 0. Then,

Jlim_ n~logP (A(n, my)) = —R,(a),

for a continuous and non-decreasing function R, given by

_ (p(1 = 27))*
Fole) = 'Ogves[éff’/zl (277(1 —7)1”> '

Corollary (cf. Kolchin ‘94)

Let 7, denote the probability that all the n components of a

multinomial (mp; ... ., 1) vector are even. Suppose that m, is
even for all n and m,/n — o = Atanh X\ € (0,00). Then

lim n~'logm, = logcosh A — (Atanh \)(1 — logtanh ).

n—oo



Asymptotics for E N(n, an)
Define the continuous non-decreasing function F, by

(1+p(1 —27))“>
(1 =)' )7

Set oy :=inf{a > 0: F,(a) > 0}.

a > 0.

Fy(a) =log sup <
v€[0,1/2]
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Define the continuous non-decreasing function F, by

(1+p(1 —27))0‘>
F,(a) =log su < , a>0.
() 76[071p/2] 2y7(1 — )=

Set oy :=inf{a > 0: F,(a) > 0}.

Theorem
Suppose that m,/n — « € (0, 00). Then,

lim n='logE N(n, m,) = 0 s ap
n—o0 Fola) >0 ifa>aj.
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Define the continuous non-decreasing function F, by
(1+p(1 —27))"
F,(o) =log sup < , a>0.
() veo.a/2] \ 277(1 = )17
Set oy :=inf{a > 0: F,(a) > 0}.

Theorem
Suppose that m,/n — « € (0, 00). Then,
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Asymptotics for E N(n, an)

Define the continuous non-decreasing function F, by

(1+p(1 - 27))“)

F,(a) =log su < , a>0.

() 76[0,1p/2] 2y7(1 — )=

Set oy :=inf{a > 0: F,(a) > 0}.
Theorem

Suppose that m,/n — « € (0, 00). Then,
lim n~"logE N(n, m,) = 0 Tos ap
n—o0 Fola) >0 ifa>aj.

Here, if P(W > 2) =1 andIEW<oo,then1/2§a;‘;<1.

In the fixed-weight case P (W = r) = 1 versions of this result
were obtained by BALAKIN et al. ‘92, KOLCHIN ‘94, CALKIN ‘97,
COOPER ‘99.



First non-trivial null vector
Consider building M(n, m) one row at a time.

Let T, be the first m for which a non-zero null vector appears,
i.e., the first m for which row mis in the linear span of rows
1,...,m—1.

Theorem
Suppose 3 < W, < B for some B < co. Then, with
probability tending to 1, o, < Tp/n < .

Here a, < 1 is another threshold defined in terms of the 2-core
of the hypergraph.



First non-trivial null vector
Consider building M(n, m) one row at a time.

Let T, be the first m for which a non-zero null vector appears,
i.e., the first m for which row mis in the linear span of rows
1,...,m—1.

Theorem
Suppose 3 < W, < B for some B < co. Then, with
probability tending to 1, o, < Tp/n < .

Here a, < 1 is another threshold defined in terms of the 2-core
of the hypergraph.

Conjecture

Under the above conditions, n=' T, — a,, in probability.

An equivalent version of this conjecture in the fixed weight case
has been proved by DuBOIS & MANDLER ‘02, DIETZFELBINGER
etal ‘10.



Fixed weight case

WhenP(W =r)=1,i.e, p(s)=5".
Write o, and o, for a, and a,, in this case.

Following BALAKIN et al. ‘92, KOLCHIN ‘94, CALKIN ‘97,
COOPER 99, ‘04 ....
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Fixed weight case

WhenP(W =r)=1,i.e, p(s)=5".
Write o, and o, for a, and a,, in this case.

Following BALAKIN et al. ‘92, KOLCHIN ‘94, CALKIN ‘97,
COOPER 99, ‘04 ....

r1i1] 2 3 4 5 6 7
af | 0 | 0.5 0.889493 | 0.967147 | 0.989162 | 0.996228 | 0.998650
ar | — | — | 0.917935 | 0.976770 | 0.992438 | 0.997380 | 0.999064

Lemma

e 1—aj ~ &5 (CALKIN 97);
o 1 — O~ e_r.

e So o} < ar <1 forlarge enough r.
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Hypergraph 2-core

Starting from the hypergraph represented by M(m, n), iterate
the following:

Identify a column (vertex) with a single non-zero.
Delete the corresponding row (hyperedge).

When no column (vertex) with a single non-zero remains, the
resulting hypergraph is the 2-core of the original hypergraph.



Hypergraph 2-core

Starting from the hypergraph represented by M(m, n), iterate
the following:

Identify a column (vertex) with a single non-zero.
Delete the corresponding row (hyperedge).

When no column (vertex) with a single non-zero remains, the
resulting hypergraph is the 2-core of the original hypergraph.
Lemma (Molloy, Cooper)

If the 2-core is empty, the hypergraph has no hypercycle.

If the 2-core has more rows (hyperedges) than columns
(vertices), the hypergraph contains a hypercycle.



Hypergraph 2-core
By a (minor extension of a) theorem of DARLING & NORRIS ‘08
one can characterize

¢ those « for which the 2-core asymptotically has more rows
than columns,

e Orvice versa,
e and hence a,
depending on whether

(g (@) <0 or ¥(g*(a)) > 0.

Here
N B __Iog(1—x) ne
g'(@) =sup{x e (0.1): -2 <l

(x)=x+ <1 + 5,(())(()) — x) log(1 — x).




Hypergraph 2-core: non-monotonicity

In the fixed weight case, COOPER ‘04 showed that the core aspect
ratio transition is monotone. In the random setting, more can occur.

p(s) = 0.9183s% 4 0.04s"° + 0.0417s*"  Plot shows part of y = ¢(x) (all

0.003+

0.002+

0.001+

0

-0.001q

-0.0029

-0.0031

-0.0044

the line) and locus of
(97 (), (g7 (a))) (solid line).

1 (x) has 3 +ve zeros.

The 2 of these zeros achieved by
¥(g*(a)) are at x ~ 0.928538
and x ~ 0.975069.

The first corresponds to
a = a, ~ 0.990686 and the
second to o =~ 0.991185.

Hence as a ranges in (0, 1), ¥(g*(«)) changes sign from +ve, to
—ve, to +ve, and finally to —ve again.
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