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Introduction

Create an m × n matrix M := M(n,m) over GF[2] by generating
m i.i.d. rows each with n entries of 0s and 1s.

Each row has weight (number of 1s) independently distributed
as some random variable Wn ∈ {1,2,3, . . . ,n}.

Given its weight, the row is chosen uniformly over all
possibilities in {0,1}n with that many 1s.

A left null vector for M over GF[2] is a row vector a ∈ {0,1}m
such that aM ≡ 0n mod 2, where 0n is the row vector of n zeros.
Trivially, 0m is always a null vector.

A non-trivial null vector corresponds to a non-empty subset of
the row labels {1, . . . ,m} such that the sum over the
corresponding rows has no odd entries.
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Number of null vectors

We are interested in

N(n,m) = number of left null vectors for M(n,m)

in the regime where n→∞, m = mn with mn/n→ α, and
Wn

d−→W for some limiting weight distribution W .

Note:

no non-trivial
null vectors

⇔ N(n,m) = 1 ⇔
system Mx ≡ y mod 2

has a solution x ∈ {0,1}n
for every y ∈ {0,1}m

Also related to XORSAT, spin-glass models, Ehrenfest urn,
random walk on hypercube, switch-setting problems, . . .
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Expected number of null vectors
Let 1m denote the vector of m ones, and consider the event

A(n,m) = {1m is null for M(n,m)}
= {all column sums of M(n,m) even}.

Then

EN(n,m) =
m∑

k=0

Enumber of null vectors of weight k

=
m∑

k=0

(
m
k

)
P (A(n, k)).

We study asymptotics of E (n, αn)

in terms of

ρ(s) := E sW

the generating function of the limiting weight distribution.
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Technical device
We can show that any model in our class Wn

d−→W is
sufficiently well-approximated by the binomial model in which

Wn = W bin
n =

number of odd components in
multinomial (W ; 1

n , . . . ,
1
n )

The binomial model is equivalent to:

Generate each row by distributing W units uniformly
and independently among the n positions and then
reducing occupancies mod 2.

Lemma
In the binomial model,

P (A(n,m)) = 2−n
n∑

j=0

(
n
j

)(
ρ(1− 2j

n )
)m

.



Exact formula
Proof.
Let Yj = sum of column j and, for J ⊆ {1,2, . . . ,n},

Si,J = sum of entries in column i and row subset J.

Then

P (A(n,m)) = P (all Yj even) = E
n∏

j=1

(
1 + (−1)Yj

2

)
= 2−n

∑
J

E
[
(−1)

∑
j∈J Yj

]
.

But
∑

j∈J Yj =
∑m

i=1 Si,J (i.i.d. summands) so

P (A(n,m)) = 2−n
∑

J

(
E [(−1)S1,J ]

)m
.

But S1,J is given by the sum of |J| components of a multinomial

(W ; 1
n , . . . ,

1
n ) vector reduced mod 2, so (−1)S1,J

d
= (−1)Z where

Z ∼ Bin(W , |J|n ).



Asymptotics for P (A(n, αn))
Lemma
Suppose that mn/n→ α ∈ (0,∞) and that either (i) mn is even
for all n, or (ii) P [W is even] > 0. Then,

lim
n→∞

n−1 logP (A(n,mn)) = −Rρ(α),

for a continuous and non-decreasing function Rρ given by

Rρ(α) = − log sup
γ∈[0,1/2]

(
(ρ(1− 2γ))α

2γγ(1− γ)1−γ

)
.

Corollary (cf. Kolchin ‘94)
Let πn denote the probability that all the n components of a
multinomial (mn;

1
n , . . . ,

1
n ) vector are even. Suppose that mn is

even for all n and mn/n→ α = λ tanhλ ∈ (0,∞). Then

lim
n→∞

n−1 logπn = log coshλ− (λ tanhλ)(1− log tanhλ).
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Asymptotics for EN(n, αn)

Define the continuous non-decreasing function Fρ by

Fρ(α) = log sup
γ∈[0,1/2]

(
(1+ρ(1− 2γ))α

2γγ(1− γ)1−γ

)
, α ≥ 0.

Set α∗ρ := inf{α ≥ 0 : Fρ(α) > 0}.

Theorem
Suppose that mn/n→ α ∈ (0,∞). Then,

lim
n→∞

n−1 logEN(n,mn) =

{
0 if α ≤ α∗ρ;
Fρ(α) > 0 if α > α∗ρ.

Here, if P (W ≥ 2) = 1 and EW <∞, then 1/2 ≤ α∗ρ < 1.

In the fixed-weight case P (W = r) = 1 versions of this result
were obtained by BALAKIN et al. ‘92, KOLCHIN ‘94, CALKIN ‘97,
COOPER ‘99.
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First non-trivial null vector
Consider building M(n,m) one row at a time.

Let Tn be the first m for which a non-zero null vector appears,
i.e., the first m for which row m is in the linear span of rows
1, . . . ,m − 1.

Theorem
Suppose 3 ≤Wn ≤ B for some B <∞. Then, with
probability tending to 1, α∗ρ < Tn/n < αρ.

Here αρ ≤ 1 is another threshold defined in terms of the 2-core
of the hypergraph.

Conjecture
Under the above conditions, n−1Tn → αρ in probability.
An equivalent version of this conjecture in the fixed weight case
has been proved by DUBOIS & MANDLER ‘02, DIETZFELBINGER

et al. ‘10.
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Fixed weight case

When P (W = r) = 1, i.e., ρ(s) = sr .
Write αr and αr for αρ and αρ in this case.
Following BALAKIN et al. ‘92, KOLCHIN ‘94, CALKIN ‘97,
COOPER ‘99, ‘04 . . . .

r 1 2 3 4 5 6 7
α∗r 0 0.5 0.889493 0.967147 0.989162 0.996228 0.998650
αr — — 0.917935 0.976770 0.992438 0.997380 0.999064

Lemma

• 1− α∗r ∼ e−r

log 2 (CALKIN ‘97);

• 1− αr ∼ e−r .
• So α∗r < αr < 1 for large enough r .
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Hypergraph 2-core

Starting from the hypergraph represented by M(m,n), iterate
the following:

Identify a column (vertex) with a single non-zero.
Delete the corresponding row (hyperedge).

When no column (vertex) with a single non-zero remains, the
resulting hypergraph is the 2-core of the original hypergraph.

Lemma (Molloy, Cooper)
If the 2-core is empty, the hypergraph has no hypercycle.
If the 2-core has more rows (hyperedges) than columns
(vertices), the hypergraph contains a hypercycle.
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Hypergraph 2-core

By a (minor extension of a) theorem of DARLING & NORRIS ‘08
one can characterize
• those α for which the 2-core asymptotically has more rows

than columns,
• or vice versa,
• and hence αρ,

depending on whether

ψ(g∗(α)) < 0 or ψ(g∗(α)) > 0.

Here

g∗(α) = sup
{

x ∈ (0,1) : − log(1− x)
ρ′(x)

≤ α
}
;

ψ(x) = x +

(
1 +

ρ(x)
ρ′(x)

− x
)

log(1− x).



Hypergraph 2-core: non-monotonicity
In the fixed weight case, COOPER ‘04 showed that the core aspect
ratio transition is monotone. In the random setting, more can occur.

ρ(s) = 0.9183s3 + 0.04s19 + 0.0417s41 Plot shows part of y = ψ(x) (all
the line) and locus of
(g∗(α), ψ(g∗(α))) (solid line).

ψ(x) has 3 +ve zeros.

The 2 of these zeros achieved by
ψ(g∗(α)) are at x ≈ 0.928538
and x ≈ 0.975069.

The first corresponds to
α = αρ ≈ 0.990686 and the
second to α ≈ 0.991185.

Hence as α ranges in (0,1), ψ(g∗(α)) changes sign from +ve, to
−ve, to +ve, and finally to −ve again.
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