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Picture

Take Brownian motion in the hyperbolic plane H2 (the unique complete,
simply-connected two-dimensional Riemannian manifold with constant
curvature −1).

Run the process up to time t ∈ (0,∞) and
construct the closed convex hull
containing the Brownian trajectory.

Consider its perimeter length Lt
(where convexity and length have
the intrinsic hyperbolic sense).

The picture shows the Poincaré
disk model, with t = 10.

Question: What can we say
about expectation E Lt?

E.g. as t → 0 or t → ∞?



Outline

1 Picture

2 Some background

3 Expected perimeter results

4 Ideas of the proofs

5 Concluding remarks



Some background: Motivation

• Convex hulls of stochastic processes motivated by understanding extremal
geometry of processes; seeking multidimensional extensions of
one-dimensional fluctuation or record-value theory; by modelling animal
territories; undertaking set estimation; etc.

• Convex hull of Euclidean Brownian motion (or random walk, Lévy process,
. . . ) has been studied since Lévy (1955); milestones are Spitzer &
Widom (1961), Letac & Takács (1980), Cranston, Hsu & March
(1989), Khoshnevisan (1992), Snyder & Steele (1993),
Majumdar, Comtet & Randon-Furling (2010). . .

• Recent activity, e.g. Eldan (2014), W. & Xu (2015), Molchanov &
Wespi (2016), McRedmond & W. (2018), Vysotsky &
Zaporozhets (2018), Akopyan & Vysotsky (2021), Bang,
González Cázares & Mijatović (2022), Cygan, Sandrić, Šebek
& W. (2024). . .

• There has been recent interest in hyperbolic stochastic geometry and its
contrast with the much more well-studied Euclidean setting.
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Some background: Euclidean setting

Some comments on Euclidean Brownian motion that all fail to carry over
to the hyperbolic case:

• Euclidean Brownian motion possesses scaling and time-inversion
properties that mean for fixed-time statistics it suffices to take t = 1, and
for asymptotics the t → ∞ and t → 0 regimes are closely related.

• Euclidean Brownian motion is angular recurrent, i.e., reaches all angles at
arbitrarily large times, so the convex hull eventually fills out all space.

In Euclidean planar geometry, there’s an elegant formula due to Cauchy
& Crofton that expresses perimeter length of a closed convex body as the
integral over all angles of the width of the body in that direction. For
Brownian motion, Letac & Takács (1980) used this to compute

E[LEt ] = E
∫ 2π

0

sup
0≤s≤t

(e⊤
θ Bs)dθ = 2π

√
t E sup

0≤s≤1
(e⊤

0 Bs) =
√
8πt,

where B = (Bs)s≥0 is Brownian motion on R2, LEt is the perimeter length
of the convex hull of B[0, t], and e⊤

θ is projection in direction θ.
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Some background: Hyperbolic Brownian motion

“[Hyperbolic] Space is big. You just won’t believe how vastly, hugely,
mind-bogglingly big it is. I mean, you may think it’s a long way
down the road to the chemist’s, but that’s just peanuts to [hyperbolic]
space.” — [apologies to] Douglas Adams

Describe hyperbolic BM in intrinsic polar coordinates (Rt , θt)t≥s , for any
s > 0, via coupled SDEs

R0 := 0, dRt =
dt

2 tanhRt
+ dW R

t , for all t ∈ R+; (1)

Θ(s)
s := 0, dΘ

(s)
t =

dW
(s)
t

sinhRt
, for all t ≥ s, (2)

where W R and W (s) are independent real-valued BMs. Then for all

t ≥ s, θt = (θs +Θ
(s)
t ) modulo 2π, with entrance law θs ∼ Unif [0, 2π),

for every s > 0, inevitable thanks to the rapid spinning out from the
origin (cf. skew-product description of transient Euclidean BM started
from the origin).



Some background: Hyperbolic Brownian motion

On large scales, hyperbolic BM is very different to Euclidean Brownian
motion. Indeed, hyperbolic BM is transient with a positive asymptotic
speed and a (random) limiting direction:

Proposition.
It holds that P(Rt > 0 for all t > 0) = 1, and, a.s.,

lim
t→∞

Rt

t
= lim

t→∞

ERt

t
=

1

2
.

Moreover, there exists a random θ∞ ∼ Unif [0, 2π), such that

lim
t→∞

θt = θ∞, a.s.

The ‘a.s.’ statements here are very well known, although we could not
explicitly find the statement about ERt . Proof is by direct (not hard)
analysis of the SDEs (1)–(2).



Some background: Hyperbolic Brownian motion

The previous proposition gives a sense in which the hyperbolic Brownian
trajectory ‘converges to a line segment in a random direction’. This
statement needs to be interpreted with care, however.

Comment: If we take a Euclidean Brownian motion with drift, then it
satisfies a similar strong law with a limiting (in this case, non-random)
direction. Euclidean scale-invariance and continuous mapping leads to a
strong law for the perimeter of the convex hull, i.e., LEt /t → const., a.s.

In the hyperbolic case, since the hyperbolic convex hull contains the line
segment, and perimeter is (still!) monotone, the above proposition does
at least give a lower bound:

Corollary.
The perimeter length satisfies the “line segment” lower bounds

lim inf
t→∞

Lt
t

≥ 1, a.s., and lim inf
t→∞

E Lt
t

≥ 1.
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Expected perimeter results

Our main result expresses E Lt in terms of an exponential functional of
Brownian motion on the line, as well as large-time and small-time
asymptotics. Define

Et :=
∫ t

0

exp(2Ws − s)ds, for t ∈ R+,

where W = (Wt)t≥0 is a standard Brownian motion on R.

Theorem (BVW 2025).
It holds that E Lt =

√
8π E

√
Et for every t ∈ R+. Moreover,

lim
t→0

E Lt√
8πt

= 1, and lim
t→∞

E Lt
2t

= 1.



Expected perimeter results: Remarks

Theorem (BVW 2025).
It holds that E Lt =

√
8π E

√
Et for every t ∈ R+. Moreover,

lim
t→0

E Lt√
8πt

= 1, and lim
t→∞

E Lt
2t

= 1.

• The large-time asymptotics show that the “line segment” lower
bound from the Corollary is not sharp, by a factor of 2.

• The small-time asymptotics coincide with those in the Euclidean
setting, in accord with the intuition that Brownian motion
experiences hyperbolic space as locally flat.

• The asymptotic results follow from the representation in terms of an
exponential functional and powerful results of Hariya & Yor
(2004). So in the rest of this talk, I will explain where the
exponential functional comes from.
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Models of the hyperbolic plane

Recall that we described hyperbolic BM in terms of geodesic polar
coordinates (R, θ) in H2.

For geometrical calculations, it is very useful to represent in a model for
H2 with a Euclidean planar domain endowed with a special metric. Three
that will be useful for us:

• The Poincaré disk DP. Has the advantage that it presents angular
information directly, is conformal, and has relatively simple formulas.

• The Beltrami–Klein disk DK. Another disk model that has the
advantage that geodesics are straight lines, so convexity is easier to
work with, and there is an analogue of the Cauchy formula for
perimeter length that sits most naturally here.

• The Poincaré half plane HP. Here the SDEs for hyperbolic BM have
a nice form that reveals the exponential functional Et introduced
above.



Models of the hyperbolic plane: Poincaré disk
Base space is unit Euclidean disk. In polar coordinates, angle is just the
geodesic polar angle, and relation between the radius in the disk and the
geodesic radius is

r = tanh(R/2).



Models of the hyperbolic plane: Beltrami–Kelin disk
Again, base space is unit Euclidean disk, and angle is the geodesic polar
angle. Relation between the radius in the disk and the geodesic radius is

r = tanhR.



Models of the hyperbolic plane: Poincaré half plane

Base space is R× (0,∞), origin mapped to (0, 1). The coordinates (x , y)
are given in terms of geodesic polar coordinates (R, θ) via

x =
sinhR cos θ

coshR − sinhR sin θ
, y =

1

coshR − sinhR sin θ
.



A hyperbolic Cauchy formula

Crucial is a Cauchy-type formula from Alexander, Berg & Foote
(2005) which expresses the hyperbolic perimeter length of a convex
subset of the Beltrami–Klein disk DK via an integral, over all angles, of
certain one-dimensional ‘widths’.

Since hyperbolic BM in DK is isotropic, this gives a formula for E Lt as
2π times a certain expectation of a (supremum of) a one-dimensional
process. This is analogous to the Euclidean case of Letac & Takács.

We will not go into the details here of the calculation, but it turns out
that the one-dimensional process that appears is another object we have
already mentioned:

Theorem.
It holds that E Lt = 2π E [X ⋆

t ], where X ⋆
t := sup0≤s≤t Xs and

X = (Xt)t≥0 is the horizontal process of hyperbolic BM in the
Poincaré half-plane HP.



Half-plane and exponential functionals

In HP, the SDEs for hyperbolic BM (X ,Y ) ∈ R× (0,∞) take the nice
form

(X0,Y0) = (0, 1), dXt = YtdW
X
t , dYt = YtdW

Y
t ,

where W X and W Y are independent R-valued BMs. The SDEs can be
solved explicitly to give

Yt = exp
(
W Y

t − t

2

)
, Xt =

∫ t

0

YsdW
X
s .

In particular, the martingale X has quadratic variation process

[X ]t =

∫ t

0

exp
(
2W Y

s − s
)
ds

d
= Et .

Then limt→∞[X ]t = [X ]∞ < ∞, a.s., so martingale X converges (this is
the limiting direction result manifest in HP). Nevertheless, EX ⋆

t turns
out to grow linearly in t as t → ∞.



Half-plane and exponential functionals

Lemma.
It holds that EX ⋆

t =
√
2/π E[

√
Et ].

Proof.
Since W X and W Y are independent, the continuous martingale X whose
quadratic variation process has the law of E can be represented via the
time change

Xt = W̃Et

for W̃ a one-dimensional BM independent of E . So

X ⋆
t = sup

0≤s≤t
Xs = sup

0≤s≤Et

W̃s
d
=

√
Et sup

0≤s≤1
W̃s .

Now simply use that E sup0≤s≤1 W̃s =
√
2/π.



Finishing the proof

We have shown that

• E Lt = 2π EX ⋆
t (Cauchy formula);

• EX ⋆
t =

√
2/π E

√
Et (solving the half-plane SDE).

So we get the claimed formula:

E Lt =
√
8π E

√
Et .

Asymptotics (t → ∞) of moments of E[Ep
t ] were studied by Hariya &

Yor (2004). The case p = 1/2 is the most delicate (for p < 1/2 they
are uniformly bounded, for p > 1/2 they grow exponentially!) Using
results of Hariya & Yor (t → 0 can be done directly) we get

lim
t→0

E Lt√
8πt

= 1, and lim
t→∞

E Lt
2t

= 1.
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Concluding remarks

• For fixed t, there is (following Yor, 1992) an exact formula for
E
√
Et , but only as a (complicated) triple-integral.

• But (Yor, 2001) there is an explicit formula, involving Gamma
functions, for E

√
ET at an independent exponential random time T .

• Obviously one would hope to get more understanding of Lt than just
its mean. What about Var Lt? Does Lt/t have a deterministic or
random limit as t → ∞? If so, what is it?

For bibliography and details, see:

Perimeter length of the convex hull of Brownian motion in the hyper-
bolic plane, C. Bhattacharjee, R. Versendaal, A. Wade
ArXiv: 2502.15340

Thank you!

https://arxiv.org/abs/2502.15340
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